Annual Report 1997 Cover Picture: a Newborn Star (Cross), Deeply Embedded Into the Dusty Molecular Cloud out of Which It Was Born

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report 1997 Cover Picture: a Newborn Star (Cross), Deeply Embedded Into the Dusty Molecular Cloud out of Which It Was Born Max-Planck-Institut für Astronomie Heidelberg-Königstuhl Annual Report 1997 Cover Picture: A newborn star (cross), deeply embedded into the dusty molecular cloud out of which it was born. It is not visible in the optical range, but can be observed only in the infrared light. It emits a bright, ionized gaseous jet in polar direc- tion, illuminates an extended reflection nebulosity, and excites the line emission of the Herbig-Haro objects HH 28 and HH 29. See page 23–29. Max-Planck-Institut für Astronomie Heidelberg-Königstuhl Annual Report 1997 Max-Planck-Institut für Astronomie/Max Planck Institute of Astronomy Managing Directors: Prof. Dr. Steven Beckwith (until 31.8.1998), Prof. Dr. Immo Appenzeller (since 1.8.1998 onwards) Academic Members, Governing Body, Directors: Prof. Dr. Immo Appenzeller (from 1.8.1998 onwards, temporary), Prof. Dr. Steven Beckwith, (on sabbatical leave from 1.9.1998 onwards), Prof. Dr. Hans Elsässer (until 31.3.1997), Prof. Dr. Hans-Walter Rix (from 1.1.1999 onwards). Scientific Oversight Committee: Prof. R. Bender, München; Prof. R.-J. Dettmar, Bochum; Prof. G. Hasinger, Potsdam; Prof. P. Léna, Meudon; Prof. M. Moles Villlamate, Madrid, Prof. F. Pacini, Firenze; Prof. K.-H. Schmidt, Potsdam; Prof. P.A. Strittmatter, Tuscon; Prof. S.D.M. White, Garching; Prof. L. Woltjer, St. Michel Obs. The MPIA currently has a staff of approximately 160, including 43 scientists 37 junior and visiting scientists, together with 80 technical and administrative staff. Students of the Faculty of Physics and Astronomy of the University of Heidelberg work on dissertations at degree and doctorate level in the Institute. Apprentices are con- stantly undergoing training in the Institute’s workshop. Address: MPI für Astronomie, Königstuhl 17, D-69117 Heidelberg Telefon: 0049-6221-5280, Fax: 0049-6221-528246 E-mail: [email protected], Anonymous ftp: ftp.mpia-hd.mpg.de Homepage: http://www.mpia-hd.mpg.de Isophot Datacenter : [email protected] Calar-Alto-Observatorium Address: Centro Astronomico Hispano Aleman, Calle Jesus Durbán Remón 2/2, E-04004 Almería, Spanien Telefon: 0034-50-230988, -632500, Fax: 0034-50-632504, E-mail: [email protected] Publication Information © 1999 Max-Planck-Institut für Astronomie, Heidelberg All rights reserved Printed in Germany Editors: Dr. Jakob Staude, Prof. Dr. Immo Appenzeller, Heidelberg Text: Dr. Thomas Bührke, Leimen Graphics and Layout: Bärbel Wehner, Dossenheim Druck und Weiterverarbeitung: Neumann Druck, Heidelberg ISSN 1437-2932 I Contents I General . 5 IV Scientific Studies . 43 The MPIA’s Research Goals – Yesterday, Today and Tomorrow . 5 IV.1 Galactic Astronomy . 43 Some Important Questions . 7 The Bipolar Phase – Jets of Young Stars. 43 Galactical Research . 8 The Influence of Magnetic Fields . 48 Extragalactical Research. 9 Double and Multiple Systems in Young Stars . 49 The Solar System . 10 T Tauri Stars . 49 Herbig Ae/Be Douple Stars. 51 Luminous Blue Variables – II Highlights . 11 Precursors of Type-II Supernovae? . 52 Theoretical Studies . 54 II.1 ALFA – The Atmosphere is Outwitted. 11 The Formation of Stars . 54 The Principle of Adaptive Optics . 11 The Collaps of Molecular Clouds . 55 ALFA at the Calar Alto Observatory. 14 Fragmentation of a Molecular Cloud . 56 The Laser Guide Star . 15 The Formation and Evolution of Protostars ALFA in Use . 16 and Multiple Systems . 59 II.2 CADIS – Searching for the Protogalaxies . 18 IV.2 Extragalactical Astronomy . 64 The Strategy. 18 Jets from Galaxies and Quasars . 64 Protogalaxies . 20 The Jets . 65 Quasars, Galaxies and Stars . 21 The Hot Spots. 66 X-Ray Imaging of the Jets . 67 II.3 ISOPHOT – A Celestial Explorer in the IR . 23 Galaxies in the Environment of Quasars Infrared Astronomy . 