Relationships of Oil Content and Fatty Acid Composition with Seed Characters of Diploknema Butyracea

Total Page:16

File Type:pdf, Size:1020Kb

Relationships of Oil Content and Fatty Acid Composition with Seed Characters of Diploknema Butyracea Academy of Agriculture Journal 2 : 1 (2017)1 - 4 Contents lists available at www.innovativejournal.in ACADEMY OF AGRICULTURE JOURNAL Available online at http://innovativejournal.in/aaj/index.php/aaj RELATIONSHIPS OF OIL CONTENT AND FATTY ACID COMPOSITION WITH SEED CHARACTERS OF DIPLOKNEMA BUTYRACEA B.B. Bandyopadhyay, L Joshi, M.K. Nautiyal Department of Genetics and Plant Breeding, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar. U.S. Nagar, Uttarakhand 263145 ARTICLE INFO ABSTRACT Corresponding Author Diploknema butyracea (Phulwara/cheura plant) grows in wild form in sub- B.B. Bandyopadhyay Himalayan tracts and outer Himalayan ranges of Uttarakhand state. The plant Department of Genetics and Plant contains high concentration (> 60%) of oils/fats in kernel along with high Breeding, College of Agriculture, palmitic acid (56.80 - 64.10%), oleic acid (28.00 – 31.30%), linoleic acid (4.30 - G.B. Pant University of Agriculture 5.70%) and stearic acid (2.40 – 3.50%). Oil/fat is used for edible purposes and and Technology, Pantnagar. U.S. for preparation of local medicine, soap, etc. Conventional approaches of Nagar, Uttarakhand 263145 breeding are difficult for the improvement of plant because of recalcitrant [email protected] types of seed and perennial nature of growth habit. Correlation and path coefficient study was performed among 4 major fatty acid components, total Keywords: phulwara/cheura fat/oil content and some seed characters. The results revealed that palmitic plant, fatty acid components, seed acid, stearic acid and seed coat colour determined the oil content in kernel. characters, oil content Non-significant relation between total fat/oil content and other traits emerged from negative influence of oleic acid, linoleic acid and other fatty acid in opposite direction. ©2017, AAJ, All Right Reserved INTRODUCTION Oil/ fat are stored in seed as triacylglycerol of fatty Himalayan ranges of Uttarakhand state and Sikkim in India. acid and act as energy reserve (Graham, 2008; Baud and The composition of different fatty acids components and Lepiniec, 2008) to perform different physiological activities their arrangement in triacylglycerol determines the quality, during seed germination. Barring its physiological properties and suitability of oils/fat for edible and importance in plant, vegetative oils/fats are used for the industrial uses. However, very little attention has been paid preparation of different food products for human so for the development of genetically improved plant consumption and for making soaps and medicine and are structure with high productivity of oil yield and its quality collected from cultivated and wild species of annual and for human consumption and industrial uses. Improvement perennial plants. The oil and fat obtained from kernel of of phulware/ cheura tree appears difficult through phulwara /cheura plant (Diploknema butyracea) is locally conventional approaches of breeding because of its known as cheura oil and phulwara butter respectively. Fats perennial nature of growth habit and recalcitrant type of are usually referred to a butter/fat that is solid at normal seeds. Selection of superior genotypes thus depends on room temperature and those fats that are liquid at room identification of marker traits associated with improving temperature referred to as oil. Relatively high percent genetic potential of yield and quality of oil. In this (>60%) of fat/oil are extracted from phulwara /cheura tree investigation correlation and path coefficient analysis were in comparison to other tree borne oil seed crops (source: worked out among major fatty acids components of oil, www.chempro.in/fatty acid htm). Diploknema butyracea total fat/oil content and some seed characters to belongs to the family Sapotaceae and the plant is also understand the relative behavior/influence of individual known by other synonyms viz., Aesandra butyracea; traits on production of phulwara butter/cheura oil. Madhuca butyracea; Bassia butyracea; Illipe butyracea; MATERIALS AND METHODS Mixandra butyracea and Vidoricum butyracea [source: The Phulware/cheura seed materials of the study World Checklist of Selected Plant (WCSP) Families]. The were a part of cheura collection under “National Network genus Diploknema has seven species viz., D. butyracea; D. on Integrated Development of Wild apricot and Cheura” butyraceoides; D. oligomere; D. ramifera; D. sebifera; D. project. Fully ripen fruits were collected from ground of siamensis and D. yunnanensis and are distributed over phulware/cheura tree. Fresh seeds were extracted from India, Bhutan, tropical moist deciduous and semi- fruits