OCE Non-Production Pdfs

Total Page:16

File Type:pdf, Size:1020Kb

OCE Non-Production Pdfs Spacesuit Guidebook is designed to supplement Spacesuit wall chart (VVAL-114), published by the Educa- tional Affairs Division, January 1990. The wall chart depicts Astronuat Bruce McCandless on his historic first untethered spacewalk using the Manned Maneuvering Unit. He flew on Shuttle mission 41 -B (February 3-1 1, 1984), and ventured 100 meters from the Shuttle's cargo bay and returned safely. The guidebook explains in depth the elements depicted on the wall chart in see-through and cut-away perspectives. Together the wall chart and guidebook show as well as explain the inside workings of the spacesuit and its various components. Forty separate elements are identified with an accompanying numerical legend. Those elements are further ex- plained in this guidebook along with their functions and how they work in relation to other elements. Additional chapters discuss essential compo- nents of the spacesuit such as the Primary Life Support System and the Manned Maneuvering Unit, and the method for donning the spacesuit. The original manuscript for this guidebook was written by Greg Vogt, Oklahoma State University. It was expanded and edited into this format by Robert Haynes, NASA Headquar- ters. The oil painting, around which the wall chart was designed, was painted by American artist Bruce Wolfe. Many people assisted in reviewing this guidebook from the early stages up to the final booklet. Special thanks go to Keith Hudkins, NASA Headquarters, for identifying the 40 spacesuit components; and to James Poindexter, Johnson Space Center for reviewing the manuscript. pacesuit components The EMU is what Space Shuttle systems. Items 1 and 2 are explained around y axis), pitch (z axis), and astronauts call their spacesuit. EMU more fully in their own chapters. yaw (x axis). stands for Extravehicular Mobility 1. Primary Life Support System 3. Thruster Lights Unit. It is what protects astronauts This portable life support system While flying the Manned Maneu- from the harsh environment of space is an essential component of the vering Unit, the astronaut keeps outside the Space Shuttle's crew spacesuit. It is the backpack unit track of propellant with two cabin. The EMU includes many that the astronaut is wearing (it is gauges located on either side of individual components that, when only partially visible in the paint- the helmet's face plate. An assembled, form a single spacesuit. ing, shown on either side of the astronaut needs to know how Making the EMU is an exacting astronaut's helmet). The life much propellant is left in the unit, process. Pressure and restraint layers support system contains all the because when the propellant is are enclosed by thermal insulating control and monitoring systems gone, the astronaut is no longer and tear and puncture resistant layers. required to sustain the astronaut's able to maneuver. The astronaut One layer's function is just to keep the life while in space. It supplies needs to keep enough fuel in astronaut from overheating. Suit oxygen for breathing and for suit reserve to return safely to the layers are joined to metal connecting pressurization, and cleans carbon Shuttle. Generally, this means an rings and a hard fiberglass upper dioxide and odors from the air astronaut can use up half the fuel torso. Each layer and each compo- inside the suit. A tiny built-in to maneuver away from the nent must pass stringent inspections computer warns the astronaut of Shuttle and keep the remaining before a human life is entrusted to it. problems. half for the return. When fully assembled, the EMU 2. Manned Maneuvering Unit 4. Extravehicular Mobility Unit becomes a nearly complete short- Thruster Lights term, "soft," spacecraft for one A series of 24 thrusters is located EMU lights are found on either person. It provides pressure, thermal, on the Manned Maneuvering Unit side of the astronaut's helmet and and micrometeoroid protection, (MMU). The astronaut controls are used to shine light on objects oxygen, cooling water, drinking water, them with hand controllers at the in space. The small built-in flood food, waste collection (including ends of the MMU's two arms. lamps light up places sunlight and carbon dioxide removal), electrical (See item 40.) The thrusters may lights in the cargo bay do not power, and communications. The also be operated automatically by reach. The EMU lights have their only thing lacking in the EMU is pro- turning on an automatic attitude own battery system and are pulsion, but this can be added by hold system. Compressed nitro- needed for work in the Shuttle fitting a gas-jet-propelled Manned Ma- gen is moved through feed lines cargo bay or for repairing satel- neuvering Unit. On Earth