23 and the Gravitational Lens Effect . 68 ISO, the Infrared Space Observatory. 23 Optical Identification of a Gamma Ray Burst . 70 ISOPHOT. 24 Theoretical Work . 71 The ISOPHOT Data Centre . 25 The Shinning Arms of Spiral Galaxies . 71 Highlights in 1997 . 25 Dark Matter in Spiral Galaxies . 73 Dust in Coma Galaxy Cluster . 26 The NGC 6090 Starburst Galaxy . 27 IV.3 Solar System . 75 Random Sampling in the Far Infrared Range . 29 Striae in the tail of comet Hale-Bopp . 75 III Development of Instruments . 33 Staff . 77 CAFOS2.2 – Calar Alto Focal Reduktor System In Heidelberg . 77 for the 2.2-Metre Telescope . 33 Calar Alto/Almeria . 77 MOSCA, Multi-Objekt-Spectrograph Guests . 77 for Calar Alto . 34 Working Groups OMEGA-Prime – a Camera for the Near Infrared. 35 and Scientific Collaboration . 78 OMEGA-Cass – Spectrometer and Camera for the Near Infrared . 37 Collaboration with Industrial Firms. 81 CONICA – Coudé Near-Infrared Camera Teaching and Public Lectures . 83 for the VLT. 38 Conferences. 84 MIDI – Mid-infrared Interferometry Instrument Participation in Committees . 84 for the VLT. 39 Invited Talks at Conferences. 84 PACS – IR Camera for FIRST, Publications . 85 the Far Infrared Space Telescope . 40 5 I General The MPIA’s Research Goals – Yesterday, Today search for a location, the choice for the northern hemis- and Tomorrow phere was made in favour of Calar Alto mountain (height: 2168 metres) in the province of Almería, sou- In 1967, the Senate of the Max-Planck-Gesellschaft/ thern Spain. This European location offers good climatic Max Planck Society decided to establish the Max- and meteorological conditions for astronomical observa- Planck-Institut für Astronomie/Max Planck Institute of tions. 1972 saw the establishment of the »Deutsch- Astronomy in Heidelberg with the aim of restoring astro- Spanischen Astronomischen Zentrums/German-Spanish nomical research in Germany to a leading global positi- Astronomical Centre« (DSAZ), known in short as the on after the major setbacks it had suffered due to two Calar Alto Observatory. World Wars. Two years later, the Institute commenced its The complex technological problems associated with work in temporary accommodation on the Königstuhl, the planning and construction of the telescopes were sol- under the direction of Hans Elsässer. The Institute moved into its new building in 1975 (Figure I.1). A long- term goal which was passed on to the newly established Fig. I.1: The Max Planck Institute of Astronomy, Heidelberg- MPIA was to build up and operate two high-performan- Königstuhl. In the right foreground is the astronomical labora- ce observatories, one in the northern hemisphere and one tory with its two domes, in the background the Land observa- in the southern hemisphere. In 1970, after an intensive tory. (Lossen aerial photography, RPKA 10/4209a) 6 I General ved in cooperation with the Carl Zeiss company at Fig. I.2: The Calar Alto observatory, a view from the north Oberkochen and other companies. In this way, a large towards the telescope domes. number of companies have acquired know-how which From left to right: the 2.2-metre telescope, the Spanish 1.5- has helped them to secure leading positions on the world metre telescope, the 1.2-metre telescope, the Schmidt reflector market. and the 43-metre high dome of the 3.5-metre telescope. In the Between 1975 and 1984, the 1.2-metre reflector finan- background can be seen the Almeria coast. ced by the Deutsche Forschungsgemeinschaft/ German Research Association as well as the 2.2-metre and 3.5- metre telescopes started operation on Calar Alto (Figure Other aspects include the development of new measu- I.2). The 80-centimetre Schmidt telescope was transfer- ring instruments in Heidelberg, the preparation of obser- red from the Hamburg Observatory. There is also a vation programmes and the evaluation of the data obtai- Spanish 1.5-metre telescope on the site which does not ned from the telescopes. A substantial part of the belong to the DSAZ: the Observatorio Nacional de Institute’s work is devoted to building new