and dried. A set of seed samples of cheura genotypes deciduous forest of Andaman island and Philippinnes. was collected randomly from nearby villages along road Diploknema butyracea is an endanger species sporadically sides, that represented different part of Almora and grown in wild state in sub-Himalayan tracts and outer Pithoragarh district in Uttarakhand state. Seed sample of Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Page 1 Bandyopadhyay/Relationships of oil content and fatty acid composition with seed characters of Diploknema butyracea these cheura genotypes were sent to National Oilseeds and The limited accumulation of stearate in phulwara /cheura Vegetable Oils Development Board, at Gurgaon, Haryana plant might be originated through desaturation of 18:0-acyl for analyzing total oil/fat content present in kernel of seed. carrier protein (18:0-ACP) by stromal ∆9 stearoyl-ACP Total oil content of kernel was analyzed in the National Oil desaturase and low ability of plant to export stearate from Analysis Laboratory by using Sonex apparatus, while fatty plastid. The concentration of total major saturated fatty acid compositions in oil were estimated by using Gas Liquid acid (palimitic acid + stearic acid) content (59.90-67.20%) Chromatography at National Oil Analysis Laboratory. seemingly appeared two times higher than the total Observations were recorded on 11 parameters, which unsaturated major fatty acids (oleic acid + linoleic acid) included 5 from seed characters [viz., intensity of seed coat content (32.50-36.30%). Palmitic acid and oleic acid colour (1 to 9 scale), seed length with shell and without accumulated at high concentration in phulwara shell (cm), average weight of single seed with shell and butter/cheura oil. The highest and the lowest values was without shell (g)], 5 from fatty acid components (expressed recorded as 92.60% and 87.90% respectively. This in %) in oil [viz., palmitic acid, stearic acid, oleic acid, suggested that the highest accumulation of Palmitic-Oleic- linoleic acid, other fatty acids] and total oil content Palmitic (POP) fraction of triacylglycerol, possibly stored in (expressed in %) present in kernel. Phulware/cheura cheura oil /phulwara butter. Cocao butter contains a high genotypes were selected on the basis of high (>60%) oil proportion of saturated fats rich in SOS (24.2%), SOP concentration. The standard statistical procedure was used (42.2%) and POP (21.8%) with oleic acid in sn-2 position of to compute correlation coefficient values for evaluating the glycerol backbone (Simoneau et al., 1999; Liu et al., relative degree of association exists between two variable 2007).This specific fatty acid composition and its traits, while their relative contribution (direct effect and arrangement give it a value crystallization and melting indirect effect) on total fat/oil content was estimated characteristics in the mouth with cooling effect in the through path coefficient analysis by utilizing respective mouth, and a typical mouth feeling which makes this fat the coefficient values of two variables. The degree of main base for chocolates and confectionary products association between two variables in correlation coefficient (Shukla, 1995). Recent study, however, revealed that POP analysis was tested for significance by t- test. enriched fraction, similar to palm midfraction (PMF), is RESULTS AND DISCUSSION obtained from stearin and olein of phulwara fat /cheura oil Seed reserve components usually consist of seed and can be used as cocao butter substitute in a blend with storage proteins, carbohydrates (mostly starch) and/or other less for the atherogenic vegetable fats where high storage lipids (waxes or triacylglycerols). Fats are the proportion of Stearic-Oleic-Stearic (SOS) fraction of subset of lipids and are composed of triacylglycerol (i.e., triacylglycerol (Reddy and Prabhakar, 1994a ,b) are esters of glycerol) in which three molecules of fatty acid are present. Unsaturated form of stearic acid (18:0) produces esterifies to each of the three hydroxyl group of a glycerol oleic acid (18:1) and linoleic acid (18:2). Oleic acid back-bone. Relative proportion of different fatty acids (monounsaturated fatty acid) is the preferred fatty acid for components present in oil determines the quality of oil and edible purposes. It has high oxidative stability (Yodice, use as a prime criterion for the Selection of superior 1990), hypocholesterolemic effect by lowering LDL genotypes. Extraction of total fat/oil content from kernel, cholesterol and reduce the risk of cardiovascular disease fatty acid components and seed characters exhibited (Mensink and Katan, 1992). Insertion of double bond in variability among phulwara/cheura genotypes, which offer fatty acid
Recommended publications
  • Growth-Ring Analysis of Diploknema Butyracea Is a Potential Tool for Revealing Indigenous Land Use History in the Lower Himalayan Foothills of Nepal