the suit and to varying combinations of the 24 lites in space. When the astro- all its parts weigh about 112 kilo- nozzles. The nozzles are arranged nauts are building the Space grams. In orbit, they have no weight in clusters of three each on the Station Freedom, the EMU lights at all, but do retain their mass, which eight corners of the maneuvering will help them assemble the astronauts feel as a resistance to a unit, and are aimed along three pieces of the Station while in orbit change in motion. axes perpendicular to each other above Earth. The list that follows corresponds (x, y, and z) and permit six de- 5. Color Television Camera to the numerical legend on the wall grees of freedom of movement. The camera's lens system is chart. Some items will be self-ex- Movements in space are ex- about the size of a postage stamp, planatory, while others are parts of plained by the terms roll (rotation and mounted just over the helmet. Television monitoring is neces- Communications Microphone power from the Shuttle itself. In sary for certain communications Voice communication with the this manner the "consumables" with the Shuttle and Mission Shuttle and Mission Control are stored in the Primary Life Sup- Control. The camera is situated essential at all times. The micro- port System are conserved in line of view with the astro- phone inside the helmet con- during the prebreathing activity naut's own line of vision and is nects to the radio module located that is needed before an astro- equipped with its own batteries in the life-support unit of the naut can leave the Shuttle crew and RF transmitter so that the spacesuit. Covering the astro- cabin. The umbilical remains crew inside the Shuttle and naut's head is the communica- connected to the spacesuit until mission controllers on Earth can tions carrier assembly, or the astronaut disconnects it after get an astronaut's eye view of the "Snoopy Cap" as it is sometimes moving from the airlock into the spacewalk. During complicated called. The assembly is a fabric cargo bay. At the time the spacewalks, viewers may be able skull cap with built-in earphones umbilical is released, the space- to provide assistance. and a microphone for use with walk begins. The Service and 6. Helmet Solar Shield the spacesuit's radio. Cooling Umbilical is also used to Shown in the wall chart as a cut- 35mm Still Camera recharge batteries and replenish away, the solar shield is actually Views of the Shuttle, its cargo consumables. part of an entire assembly that bay, satellites, Earth, and other 11. Emergency Relief Valve covers the helmet. The visor as- phenomena are captured for Should the Primary Life Suport sembly contains a metallic gold- study by the 35mm camera. The System malfunction, the astro- coated Sun-filtering visor, a clear camera is attached to the naut can survive for 30-60 thermal impact protection visor, Manned Maneuvering Unit and is minutes by using the secondary and adjustable blinders that situated in line of view with the oxygen pack (see chapter 3, attach over the helmet. These astronaut's own line of vision. "Primary Life Support System"). shields are necessary to protect Camera Switch This system is activated by astronauts from harmful light The 35mm still camera is oper- opening the purge valve. This and radiation emitted by the Sun. ated by a cabled switch con- valve, which has a set of pinch- The helmet itself is a plastic nected to the camera and the ers on either side of it, allows the pressure bubble with a neck dis- glove of the EMU. The astronaut astronaut to let some of the connect ring and ventilation merely needs to press a button pressure out of the EMU. To distribution pad. The helmet has on the end of the cable attached activate the valve, the astronaut a backup purge valve (for use to his or her glove, and the simply squeezes the pinchers with a secondary oxygen pack camera automatically focuses, with the EMU glove, and air worn beneath the Primary Life snaps the picture, and advances pressure is released through the Support System backpack) and the film for the next picture. tube-like extension on the EMU is used to remove expired carbon Spacecraft Life-Support chest plate. dioxide. (See item 11.) A tube Connector 12. Water Cooling Control Valve projects into the helmet near the Long before donning the upper The astronaut is able to control astronaut's mouth from a plastic half of the EMU, the Shuttle's his or her body temperature water pouch attached inside the Service and Cooling Umbilical is inside the spacesuit by control- spacesuit's hard upper torso. plugged into the dispays and ling the temperature of water cir- The tube allows the astronaut to control module panel on the culating through the Liquid drink from it as if from a straw, front of the upper torso.