instruments Madrid is in charge of this instrument. The original plans for the telescopes (Chapter III). The MPIA is equipped to construct a southern observatory on the Gamsberg in with ultra-modern precision mechanics and electronics Namibia could not be implemented for political reasons. workshops for this purpose. The Calar Alto Observatory The 2.2-metre telescope which was intended for this pur- provides the MPIA with one of the two European obser- pose has been loaned to the European Southern Obser- vatories with the highest performance. Research concen- vatory for 25 years. Since 1984, it has been in operation trates on the »classical« visible region of the spectrum on La Silla Mountain in Chile, where 25% of its observa- and on the infrared region. tion time is available to the astronomers of the MPIA. In addition to these tasks, the MPIA has been engaged One aspect of the MPIA’s present task is the operati- in extra-terrestrial research ever since it was established. on of the Calar Alto Observatory. This includes the con- This was associated with an early start on infrared astro- stant optimisation of the telescopes’ capabilities: now nomy which has played a particularly important part in that the ALFA adaptive optical system has been com- the Institute’s later development as a whole. Nowadays, missioned, the 3.5-metre telescope is once again at the the MPIA has a substantial involvement in the ISO pro- forefront of technological development (Chapter II.1). ject (Infrared Space Observatory, Figure I.3) of the Some Important Questions 7 European Space Agency ESA (Chapter II.3): ISOPHOT, für extraterrestrische Physik/MPI of Extra-Terrestrial one of four measuring instruments on the ISO, was deve- Physics in Garching, the MPI für Radioastronomie/MPI loped under the coordinating leadership of the Institute. of Radio Astronomy in Bonn, the Astrophysikalisches Participation in international observatories and pro- Institut Potsdam/Potsdam Astrophysical Institute and the jects is also of very major importance. For example, the Landessternwarte Heidelberg, the MPIA will probably Institute has been working for some years on one of the have a 25% share in the costs and use of the LBT.
Recommended publications
  • Download This Article in PDF Format
    EPJ Web of Conferences 228, 00023 (2020) https://doi.org/10.1051/epjconf/202022800023 mm Universe @ NIKA2 NIKA2 observations around LBV stars Emission from stars and circumstellar material 1,3, 2 1 J. Ricardo Rizzo ∗, Alessia Ritacco , and Cristobal Bordiu 1Centro de Astrobiología (CSIC-INTA), Ctra. M-108, km. 4, E-28850 Torrejón de Ardoz, Madrid, Spain 2Institut de Radioastronomie Milimétrique (IRAM), E-18012 Granada, Spain 3ISDEFE, Beatriz de Bobadilla 3, E-28040 Madrid, Spain Abstract. Luminous Blue Variable (LBV) stars are evolved massive objects, previous to core-collapse supernova. LBVs are characterized by photometric and spectroscopic variability, produced by strong and dense winds, mass-loss events and very intense UV radiation. LBVs strongly disturb their surroundings by heating and shocking, and produce important amounts of dust. The study of the circumstellar material is therefore crucial to understand how these massive stars evolve, and also to characterize their effects onto the interstellar medium. The versatility of NIKA2 is a key in providing simultaneous observations of both the stellar continuum and the extended, circumstellar contribution. The NIKA2 frequencies (150 and 260 GHz) are in the range where thermal dust and free-free emission compete, and hence NIKA2 has the capacity to provide key information about the spatial distribution of circumstellar ionized gas, warm dust and nearby dark clouds; non-thermal emission is also possible even at these high frequencies. We show the results of the first NIKA2 survey towards five LBVs. We detected emission from four stars, three of them immersed in tenuous circumstellar material. The spectral indices show a complex distribution and allowed us to separate and characterize different components.