    Article Growth-Ring Analysis of Diploknema butyracea Is a Potential Tool for Revealing Indigenous Land Use History in the Lower Himalayan Foothills of Nepal Md. Qumruzzaman Chowdhury 1,2,* , Teeka Ram Bhattarai 3, Maaike De Ridder 1 and Hans Beeckman 1 1 Wood Biology Service, Royal Museum for Central Africa (RMCA), Leuvensesteenweg 13, 3080 Tervuren, Belgium; [email protected] (M.D.R.); [email protected] (H.B.) 2 Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh 3 Campaigns and Consultations; Education, Livelihood and Social Justice, Post Box 4555 Kathmandu, Nepal; [email protected] * Correspondence: [email protected] Received: 24 December 2019; Accepted: 19 February 2020; Published: 22 February 2020 Abstract: Slash-and-burn is a farming practice of the indigenous communities in the Himalayan foothills of Nepal. The traditional land-tenure system is based on a customary oral tradition. However, the government’s persistent denial of land rights has fueled the indigenous conflicts in the last few decades. Deliverance of scientific evidence-based arguments may underpin the ongoing conflict-resolution dialogues between the authorities and the indigenous communities. Dating growth rings of trees in a slash-and-burn system might help the indigenous people to find evidence of their historic land uses in the mountainous landscape. In this pilot study, we examined the potential of Diploknema butyracea (Roxb.) H. J. Lam growth rings for documenting land use history of Nepalese indigenous farming practices, as this species is being preserved during the slash-and-burn practices. The species is an economically important and ecologically interesting (as it flushes leaves when everything is dry, and sheds leaves while everything is green) deciduous tree species belonging to Sapotaceae family and widely distributed in Sub-Himalayan tracts.
    [Show full text]
  • Essential Oil and Oleoresins
    Essential Oil and Oleoresins Issue 3 March 2008 Disclaimer This report has been prepared without formal editing, as a service to exporters and industries in developing countries by the Market News Service (MNS), Division of Product and Market Development, International Trade Centre UNCTAD/WTO. No part of this report may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without prior permission in writing from the International Trade Centre. The mention of specific companies or of certain commercial products and brand names does not imply that they are endorsed or recommended by ITC in preference to others of a similar nature that are not mentioned. The designations employed and the presentation of material on the map do not imply the expression of any opinion whatsoever on the part of the International Trade Centre concerning the legal status of any Country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Market News Service Essential Oils & Oleoresins, EU and US Market Report Report prepared for ITC’s Market News Service by: EU markets: Mr. Steve Caiger ([email protected]) US markets: Ms. Kerry Hughes([email protected]) The Market News Service of the International Trade Centre UNCTAD/WTO (ITC) provides timely and detailed price and market information on selected primary and semi-processed products of particular interest to developing countries and economies in transition. Regular access to such information is vital to companies deciding when and where they should sell or buy products on international markets.
    [Show full text]
  • Medicinal Plant Research
    Journal of Medicinal Plant Research Volume 8 Number 2, 10 January, 2014 ISSN 2009-9723 ABOUT JMPR The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals. The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font). Submission of Manuscript Submit manuscripts as e-mail attachment to the Editorial Office at: [email protected]. A manuscript number will be mailed to the corresponding author shortly after submission. The Journal of Medicinal Plant Research will only accept manuscripts submitted as e-mail attachments. Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author. Editors Prof. Akah Peter Achunike Prof. Parveen Bansal Editor-in-chief Department of Biochemistry Department of Pharmacology & Toxicology Postgraduate Institute of Medical Education and University of Nigeria, Nsukka Research Nigeria Chandigarh India. Associate Editors Dr. Ravichandran Veerasamy AIMST University Dr. Ugur Cakilcioglu Faculty of Pharmacy, AIMST University, Semeling - Elazıg Directorate of National Education 08100, Turkey. Kedah, Malaysia. Dr. Jianxin Chen Dr. Sayeed Ahmad Information Center, Herbal Medicine Laboratory, Department of Beijing University of Chinese Medicine, Pharmacognosy and Phytochemistry, Beijing, China Faculty of Pharmacy, Jamia Hamdard (Hamdard 100029, University), Hamdard Nagar, New Delhi, 110062, China.