Recommended publications
  • Testing of the Z-2 Space Suit at the Neutral Buoyancy Laboratory
    47th International Conference on Environmental Systems ICES-2017-250 16-20 July 2017, Charleston, South Carolina Testing of the Z-2 Space Suit at the Neutral Buoyancy Laboratory Ian M. Meginnis,1 Richard A. Rhodes,2 Kristine N. Larson,3 and Amy J. Ross4 NASA Johnson Space Center, Houston, TX, 77058 The Z-2 space suit is the product of the last fifty years of NASA’s space suit research and testing experience. The Z-2 suit was originally developed as an exploration space suit for use on a planetary surface, such as the moon or Mars. However, Z-2 could also be used in microgravity at the International Space Station (ISS) to supplement or replace the existing extravehicular mobility unit (EMU). To evaluate the microgravity performance of Z-2 for compatibility at the ISS, the suit was tested in NASA’s Neutral Buoyancy Laboratory (NBL), which is the primary simulated microgravity testing environment for space suits. Seven test subjects, including five astronauts, performed various tasks that are representative of the tasks performed at the ISS. Test subjects performed tasks in the Z-2 suit and the EMU so that relative comparisons could be drawn between the two suits. Two configurations of the Z-2 space suit were evaluated during this test series: the EMU lower torso assembly (ELTA) configuration and the Z-2 lower torso assembly (ZLTA) configuration. The ELTA configuration, which was the primary test configuration, is comprised of the Z-2 upper torso and the EMU lower torso. The ZLTA configuration is comprised of the Z-2 upper torso and the Z-2 lower torso, which contains additional mobility elements.
    [Show full text]
  • The EVA Spacesuit
    POLITECNICO DI TORINO Repository ISTITUZIONALE Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design Original Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design / Favetto, Alain. - (2014). Availability: This version is available at: 11583/2546950 since: Publisher: Politecnico di Torino Published DOI:10.6092/polito/porto/2546950 Terms of use: openAccess This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 04 August 2020 POLITECNICO DI TORINO DOCTORATE SCHOOL Ph. D. In Informatics and Systems – XXV cycle Doctor of Philosophy Thesis Glove Exoskeleton for Extra-Vehicular Activities Analysis of Requirements and Prototype Design (Part One) Favetto Alain Advisor: Coordinator: Prof. Giuseppe Carlo Calafiore Prof. Pietro Laface kp This page is intentionally left blank Dedicato a mio Padre... Al tuo modo ruvido di trasmettere le emozioni. Al tuo senso del dovere ed al tuo altruismo. Ai tuoi modi di fare che da piccolo non capivo e oggi sono parte del mio essere. A tutti i pensieri e le parole che vorrei averti detto e che sono rimasti solo nella mia testa. A te che mi hai sempre trattato come un adulto. A te che te ne sei andato prima che adulto lo potessi diventare davvero. opokp This page is intentionally left blank Index INDEX Index .................................................................................................................................................5
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Complex Garment Systems to Survive in Outer Space
    Volume 7, Issue 2, Fall 2011 Complex Garment Systems to Survive in Outer Space Debi Prasad Gon, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA [email protected] Palash Paul, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA ABSTRACT The success of astronauts in performing Extra-Vehicular Activity (EVA) is highly dependent on the performance of the spacesuit they are wearing. Since the beginning of the Space Shuttle Program, one basic suit design has been evolving. The Space Shuttle Extravehicular Mobility Unit (EMU) is a waist entry suit consisting of a hard upper torso (HUT) and soft fabric mobility joints. The EMU was designed specifically for zero gravity operations. With a new emphasis on planetary exploration, a new EVA spacesuit design is required. Now the research scientists are working hard and striving for the new, lightweight and modular designs. Thus they have reached to the Red surface of Mars. And sooner or later the astronauts will reach the other planets too. This paper is a review of various types of spacesuits and the different fabrics required for the manufacturing of the same. The detailed construction of EMU and space suit for Mars is discussed here, along with certain concepts of Biosuit- Mechanical Counter pressure Suit. Keywords: Extra-Vehicular Activity (EVA), spacesuits, Biosuit-Mechanical Counter pressure Suit Tissues (skin, heart,
    [Show full text]
  • 2018 Annual Report San Diego Air & Space Museum Connections Mission Statement