    [Show full text]
  • Jahresbericht 1997 Zum Titelbild: Ein Neugeborener Stern (Kreuz), Tief in Den Staub Der Molekülwolke L1551 Eingebettet, Aus Der Er Entstand
    Max-Planck-Institut für Astronomie Heidelberg-Königstuhl Jahresbericht 1997 Zum Titelbild: Ein neugeborener Stern (Kreuz), tief in den Staub der Molekülwolke L1551 eingebettet, aus der er entstand. Er ist nicht im Optischen, sondern nur als Infrarotquelle zu erkennen. Er emittiert in Polrichtung einen hellen Jet aus ioni- siertem Gas, beleuchtet einen ausgedehnten Reflexionsnebel, und regt die Herbig-Haro-Objekte HH 28 und HH 29 zum eigenen Leuchten an. Mehr dazu auf Seite 23–29. Max-Planck-Institut für Astronomie Heidelberg-Königstuhl Jahresbericht 1997 Das Max-Planck-Institut für Astronomie Geschäftsführende Direktoren: Prof. Dr. Steven Beckwith (bis 31. 8.), Prof. Dr. Immo Appenzeller (ab 1.8.1998) Wissenschaftliche Mitglieder, Kollegium, Direktoren: Prof. Dr. Immo Appenzeller (ab 1.8.1998, kommissarisch), Prof. Dr. Steven Beckwith, (ab 1. 9. 1998 beurlaubt), Prof. Dr. Hans Elsässer (bis 31. 3. 1997), Prof. Dr. Hans-Walter Rix (ab 1. 1. 1999). Fachbeirat: Prof. R. Bender, München; Prof. R.-J. Dettmar, Bochum; Prof. G. Hasinger, Potsdam; Prof. P. Léna, Meudon; Prof. M. Moles Villlamate, Madrid, Prof. F. Pacini, Firenze; Prof. K.-H. Schmidt, Potsdam; Prof. P.A. Strittmatter, Tuscon; Prof. S.D.M. White, Garching; Prof. L. Woltjer, St. Michel Obs. Derzeit hat das MPIA rund 160 Mitarbeiter, davon 43 Wissenschaftler, 37 Nachwuchs- und Gastwissenschaftler sowie 80 Techniker und Verwaltungsangestellte. Studenten der Fakultät für Physik und Astronomie der Universität Heidelberg führen am Institut Diplom- und Doktorarbeiten aus. In den Werkstätten des Instituts werden ständig Lehrlinge ausgebildet. Anschrift: MPI für Astronomie, Königstuhl 17, D-69117 Heidelberg. Telefon: 0049-6221-5280, Fax: 0049-6221-528246. E-mail: [email protected], Anonymous ftp: ftp.mpia-hd.mpg.de Homepage: http://www.mpia-hd.mpg.de Isophot Datacenter : [email protected].
    [Show full text]
  • Luminous Blue Variables: an Imaging Perspective on Their Binarity and Near Environment?,??
