1970Aj 75. . 602H the Astronomical Journal

Total Page:16

File Type:pdf, Size:1020Kb

1970Aj 75. . 602H the Astronomical Journal 602H . 75. THE ASTRONOMICAL JOURNAL VOLUME 75, NUMBER 5 JUNE 19 70 The Space Distribution and Kinematics of Supergiants 1970AJ Roberta M. Humphreys *f University of Michigan, Ann Arbor, Michigan (Received 15 January 1970; revised 1 April 1970) The distribution and kinematics of the supergiants of all spectral types are investigated with special emphasis on the correlation of these young stars and the interstellar gas. The stars used for this study are included as a catalogue of supergiants. Sixty percent of these supergiants occur in stellar groups. Least- squares solutions for the Galactic rotation constants yield 14 km sec-1 kpc-1 for Oort’s constant and a meaningful result for the second-order coefficient of —0.6 km sec-1 kpc-2. A detailed comparison of the stellar and gas velocities in the same regions shows good agreement, and these luminous stars occur in relatively dense gas. The velocity residuals for the stars also indicate noncircular group motions. In the Carina-Centaurus region, systematic motions of 10 km/sec were found between the two sides of the arm in agreement with Lin’s density-wave theory. The velocity residuals in the Perseus arm may also be due in part to these shearing motions. I. INTRODUCTION II. THE CATALOGUE OF SUPERGIANTS SINCE the pioneering work of Morgan et al. (1952) The observational data required for this study were on the distances of Galactic H 11 regions, many largely obtained from the literature. Use of a card file investigators have studied the space distribution of compiled by Dr. W. P. Bidelman was very helpful in various Population I objects, the optical tracers of this regard. Recently, a considerable amount of new spiral structure. The results of these studies have been observational data was obtained for M supergiants in reviewed by Sharpless (1965). Unfortunately, the the Perseus arm (Humphreys 1970), and for many other optical observations are restricted to a relatively small supergiants it was possible for the author to obtain region near the sun while the 21-cm observations of from Kitt Peak and from Michigan information not neutral hydrogen, not hampered by interstellar ab- available in the literature. UBV observations were sorption, display a large-scale spiral structure over the kindly made by Dr. S. Wyckoff and Dr. D. J. Mac- entire disk of the Galaxy. Interpretation of the radio Connell of 22 and 34 supergiants at Kitt Peak and Cerro data, however, requires knowledge of the differential Tololo Observatories, respectively. rotation of the Galaxy. Comparisons between the A list was compiled of 669 supergiants of luminosity spatial distribution of the stars and gas within a few class lb or brighter which had either sufficient photo- kiloparsecs of the sun have indicated discrepancies metric data for a determination of distances, reliable (Becker 1961; Sharpless 1965); however, investigations radial velocities, or both. This catalogue is included as by Rubin et al. (1962) and Fletcher (1963) have shown Table I and gives the star’s identification, MK spectral that the radial velocities of young Population I objects type and luminosity class, and position in Galactic and the associated