    2018 ANNUAL REPORT SAN DIEGO AIR & SPACE MUSEUM CONNECTIONS MISSION STATEMENT VISION VALUES The San Diego Air & Space Museum, one of the world’s The San Diego Air & Space Museum adheres to impeccable premier air and space-themed science center and professional standards as it preserves, interprets, educates museum, inspires our next greatest generations to achieve and shares its rich aviation and space resources: excellence in their lives by challenging their innate human • To act as exceptional stewards on behalf of the general pioneering spirit and encouraging the necessary risk- public and earn the trust of our donors and members taking required to achieve global innovation success. by caring for our collections. Interpret our collections MISSION accurately and use society’s generosity in a beneficial PRESERVE…INSPIRE…EDUCATION…CELEBRATE! manner conducive to the spirit of excellence on behalf of the common good for all. PRESERVE significant artifacts of air and space history and technology. • To inspire an interest in science, technology, engineering, mathematics (STEM) and innovation, as well as history. INSPIRE excellence in science, technology, engineering and mathematics. Inspire the necessary risk-taking in future generations to ensure continued exploration of the outer bounds of EDUCATE the public about the historical and social what can be. significance of air and space technology and its future promise as a pathway to advanced innovations. • To educate through public outreach and engagement. CELEBRATE aviation and space flight history and • To honor the legacy of aviation and space flight technology. technology and the men and women who forged the path for others to emulate.
    [Show full text]
  • U.S. Spacesuit Knowledge Capture Accomplishments in Fiscal Year 2016
    47th International Conference on Environmental Systems ICES-2017-47 16-20 July 2017, Charleston, SC U.S. Spacesuit Knowledge Capture Accomplishments in Fiscal Year 2016 Cinda Chullen 1 NASA Johnson Space Center, Houston, Texas, 77058 and Vladenka R. Oliva2 Jacobs Engineering Technology, Houston, Texas, 77058 As our nation focuses on its goal to visit Mars by the 2030s, the NASA U.S. Spacesuit Knowledge Capture (SKC) Program continues to serve the spacesuit community with a collection of spacesuit-related knowledge. Since its 2007 inception, the SKC Program has been collecting and archiving significant spacesuit-related knowledge and sharing it with various technical staff, along with invested and interested entities. The program has sponsored and recorded more than 80 events, and continues to build an electronic library of spacesuit knowledge. By the end of Fiscal Year (FY) 2016, 60 of these events were processed and uploaded to a publically accessible NASA Web site where viewers can broaden their knowledge about the spacesuit’s evolution, known capabilities, and lessons learned. Sharing this knowledge with entities beyond NASA, such as space partners and academia, provides a tremendous opportunity to expand and retain the knowledge of space. This valuable SKC Program now serves as an optimum means of archiving NASA’s spacesuit legacy from the Apollo era to the pursuit of Mars. This paper focuses on the FY 2016 SKC events, the release and accessibility of the approved events, and the program’s future plans. Nomenclature ARM = Asteroid
    [Show full text]
  • January 2017 AEROSPACE
    AEROSPACE January 2017 44 Number 1 Volume Society Royal Aeronautical JANUARY 2017 NEWSPACE START- UPS AIM FOR ORBIT BREXIT – TAILWIND OR TURBULENCE? VIRTUAL HELICOPTER DESIGN www.aerosociety.com REDRESSING THE BALANCE RECRUITING MORE FEMALE PILOTS Have you renewed your Membership Subscription for 2017? Your membership subscription is due on 1 January 2017 and any unpaid memberships will lapse on 31 March 2017. As per the Society’s Regulations, all How to renew: membership benefits will be suspended where Online: a payment for an individual subscription has Log in to your account on the Society’s www.aerosociety.com not been received after three months of the website to pay at . If you due date. However, this excludes members do not have an account, you can register online paying their annual subscriptions by Direct and pay your subscription straight away. Debits in monthly instalments to October. Telephone: Call the Subscriptions Department +44 (0)20 7670 4315 / 4304 We don’t want you to lose all of your on membership benefits, which include: Cheque: Cheques should be made payable to • Your monthly subscription to AEROSPACE the Royal Aeronautical Society and sent to the magazine Subscriptions Department at No.4 Hamilton • Use of your RAeS post nominals as Place, London W1J 7BQͭ UK. applicable Direct Debit: Complete the Direct Debit • Over 400 global events yearly mandate form included in your renewal letter • Discounted rates for conferences or complete the mandate form online once you • Online publications including Society News, have logged into your account by 16 January. blogs and podcasts BACS Transfer: • Involvement with your local branch Pay by Bank Transfer (or by • Networking opportunities BACS) into the Society’s bank account, quoting your name and membership number.