    [Show full text]
  • Diploknema Butyracea) As a Livelihood Option for Forest-Dweller Tribe (Van-Raji) of Pithoragarh, Uttarakhand, India
    ESSENCE—IJERC International | Naveen et Journal al . (2018) for Environmental| IX (1): 134—141 Rehabilitati on and Conservation ISSN: 0975 — 6272 IX (1): 134— 141 www.essence-journal.com Original Research Article Cheura (Diploknema butyracea) as a livelihood option for forest-dweller tribe (Van-Raji) of Pithoragarh, Uttarakhand, India Joshi, Naveen Chandra; Chaudhary, Alka and Rawat, Gopal Singh Wildlife Institute of India, Chandrabani, Dehradun, India Corresponding Author: [email protected] A R T I C L E I N F O Received: 01 February 2018 | Accepted: 22 April 2018 | Published Online: 15 August 2018 DOI: 10.31786/09756272.18.9.1.116 EOI: 10.11208/essence.18.9.1.116 Article is an Open Access Publication. This work is licensed under Attribution-Non Commercial 4.0 International (https://creativecommons.org/licenses/by/4.0/ ) ©The Authors (2018). Publishing Rights @ MANU—ICMANU & ESSENCE—IJERC. A B S T R A C T This study documents the traditional uses of Cheura or Chyur (Diploknema butyracea) by a tribal group (Van-Raji) in Eastern Uttarakhand part of western Himalayan region. Cheura is one of the eco- nomically important but lesser known and underutilized multipurpose tree of Himalaya. It has a great spiritual and cultural importance along with livelihood association along the Himalayan communities especially the Van-Rajis, which are among the most ancient primitive vulnerable tribes (PVTs) of In- dia with a population of around 700 in Uttarakhand. Field surveys were conducted during 2015–2017 to collect data on the availability and uses of various parts of this tree by the tribals in their 9 hamlets in Pithoragarh district of Uttarakhand.
    [Show full text]
  • Natural Cosmetic Ingredients Exotic Butters & Oleins
    www.icsc.dk Natural Cosmetic Ingredients Exotic Butters & Oleins Conventional, Organic and Internal Stabilized Exotic Butters & Oleins Exotic Oils and butters are derived from uncontrolled plantations or jungles of Asia, Africa and South – Central America. The word exotic is used to define clearly that these crops are dependent on geographical and seasonal variations, which has an impact on their yearly production capacity. Our selection of natural exotic butters and oils are great to be used in the following applications: Anti-aging and anti-wrinkle creams Sun Protection Factor SPF Softening and hydration creams Skin brightening applications General skin care products Internal Stabilization I.S. extends the lifecycle of the products 20-30 times as compare to conventional. www.icsc.dk COCOA BUTTER Theobroma Cacao • Emollient • Stable emulsions and exceptionally good oxidative stability • Reduce degeneration and restores flexibility of the skin • Fine softening effect • Skincare, massage, cream, make-up, sunscreens CONVENTIONAL ORGANIC STABILIZED AVOCADO BUTTER Persea Gratissima • Skincare, massage, cream, make-up • Gives stables emulsions • Rapid absorption into skin • Good oxidative stability • High Oleic acid content • Protective effect against sunlight • Used as a remedy against rheumatism and epidermal pains • Emollient CONVENTIONAL ORGANIC STABILIZED ILLIPE BUTTER Shorea Stenoptera • Emollient • Fine softening effect and good spreadability on the skin • Stable emulsions and exceptionally good oxidative stability • Creams, stick
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases Ehtnobotanical Plants for Rheumatism
    Dr. Duke's Phytochemical and Ethnobotanical Databases Ehtnobotanical Plants for Rheumatism Ehnobotanical Plant Common Names Abelmoschus moschatus Muskus; Zatakasturika; Mushk Dana; Ambercicegi; Ambrette; Moskus; Abelmosco; Moschus; Musk Mallow; Kasturi Dana; Kapas Hantu; Bisam Eibisch Abies sibirica Abrus precatorius Peonia De St Tomas; Rosary Pea; Cain Ghe; Peonia; Paternoster; Reglisse; Graines Reglisse; Pois Rouge; Weesboontje; Rakat; Jequerit; Liane Reglisse; Gunchi; Hint Meyankoku; Hung Tou; Ma Liao Tou; To-Azuki; Paratella Abutilon indicum Kemband sore (Eve. expandng fl; Kembang sore (Eve. expandng fl Acacia farnesiana Cuji; Kembang nagasiri; Esponjeira; Kambang japun; Kembang bandira; Tusca Acacia pennata