    A&A 587, A115 (2016) Astronomy DOI: 10.1051/0004-6361/201526578 & c ESO 2016 Astrophysics Luminous blue variables: An imaging perspective on their binarity and near environment?;?? Christophe Martayan1, Alex Lobel2, Dietrich Baade3, Andrea Mehner1, Thomas Rivinius1, Henri M. J. Boffin1, Julien Girard1, Dimitri Mawet4, Guillaume Montagnier5, Ronny Blomme2, Pierre Kervella7;6, Hugues Sana8, Stanislav Štefl???;9, Juan Zorec10, Sylvestre Lacour6, Jean-Baptiste Le Bouquin11, Fabrice Martins12, Antoine Mérand1, Fabien Patru11, Fernando Selman1, and Yves Frémat2 1 European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Córdova 3107, Vitacura, 19001 Casilla, Santiago de Chile, Chile e-mail: [email protected] 2 Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium 3 European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 4 Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’Observatoire, France 6 LESIA (UMR 8109), Observatoire de Paris, PSL, CNRS, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France 7 Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 8 ESA/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218,
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Ejections De Mati`Ere Par Les Astres : Des Étoiles Massives Aux Quasars
    Universite´ de Liege` Faculte´ des Sciences Ejections de matiere` par les astres : des etoiles´ massives aux quasars par Damien HUTSEMEKERS Docteur en Sciences Chercheur Qualifie´ du FNRS Dissertation present´ ee´ en vue de l’obtention du grade d’Agreg´ e´ de l’Enseignement Superieur´ 2003 Illustration de couverture : la n´ebuleuse du Crabe, constitu´ee de gaz ´eject´e`agrande vitesse par l’explosion d’une ´etoile en supernova. Clich´eobtenu avec le VLT et FORS2, ESO, 1999. Table des matieres` Preface´ et remerciements 5 Introduction 7 Articles 21 I Les nebuleuses´ eject´ ees´ par les etoiles´ massives 23 1 HR Carinae : a Luminous Blue Variable surrounded by an arc-shaped nebula 25 2 The nature of the nebula associated with the Luminous Blue Variable star WRA751 37 3 A dusty nebula around the Luminous Blue Variable candidate HD168625 45 4 Evidence for violent ejection of nebulae from massive stars 57 5 Dust in LBV-type nebulae 63 II Quasars de type BAL et microlentilles gravitationnelles 73 6 The use of gravitational microlensing to scan the structureofBALQSOs 75 7 ESO & NOT photometric monitoring of the Cloverleaf quasar 89 8 Selective gravitational microlensing and line profile variations in the BAL quasar H1413+117 99 9 An optical time-delay for the lensed BAL quasar HE2149-2745 113 3 III Quasars de type BAL : polarisation 127 10 A procedure for deriving accurate linear polarimetric measurements 129 11 Optical polarization of 47 quasi-stellar objects : the data 137 12 Polarization properties of a sample of Broad Absorption Line and gravitatio-
    [Show full text]
  • Double and Multiple Star Measurements at the Northern Sky with a 10”-Newtonian and a Fast CCD Camera in 2010
    Vol. 7 No. 2 April 1, 2011 Journal of Double Star Observations Page 78 Double and Multiple Star Measurements at the Northern Sky with a 10”-Newtonian and a Fast CCD Camera in 2010 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: 62 double and multiple star systems were recorded with a 10”-Newtonian and a fast CCD camera, using the technique of “lucky imaging”. Measurements were compared with literature data, and particular deviations are discussed. B/w and color images of some noteworthy examples are also presented. and blue filters, in order to produce RGB-composites. Introduction The new camera was the b/w-version of the This is a continuation of earlier work, which has DMK31AF03.AS (The Imaging Source) with pixel been reported in this journal [1-3]. As has been dem- size 4.65 µm square, which results in an approximate onstrated, seeing effects can effectively be reduced by resolution of about 0.16 arcsec/pix. A more exact cali- using the technique of “lucky imaging”, and the reso- bration was obtained by an iterative method by lution and accuracy of measurements can be pushed measuring well documented double stars, as has to their limits, given mainly by the size of the tele- been described in earlier work. All other parameters scope. In this report, measurements are described, were the same as before. Exposure times ranged which I obtained with my 10”-Newtonian at home in from a few milliseconds to 0.5 sec, depending on the 2010. Only the camera was replaced by a type with star brightness and on the seeing.