    [Show full text]
  • Extravehicular Activity Operations and Advancements
    Extravehicular A dramatic expansion in extravehicular activity (EVA)—or “spacewalkin g”—capability occurred during the Space Shuttle Activity Program; this capability will tremendously benefit future space Operations and exploration. Walking in space became almost a routine event during the program—a far cry from the extraordinary occurrence it had been. Advancements Engineers had to accommodate a new cadre of astronauts that included women, and the tasks these spacewalkers were asked to do proved Nancy Patrick significantly more challenging than before. Spacewalkers would be Joseph Kosmo charged with building and repairing the International Space Station. James Locke Luis Trevino Most of the early shuttle missions helped prepare astronauts, engineers, Robert Trevino and flight controllers to tackle this series of complicated missions while also contributing to the success of many significant national resources—most notably the Hubble Space Telescope. Shuttle spacewalkers manipulated elements up to 9,000 kg (20,000 pounds), relocated and installed large replacement parts, captured and repaired failed satellites, and performed surgical-like repairs of delicate solar arrays, rotating joints, and sensitive Orbiter Thermal Protection System components. These new tasks presented unique challenges for the engineers and flight controllers charged with making EVAs happen. The Space Shuttle Program matured the EVA capability with advances in operational techniques, suit and tool versatility and function, training techniques and venues, and physiological protocols to protect astronauts while providing better operational efficiency. Many of these advances were due to the sheer number of EVAs performed. Prior to the start of the program, 38 EVAs had been performed by all prior US spaceflights combined.
    [Show full text]
  • NASA Advanced Space Suit Pressure Garment System Status and Development Priorities 2019
    49th International Conference on Environmental Systems ICES-2019-185 7-11 July 2019, Boston, Massachusetts NASA Advanced Space Suit Pressure Garment System Status and Development Priorities 2019 Amy Ross1 and Richard Rhodes2 NASA Johnson Space Center, Houston, TX, 77058 Shane McFarland3 NASA Johnson Space Center/KBR, Houston, TX 77058 This paper discusses the current focus of NASA’s Advanced Space Suit Pressure Garment Technology Development team’s efforts, the status of that work, and a summary of longer term technology development priorities and activities. The Exploration Extra-vehicular Activity Unit (xEMU) project’s International Space Station Demonstration Suit (xEMU Demo) project continues to be the team’s primary customer and effort. In 2018 the team was engaged in addressing hardware design changes identified in the Z-2 pressure garment prototype Neutral Buoyancy Laboratory (NBL) test results. These changes will be discussed. Additionally components whose first iterations were produced in 2018 will be discussed. A full pressure garment prototype, termed Z-2.5, was assembled that is composed of updated and first prototype iteration hardware. Z-2.5 NBL testing, performed from October 2018 through April 2019 will inform final design iterations in preparation for the xEMU Demo preliminary design review planned to occur in the third quarter of government fiscal year 2019. A primary objective of the Z-2.5 NBL testing is to validate changes made to the hard upper torso geometry, which depart from the planetary walking suit upper torso geometry that has been used over the last 30 years. The team continues to work technology development, with GFY2018 work being used to supplement and feed the gaps left by the scope defined for the xEMU Demo.