Willd.; Rigot; Rembete Acaena sanguisorbae Acampe wightiana Acanthopanax gracilistylus Acanthopanax spinosum Wu Chia; Wu Chia P'I; Wu Chia P'I Chiu Acanthospermum humile Mala Mujer; Feuilles Hareng; L'Indigene; Dessalines Acanthus ilicifolius Daruju; Lao Shu Le Achillea millefolium Cickafarkkoro; Rollike; Tlalquequetzal; Schafgarbe; Duizendblad; Millefoglio; Rolleka; Rojmari; Millefeuille; Yarrow; Millefolium; Milefolio; Biranjasif; Milenrama; Civanpercemi Achyranthes aspera Jarongan; Feuilles La Fievre; Rarai; Apamarga; Santypite; Chaff Tree; Rabo De Gato Achyranthes bidentata Niu Hsi Chiu; Soei in soei in taloen; Niu Hsi; Too-Inokozuti Aconitum carmichaeli Sinatori-Kabuto Aconitum ferox Aconito Feroz; Lang Tu T'Ou; Lang Tu Aconitum kusnezoffii Aconitum napellus Monk'Shood; Aconito Napello; European Monkshood; Duivelskruid; Uva
    [Show full text]
  • Accounting for Variation of Substitution Rates Through Time in Bayesian Phylogeny Reconstruction of Sapotoideae (Sapotaceae)
    Molecular Phylogenetics and Evolution 39 (2006) 706–721 www.elsevier.com/locate/ympev Accounting for variation of substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae) Jenny E.E. Smedmark ¤, Ulf Swenson, Arne A. Anderberg Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Received 9 September 2005; revised 4 January 2006; accepted 12 January 2006 Available online 21 February 2006 Abstract We used Bayesian phylogenetic analysis of 5 kb of chloroplast DNA data from 68 Sapotaceae species to clarify phylogenetic relation- ships within Sapotoideae, one of the two major clades within Sapotaceae. Variation in substitution rates through time was shown to be a very important aspect of molecular evolution for this data set. Relative rates tests indicated that changes in overall rate have taken place in several lineages during the history of the group and Bayes factors strongly supported a covarion model, which allows the rate of a site to vary over time, over commonly used models that only allow rates to vary across sites. Rate variation over time was actually found to be a more important model component than rate variation across sites. The covarion model was originally developed for coding gene sequences and has so far only been tested for this type of data. The fact that it performed so well with the present data set, consisting mainly of data from noncoding spacer regions, suggests that it deserves a wider consideration in model based phylogenetic inference. Repeatability of phylogenetic results was very diYcult to obtain with the more parameter rich models, and analyses with identical settings often supported diVerent topologies.
    [Show full text]
  • A Art of Essential Oils
    The Essence’s of Perfume Materials Glen O. Brechbill FRAGRANCE BOOKS INC. www.perfumerbook.com New Jersey - USA 2009 Fragrance Books Inc. @www.perfumerbook.com GLEN O. BRECHBILL “To my parents & brothers family whose faith in my work & abilities made this manuscript possible” II THE ESSENCES OF PERFUME MATERIALS © This book is a work of non-fiction. No part of the book may be used or reproduced in any manner whatsoever without written permission from the author except in the case of brief quotations embodied in critical articles and reviews. Please note the enclosed book is based on The Art of Fragrance Ingredients ©. Designed by Glen O. Brechbill Library of Congress Brechbill, Glen O. The Essence’s of Perfume Materials / Glen O. Brechbill P. cm. 477 pgs. 1. Fragrance Ingredients Non Fiction. 2. Written odor descriptions to facillitate the understanding of the olfactory language. 1. Essential Oils. 2. Aromas. 3. Chemicals. 4. Classification. 5. Source. 6. Art. 7. Thousand’s of fragrances. 8. Science. 9. Creativity. I. Title. Certificate Registry # 1 - 164126868 Copyright © 2009 by Glen O. Brechbill All Rights Reserved PRINTED IN THE UNITED STATES OF AMERICA 10 9 8 7 6 5 4 3 2 1 First Edition Fragrance Books Inc. @www.perfumerbook.com THE ESSENCE’S OF PERFUME MATERIALS III My book displays the very best of essential oils. It offers a rich palette of natural ingredients and essences. At its fullest it expresses a passion for the art of perfume. With one hundred seventy-seven listings it condenses a great deal of pertinent information in a single text.