    [Show full text]
  • Discovery of Japan's Oldest Photographic Plates of a Starfield
    国立天文台報 第 15 巻,37 – 72(2013) 日本最古の星野写真乾板の発見 佐々木五郎,中桐正夫,大島紀夫,渡部潤一 (2012 年 11 月 11 日受付;2012 年 11 月 27 日受理) Discovery of Japan’s Oldest Photographic Plates of a Starfield Goro SASAKI, Masao NAKAGIRI, Norio OHSHIMA, and Jun-ichi WATANABE Abstract We discovered 441 historical photographic plates taken from the end of the 19th century to the beginning of the 20th century at the Azabu in central part of Tokyo out of tens of thousands of old plates which were stocked in the old library. They contain precious plates such as the first discovery of asteroid “(498) Tokio”. They are definitely the oldest photographic plates of star filed in Japan. We present an archival catalogue of these plates and the statistics along with the story of our discovery. 要旨 われわれは,倉庫に眠っていた数万枚の古い乾板類の中から,三鷹に移転する前の 19 世紀末から 20 世紀初 頭にかけて東京都心・麻布で撮影された星野写真乾板 441 枚を発見した.この中には日本で初めて発見された 小惑星「(498) Tokio」など,歴史的に貴重な乾板が含まれており,日本最古の星野写真乾板である.本稿では, この乾板についてのカタログおよび統計データについて,その発見の経緯とともに紹介する. 1 はじめに して明確に位置づけ,より統一的・効率的・系統的に 整理保存を行うため,国立天文台発足 20 年の節目の 国立天文台は,前身の東京大学東京天文台の時代を 年である 2008 年に「歴史的価値のある天文学に関す 含めると,120 年以上の長い歴史をもつ日本でも希有 る資料(観測測定装置,写真乾板,貴重書・古文書) な研究所である.1924 年頃,当時の都心・麻布飯倉 の保存・整理・活用・公開を行う」ことを当初のミッ の地から,三鷹に順次移転してきたこともあって,三 ションと掲げ,天文情報センター内にアーカイブ室を 鷹構内には古い建物や観測装置などが存在し,それら 設けた[1]. のいくつかは登録有形文化財に指定されている.また, このアーカイブ室の活動の一環として,三鷹構内に それらの古い観測装置や望遠鏡で撮影した乾板類も多 残されていた多数の天体写真乾板類の整理を開始した. 数残されている. 総数 2 万枚にも及ぶと思われる乾板類の多くは未整理 われわれは,かねてよりこれら歴史的に価値のある のまま,75 箱の段ボール箱に詰め込まれ,乱雑に旧 建物・観測装置・乾板類や古文書・貴重書等の保存整 図書庫に積み上げられていたままであった.本論文の 理にも力を入れてきた.しかし,これまでは個々の研 筆頭著者である佐々木が中心となって,それぞれの箱 究者の興味に基づいて,あるいは外部から要請や必要
    [Show full text]
  • WASP-80B: a Gas Giant Transiting a Cool Dwarf⋆⋆⋆
    A&A 551, A80 (2013) Astronomy DOI: 10.1051/0004-6361/201220900 & c ESO 2013 Astrophysics WASP-80b: a gas giant transiting a cool dwarf, A. H. M. J. Triaud1,D.R.Anderson2, A. Collier Cameron3,A.P.Doyle2,A.Fumel4, M. Gillon4, C. Hellier2, E. Jehin4, M. Lendl1,C.Lovis1,P.F.L.Maxted2,F.Pepe1, D. Pollacco5,D.Queloz1, D. Ségransan1,B.Smalley2, A. M. S. Smith2,6,S.Udry1,R.G.West7, and P. J. Wheatley5 1 Observatoire Astronomique de l’Université de Genève, Chemin des Maillettes 51, 1290 Sauverny, Switzerland e-mail: [email protected] 2 Astrophysics Group, Keele University, Staffordshire, ST55BG, UK 3 SUPA, School of Physics & Astronomy, University of St. Andrews, North Haugh, KY16 9SS, St. Andrews, Fife, Scotland, UK 4 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, 17, Bat. B5C, Liège 1, Belgium 5 Department of Physics, University of Warwick, Coventry CV4 7AL, UK 6 N. Copernicus Astronomical Centre, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland 7 Department of Physics and Astronomy, University of Leicester, Leicester, LE17RH, UK Received 13 December 2012 / Accepted 9 January 2013 ABSTRACT We report the discovery of a planet transiting the star WASP-80 (1SWASP J201240.26-020838.2; 2MASS J20124017-0208391; TYC 5165-481-1; BPM 80815; V = 11.9, K = 8.4). Our analysis shows this is a 0.55 ± 0.04 Mjup,0.95 ± 0.03 Rjup gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V.