    [Show full text]
  • 10. Spacecraft Configurations MAE 342 2016
    2/12/20 Spacecraft Configurations Space System Design, MAE 342, Princeton University Robert Stengel • Angular control approaches • Low-Earth-orbit configurations – Satellite buses – Nanosats/cubesats – Earth resources satellites – Atmospheric science and meteorology satellites – Navigation satellites – Communications satellites – Astronomy satellites – Military satellites – Tethered satellites • Lunar configurations • Deep-space configurations Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. 1 http://www.princeton.edu/~stengel/MAE342.html 1 Angular Attitude of Satellite Configurations • Spinning satellites – Angular attitude maintained by gyroscopic moment • Randomly oriented satellites and magnetic coil – Angular attitude is free to vary – Axisymmetric distribution of mass, solar cells, and instruments Television Infrared Observation (TIROS-7) Orbital Satellite Carrying Amateur Radio (OSCAR-1) ESSA-2 TIROS “Cartwheel” 2 2 1 2/12/20 Attitude-Controlled Satellite Configurations • Dual-spin satellites • Attitude-controlled satellites – Angular attitude maintained by gyroscopic moment and thrusters – Angular attitude maintained by 3-axis control system – Axisymmetric distribution of mass and solar cells – Non-symmetric distribution of mass, solar cells – Instruments and antennas do not spin and instruments INTELSAT-IVA NOAA-17 3 3 LADEE Bus Modules Satellite Buses Standardization of common components for a variety of missions Modular Common Spacecraft Bus Lander Congiguration 4 4 2 2/12/20 Hine et al 5 5 Evolution
    [Show full text]
  • Benefits of a Single-Person Spacecraft for Weightless Operations (Stop Walking and Start Flying)
    42nd International Conference on Environmental Systems AIAA 2012-3630 15 - 19 July 2012, San Diego, California Benefits of a Single-Person Spacecraft for Weightless Operations (Stop Walking and Start Flying) Brand N. Griffin1 Gray Research, Engineering, Science, and Technical Services Contract, 655 Discovery Drive Ste. 300, Huntsville, AL 35806 U.S.A Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work. For planetary operations space suits are still the logical choice; however, for safe and rapid access to the weightless environment, spacecraft offer compelling advantages. FlexCraft, a concept for a single-person spacecraft, enables any- time access to space for short or long excursions by different astronauts. For the International Space Station (ISS), going outside is time-consuming, requiring pre-breathing, donning a fitted space suit, and pumping down an airlock. For each ISS EVA this is between 12.5 and 16 hours. FlexCraft provides immediate access to space because it operates with the same cabin atmosphere as its host. Furthermore, compared to the space suit pure oxygen environment, a mixed gas atmosphere lowers the fire risk and allows use of conventional materials and systems. For getting to the worksite, integral propulsion replaces hand-over- hand translation or having another crew member operate the robotic arm. This means less physical exertion and more time at the work site. Possibly more important, in case of an emergency, FlexCraft can return from the most distant point on ISS in less than a minute. The one-size-fits-all FlexCraft means no on-orbit inventory of parts or crew time required to fit all astronauts.
    [Show full text]
  • Suited for Spacewalking. Teacher's Guide with Activities for Physical and Life Science
    DOCUMENT RESUME ED 381 392 SE 056 203 AUTHOR Vogt, Gregory L. TITLE Suited for Spacewalking. Teacher's Guide with Activities for Physical and Life Science. Revised. INSTITUTION National Aeronautics and Space Administration, Washington, D.C. Educational Programs Div. REPORT NO EG-101 PUB DATE Aug 94 NOTE 70p. PUB TYPE Guides Classroom Use Teaching Guides (For Teacher) (052) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS Biological Sciences; Earth Science; Elementary Secondary Education; Physical Sciences; *Science Activities; Science Curriculum; Science Education; *Space Exploration; Space Sciences; Student Projects IDENTIFIERS *Hands on Science; Space Shuttle;.*Space Suits; Space Travel ABSTRACT This activity guide for teachers interested in using the intense interest many children have inspace exploration as a launching point for exciting hands-on learning opportunities begins with brief discussions of thespace environment, the history of spacewalking, the Space Shuttle spacesuit, and working inspace. These are followed by a series of activities that enable studentsto explore the space environment as well as the science and technology behind the functions of spacesuits. The activitiesare not rated for specific grade levels because they can be adapted for students of many ages. A chart on curriculum application is designed to help teachers incorporate activities into various subjectareas. Activities and related student projects makeuse of inexpensive and easy-to-find materials and tools. Activitiesare arranged into four basic units including: (1) investigating thespace environment; (2) dressing for spacewalking; (3) moving and working inspace; and (4) exploring the surface of Mars. Contains 17 references and 25 resources. (LZ) *********************************************************************** * Reproductions supplied by EDRS are the best thatcan be made from the original document.
    [Show full text]