    [Show full text]
  • New Genetic Markers for Sapotaceae Phylogenomics: More Than 600 Nuclear Genes Applicable from Family to Population Levels
    Molecular Phylogenetics and Evolution 160 (2021) 107123 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev New genetic markers for Sapotaceae phylogenomics: More than 600 nuclear genes applicable from family to population levels Camille Christe a,b,*,1, Carlos G. Boluda a,b,1, Darina Koubínova´ a,c, Laurent Gautier a,b, Yamama Naciri a,b a Conservatoire et Jardin botaniques, 1292 Chamb´esy, Geneva, Switzerland b Laboratoire de botanique syst´ematique et de biodiversit´e de l’Universit´e de Gen`eve, Department of Botany and Plant Biology, 1292 Chamb´esy, Geneva, Switzerland c Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel,^ Rue Emile-Argand 11, 2000 Neuchatel,^ Switzerland ARTICLE INFO ABSTRACT Keywords: Some tropical plant families, such as the Sapotaceae, have a complex taxonomy, which can be resolved using Conservation Next Generation Sequencing (NGS). For most groups however, methodological protocols are still missing. Here Gene capture we identified531 monocopy genes and 227 Short Tandem Repeats (STR) markers and tested them on Sapotaceae STR using target capture and NGS. The probes were designed using two genome skimming samples from Capur­ Phylogenetics odendron delphinense and Bemangidia lowryi, both from the Tseboneae tribe, as well as the published Manilkara Population genetics Species tree zapota transcriptome from the Sapotoideae tribe. We combined our probes with 261 additional ones previously Tropical trees published and designed for the entire angiosperm group. On a total of 792 low-copy genes, 638 showed no signs of paralogy and were used to build a phylogeny of the family with 231 individuals from all main lineages.
    [Show full text]
  • DOI:1 0 .2 6 5 2 4 / K Rj2
    Kong. Res. J. 5(2): 41-49, 2018 ISSN 2349-2694, All Rights Reserved, Publisher: Kongunadu Arts and Science College, Coimbatore. http://krjscience.com RESEARCH ARTICLE DIVERSITY AND CONSERVATION STATUS OF RED-LISTED MEDICIANL PLANTS IN TAMIL NADU Karuppusamy, S.* Department of Botany, Centre for Botanical Research, The Madura College (Autonomous), Madurai – 625 011, Tamil Nadu, India. DOI:10.26524/krj269 ABSTRACT Tamil Nadu has rich repository of medicinal plant wealth and equally threatened with several number of factors. There has been enumerated a total of 119 species Red Listed medicinal plants, from which 27 species have assessed global RL status. Fourteen species have been assigned Critically Endangered (CR) status, 27 species are Endangered (EN), 31 species are Vulnerable (VU) and 10 species are Near Threatened (NT). 18 of these Red Listed medicinal plant species have been recorded in high volume trade in the national level trade study. The present paper analysed the diversity status of endemic medicinal plant diversity, assessment methods, policy terms related to medicinal plant conservation and conservational areas in Tamil Nadu. Keywords: Endemic medicinal plants, Red Listed, threatened, endangered and conservation. 1. INTRODUCTION detailed knowledge of species distribution in particular landscape. India’s biodiversity Act 2002 The entire plant kingdom consisting of aims to promote conservation, sustainable use and more than 3.5 lakhs species originated in 35 mega equitable sharing of benefits of India’s biodiversity biodiversity centers around the world. Western resources. The medicinal plant diversity of all the Ghats falls within the Indian subcontinent, which states of India is very rich and traditional wisdom.