    [Show full text]
  • On the Atmospheres of the Smallest Gas Exoplanets
    On the Atmospheres of the Smallest Gas Exoplanets by Erin M. May A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomoy and Astrophysics) in The University of Michigan 2019 Doctoral Committee: Assistant Professor Emily Rasucher, Chair Professor Fred Adams Professor Michael Meyer Professor John Monnier Erin M. May [email protected] ORCID iD: 0000-0002-2739-1465 c Erin M. May 2019 For my cat. May she learn to love me at least as much as I love this dissertation. ii ACKNOWLEDGEMENTS \I don't have emotions. And sometimes that makes me very sad." { Bender, the Robot I've never been much for emotions, but if it's a required component of this dissertation... First, thank you to Alex. I may have been a pain to deal with during parts of this process, but we both made it through. Thank you to Li'l B who taught me that not everything that's perfect is perfect for you and that love isn't unconditional. Especially from a cat. Thank you to the humans in the department who were there for me along the way. In particular, Emily, who was the advisor I needed but didn't deserve. To Renee for confirming that there's no such thing as too many macarons on a Friday, and for the constant commiserating throughout the past year. And because this human requested this acknowledgement, to Adi for saving me that one time from that one thing. Thank you to the regular GB@3 crew, even those who showed up late or barely at all.
    [Show full text]
  • From ESPRESSO to PLATO: Detecting and Characterizing Earth-Like Planets in the Presence of Stellar Noise
    From ESPRESSO to PLATO: detecting and characterizing Earth-like planets in the presence of stellar noise Tese de Doutouramento Luisa Maria Serrano Departamento de Fisica e Astronomia do Porto, Faculdade de Ciências da Universidade do Porto Orientador: Nuno Cardoso Santos, Co-Orientadora: Susana Cristina Cabral Barros March 2020 Dedication This Ph.D. thesis is the result of 4 years of work, stress, anxiety, but, over all, fun, curiosity and desire of exploring the most hidden scientific discoveries deserved by Astrophysics. Working in Exoplanets was the beginning of the realization of a life-lasting dream, it has allowed me to enter an extremely active and productive group. For this reason my thanks go, first of all, to the ’boss’ and my Ph.D. supervisor, Nuno Santos. He allowed me to be here and introduced me in this world, a distant mirage for the master student from a university where there was no exoplanets thematic line. I also have to thank him for his humanity, not a common quality among professors. The second thank goes to Susana, who was always there for me when I had issues, not necessarily scientific ones. I finally have to thank Mahmoud; heis not listed as supervisor here, but he guided me, teaching me how to do research and giving me precious life lessons, which made me growing. There is also a long series of people I am thankful to, for rendering this years extremely interesting and sustaining me in the deepest moments. My first thought goes to my parents: they were thousands of kilometers far away from me, though they never left me alone and they listened to my complaints, joy, sadness...everything.
    [Show full text]
  • Arxiv:1809.00314V1 [Astro-Ph.EP] 2 Sep 2018 [email protected] That Have Never Experienced Chaotic Migration
    Accepted for publication in The Astronomical Journal Preprint typeset using LATEX style emulateapj v. 01/23/15 STELLAR OBLIQUITIES & PLANETARY ALIGNMENTS (SOPA) I. SPIN-ORBIT MEASUREMENTS OF y THREE TRANSITING HOT JUPITERS: WASP-72b, WASP-100b, & WASP-109b ? B. C. Addison1,2, S. Wang3, , M. C. Johnson4, C. G. Tinney5,6, D. J. Wright2, D. Bayliss7 (Dated: September 5, 2018) Accepted for publication in The Astronomical Journal ABSTRACT We report measurements of the sky-projected spin{orbit angles for three transiting hot Jupiters: two of which are in nearly polar orbits, WASP-100b and WASP-109b, and a third in a low obliquity orbit, WASP-72b. We obtained these measurements by observing the Rossiter{McLaughlin effect over the course of the transits from high resolution spectroscopic observations made with the CYCLOPS2 optical fiber bundle system feeding the UCLES spectrograph on the Anglo-Australian Telescope. +11◦ +19◦ +10◦ The resulting sky-projected spin{orbit angles are λ = 7◦ 12◦ , λ = 79◦ 10◦ , and λ = 99◦ 9◦ for WASP-72b, WASP-100b, and WASP-109b, respectively.− These− results suggests− that WASP-100b− and WASP-109b are on highly inclined orbits tilted nearly 90◦ from their host star's equator while the orbit of WASP-72b appears to be well-aligned. WASP-72b is a typical hot Jupiter orbiting a mid-late F star (F7 with T = 6250 120 K). WASP-100b and WASP-109b are highly irradiated bloated hot Jupiters eff ± orbiting hot early-mid F stars (F2 with Teff = 6900 120 K and F4 with Teff = 6520 140 K), making them consistent with the trends observed for the majority± of stars hosting planets± on high-obliquity orbits.
    [Show full text]
  • Il Manuale Delle Stelle Variabili
    Stefano Toschi Simone Santini Flavio Zattera Ivo Peretto Il Manuale delle Stelle VarIabIlI GUIDA ALL’OSSERVAZIONE E ALLO STUDIO DELLE STELLE VARIABILI I° Edizione@2006 Sommario 0. Prefazione 1. Introduzione alle stelle variabili 1.1 Un po’ di storia 1.2 L’osservazione amatoriale 2. Una serata osservativa tipo 2.1 Preparazione di un programma osservativo 2.2 Equipaggiamento necessario 2.3 Passo per passo di una sessione osservativa 3. Il dato fotometrico 3.1 Effetti sull’osservazione 3.2 Affinare la propria tecnica osservativa 4. Metodi visivi fotometrici delle stelle variabili 4.1 Metodo frazionario 4.2 Metodo a gradini di Argelander 4.3 Metodo a gradini di Pogson 5. Personalizzazione della sequenza di confronto 5.1 Sequenza di confronto con almeno tre stelle di confronto 5.2 Sequenze incomplete 5.3 Precisione dell'osservazione 6. Elaborazione della stima temporale 6.1 La correzione eliocentrica 6.2 Note sull’uso della correzione eliocentrica 6.3 L’uso delle effemeridi 7. Ottenere la curva di luce 7.1 Il Compositage 7.2 Alcune sigle 7.3 Il massimo medio per le Cefeidi 7.4 Tracciare la curva di luce e ottenere il tempo del massimo 7.5 Costruzione della curva di luce senza le magnitudini di confronto 7.6 Il metodo di simmetria per il minimi 8. Il Decalage sistematico 9. Fotometria differenziale di stelle variabili al CCD 9.1 Un cenno sulle sequenze di cartine al CCD 9.2 Metodo per iniziare a stilare una sequenza fotometrica riferita a una variabile 9.3 Il CCD e la fotometria differenziale 9.4 La normalizzazione dell immagini 9.5 Fotometria differenziale e coefficienti di trasformazione del colore 10.
    [Show full text]