    [Show full text]
  • Protec Botanica Product List
    Botanica flo iva flo iva Botanically Inspired Solutions. Naturally. Essential Oils Botanical name Plant part Country of origin used Floviva Almond Oil Bitter Prunus amygdalus dulcis Kernel USA / Morocco Floviva Amyris Oil Amyris balsamifera L. Wood Haiti Floviva Angelica Oil Angelica archangelica L. Root / Seed France / Hungary Floviva Aniseed Oil Pimpinella anisum L. Seed Spain / India / Turkey Floviva Anthopogon Oil Rhododendron anthopogon Leaf & twig Nepal Floviva Basil Oil Ocimum basilicum L. Aerial part Madagascar / Egypt / Vietnam / S. Asia Floviva Bay Laurel Oil Laurus nobilis L. Leaf Albania / Bosnia Herzegovina / C. Europe Floviva Bay Oil WI Pimenta recemosa Leaf Dominica / Jamaica Floviva Benzoin Resinoid Styrax tonkinensis Resin Laos / Thailand Floviva Bergamot Oil Citrus aurantium L. bergamia Peel Calabria, Italy Floviva Bergamot Oil FCF Citrus aurantium L. bergamia Peel Calabria, Italy Floviva Birch Oil Sweet Betula lenta Bark USA Floviva Black Pepper Oil Piper nigrum L. Seed India / Madagascar Floviva Black Spruce Oil Picea mariana Needle Canada Floviva Blue Tansy Oil Tanacetum annuum L. Flower Morocco Floviva Cabreuva Oil Myrocarpus fastigiatus Bark Brazil / Paraguay Floviva Cade Oil Juniperus oxycedrus Wood France / Spain Floviva Cajeput Oil Melaleuca leucadendron L. Leaf & twig Vietnam / Indonesia Floviva Camphor Oil Cinnamomum camphora L. Wood China / Taiwan Floviva Caraway Oil Carum carvi L. Seed Hungary / Russia / Finland Floviva Cardamon Oil Elettaria cardamomum L. Seed Guatemala / Sri Lanka / PNG / India Floviva Carrot Seed Oil Daucus carota L. Seed France Floviva Cassia Oil Cinnamomum cassia L. Bark / Leaf China Floviva Catnip Oil Nepeta cataria Leaf and flower France / USA Floviva Cedarwood Oil Cedrus atlantica Wood Morocco / USA / China Floviva Celery Oil Apium graveolens L.
    [Show full text]
  • Phytochemical Standardization of Diploknema Butyracea (Roxb.) H.J. Lam
    Indian Journal of Natural Products and Resources Vol. 6(4), December 2015 pp. 299-304 Phytochemical standardization of Diploknema butyracea (Roxb.) H.J. Lam. seeds by HPTLC technique Rashmi* and Sapna Tyagi Chemistry Division, Forest Research Institute, P.O. New Forest-248006, Dehradun, Uttarakhand, India Received 27 May 2014; Accepted 22 September 2015 Diploknema butyracea (Roxb.) H.J. Lam. (Family Sapotaceae) commonly known as Indian butter tree or Cheura, is native to Nepal and distributed from Garhwal Himalaya to Sikkim and up to Bhutan. Its seeds are the richest source of edible oil known as Phulwara butter which is being used by local communities for cooking purposes. The objective of the study was to examine the phytochemical constituents and development of fingerprinting profile with the aid of HPTLC technique. The qualitative and quantitative distribution of the active principles was assessed and a HPTLC method was developed for the separation of active constituents in seed extracts. Preliminary phytochemical screening of secondary metabolites was carried out by following standard methods and found to contain lipids, saponins, tannins, alkaloids, phenols, steroids and flavonoids. The study will prove useful to compare bioactive principle present in the seeds. Keywords: Diploknema butyracea (Roxb.) H.J. Lam., HPTLC, Phulwara butter, Phytochemical constituents, Sapotaceae. IPC code; Int. cl. (2015.01)− A23D 7/00, A23D 9/00 Introduction therapeutic values. Isolation of bioactive compounds Natural phytochemicals are known to contain of novel or known structures had been goals of substance that can be used for therapeutic purposes or various pharmacological studies on traditional as precursor for the synthesis of novel useful drugs.
    [Show full text]