gas are generally in agreement. longitude and latitude. The magnitudes and B—V Preliminary discussions of the space distribution of colors, distances from the sun and Galactic center, the intermediate and late-type supergiants were made observed radial velocities, and model radial velocities, several years ago by Bidelman (1958) and by Sharpless as well as the associations or clusters to which the stars (1965), but in the past decade much additional data has may belong are included. References to the observa- become available for these stars. As a result it is now tional data are also given for each star. A correction of possible to make a comprehensive study of the distri- + 10 km/sec was applied to the Lick velocities of B bution in space and velocity of the supergiants of all stars fainter than 6^5 (Feast and Thackeray 1958). The spectral types, and to discuss their relation to the inter- determination of the distances and the model radial stellar gas clouds in which they presumably originated. velocities is discussed below. The next section presents a catalogue of supergiants The distances corrected for interstellar reddening and Sec. Ill describes the space distribution of these were computed from the spectroscopic absolute magni- luminous stars. In Sec. IV the results of least-squares tudes using Blaauw’s (1963) luminosity calibration and solutions for the Galactic rotation constants are dis- the B—V color excesses from Johnson’s (1966) intrinsic cussed. Section V describes the comparison of stellar colors with R=3.0 for the ratio of total-to-selective and gas velocities and Sec. VI discusses evidence for absorption. Distances from the Galactic center were noncircular group motions among the supergiants. computed on the assumption that the sun’s distance is 10 kpc. * Visting Astronomer, Kitt Peak National Observatory, which is operated by the Association of Universities for Research in The model radial velocity is the velocity that a star Astronomy, Inc., under contract with the National Science would be expected to have on the basis of an adopted Foundation. f Now at Dyer Observatory, Vanderbilt University, Nashville, model for the Galactic rotation. From the exact equa- Tennessee. tion for differential rotation and assuming separable 602 © American Astronomical Society • Provided by the NASA Astrophysics Data System 602H . 75. KINEMATICS OF SUPERGIANTS 603 Table I. The catalogue of supergiants. 1970AJ Sources of information Star Sp. type B V B-V Vel. V mod. Assoc, or cluster Sp. Phot. Vel. HD 164032 B1 IB .9 -3.2 7.48 .14 2.63 7.37 SGR 0B5 44 44 HD 161291 Bl IAB 1.5 .6 8.89 .75 2.73 7.27 SGR 0B5 44 44 HD 164019 BO IA 1.9 -2.6 9.31 .26 6.08 3.93 -27.7 -1.9 44 95 39/98 HD 163428 Ml IB 5.6 .3 6.65 2.03 1.12 8.88 -12.01 SGR 081 13 18 98 HD 164514 A5 IA 7.1 -.2 7.42 1.09 2.73 7.30 -1.6 -.0 SGR OBI NGC 6514 66 51 98 HD 164402 BO IB 7.2 -.0 5.84 .01 1.45 8.57 -13.0 -6.2 SGR OBI 51 98 HD 148743 A7 IB 8.0 26.7 6.49 .37 1.34 8.68 5.01 48 27 HD 165516 BO.5 IB 8.9 -.4 6.29 .12 1.50 8.52 -9.2 -4.9 SGR OBI 66 95 38/98 HD 165784 A2 IA 9.1 -.7 6.86 .87 2.43 7.61 -15.5 SGR OBI 66 51 98 HD 166167 B9 IB 9.4 -1.0 8.29 .56 2.61 7.44 SGR OBI 66 44 MU SGR B8 IA 10.0 -1.6 3.85 .23 1.08 8.94 -6,0 -6.6 SGR OBI 66 18 98 HD 167264 BO IA 10.4 -1.7 5.38 .07 1.29 8.73 -6.3 -5.1 SGR 0B7 66 44 98 HD 166628 B3 IA 11.2 -.5 7.17 .59 2.61 7.46 11.5 4.7 SGR 0B4 66 44 27>37/98 AX SGR G8 IA 11.6 .7 7.40 2.03 3.02 7.07 15.0 8.3 SGR 0S4Ï 68 51 98 HD 167287 B1 IB 12.0 -.9 8.30 .0T 66 98 -19 4955 B3 IA 12.2 -1.6 8.90 .96 3.02 7.08 6.0 SGR 0B4 44 44 98 HD 167356 AO IA' 12.6 -2.0 6.10 -1.01 66 25/98 HD 168021AB BO IB 12.7 -1.4 6.43 .27 1.32 8.71 7.7 -3.9 SGR 0B4 NGC 6603 66 48 37/38/98 HD 168021C B0.5 IB 12.7 -1.0 7.87 .24 2.63 7.46 27.3 6.7 SGR 0B4 NGC 6603 37 51 37/98 HD 174947 K1 IB 14.0 “10.1 5.69 2.18 • 26 9.75 -4,01 51 18 98 HD 168552 B3 IB 14.2 -1.3 8.09 .36 2.87 7.25 -7.4 10.9 SER OBI 66 51 98 HD 171012 BO.5 IA 14.5 -4.4 6.94 .47 1.72 8.34 -7.4 .7 66 51 37/98 HD 171432 B1 IA 14.6 -5.0 7.20 .23 3.09 7.05 12.8 14.0 66 51 98 HD 168607 B9 IA+ P 15.0 -.9 8.29 1.60 2.36 7.75 -30.01 SER OBI NGC 6618 66 44 98 HD 168625 B8 I A* 15.0 -1.0 8.41 1.46 2.81 7.33 -4.01 SER OBI NGC 6618 66 44 98 HD 165319 BO IA 15.1 3.3 7.94 .59 2,05 8.04 30.01 66 44 98 HD 167838 B5 IA 15.4 .3 6.73 .46 2.57 7.55 9.0 SER OBI 56 44 27/38/98 HD 168814 A2 IB 16.8 -.2 7.30 -15.01 66 98 HD 167451 BO.5 IB 16,8 1.5 8.23 .79 1.45 8.62 -9.2 -1.2 SER OBI 66 44 37/98 HD 170938 B1 IA 16.8 -3.0 7.87 .85 1.79 8.31 27.01 66 44 98 -14 5037 B1.5 IA 16.9 -.9 8.24 1.39 1.08 8.97 SCT 0B3 66 44 -14 5029 B1.5 IB 17.2 -.4 9.61 1.15 1.79 8.31 23.01 SCI 0B3 44 44 98 -14 5030 B5 IA 17.3 -.5 9.52 1.03 4.23 6.09 44 44 HD 169454 81 IA+ 17.5 -.7 6.61 .94 1,85 8.26 -15.2 3.5 SCT 083 66 44 98 HD 169034 B5 IA 17.6 -.1 8.14 1.25 1.65 8.44 3.0 1.4 SCT 0B3 66 44 98 HD 167330 09 I-II 17.6 2.2 8.23 .66 -36.01 66 44 98 HD 167311 BO IB 17.7 2.2 8.61 1.01 1.28 8.79 -4.0 -2.6 SER 082 64 51 99 CASE 49 M2 IAB 17.8 -.6 11.12 3.14 2.78 7.40 SER OBI 83 83 -12 4970 BO.5 IA 18.0 1.6 8.78 1.02 1.68 8.23 SER 0B2 66 44 HD 171094 M2 IAB 18.3 -2.4 8.22 2.29 2.37 7.79 83 63 HD 170177 BO.5 IA 18.3 -1.2 9.44 .80 3.45 6.81 13.01 45 45 98 HD 170159 BO.5 IB 18.8 -.9 8.36 .59 2,03 8.10 12.4 6.4 SER OBI 66 44 37#98 -13 5061 A3 IA 19.2 -3.7 9.86 .92 9,59 3.30 45 45 HD 170716 B1 IB 19.7 -1.2 9.47 .42 4,41 6.04 30.6, 37.2 66/44 44 73 HD 169754 BO.5 IA 20.0 .2 8.38 1.06 1,48 8.63 32.01 66 44 98 -12 5166 BO.5 I 20.1 -1.8 9.81 .70 4.09 6.32 38.9, 33.8 45 45 73 RZ SCT 83 IB 21.9 1.3 7.50 .75 1.28 8.83 -28.31 66 51 98 HD 172403 B9 IB 23.5 -1.7 8.48 .80 2.04 8.17 45 45 HD 173010 BO IAE 23.7 -2.5 9.18 .83 3.61 6.85 43.9 31.9 45 45/74 74 HD 173783 ■09 I 25.1 -5.2 9.32 .52 4.04 6.57 47.7 39.6 66 51 73 -6 4834 83 IB 25.6 -.8 10.97 .50 8.91 4.32 36.lj 74 74 74 -6 4837 81.5 IB 26.0 -1.0 9.81 .34 6,00 5.31 67.81 74 74 74 HD 173987 BO.5 IAB 26.9 -2.3 8.92 .36 4.55 6.29 55.8 48.6 45/66 45 39/73/98 HD 173820 09 I 26.9 -2.0 9.97 .27 7.69 4.69 41.9 83.8 36/74 74 37/74 HD 176077 Bl IA 27.2 -5.0 9.55 .33 7,94 4.67 45 45 -4 4573 B8 IAB 28.0 -.8 9.71 1.08 3.77 6.90 45 45 HD 173438 BO.5 IA 28.2 -.8 8.23 .80 1,98 8.31 31.0 10.9 66 44 37/73/98 HD 164353 B5 IB 29.7 12.6 3.97 .02 .73 9.37 -4,4* CDU 359 66 29/52 27/98 -1 3542 B8 IA 30.7 1.5 9.22 1.50 2.22 8.17 45 45 UW AQL MO IAB 34.0 -1.2 8.74 2.60 1.96 8.45 83 83 HD 172365 F9 IB 36.3 5.1 6.36 .79 1.23 9.04 -18.5 IC 4756S 11 2/32 98 NU AQL F2 IB 37.2 -7.6 4.65 .59 .44 9.65 -1.0 -9.7 68 18 98 HD 177812 Bl IB 37.5 -1.8 8.60 .63 2.24 8.34 37.1 17,1 66 44/45 73/74/98 HD 178129 B3 IA 37.8 -1.9 7.41 .50 2.87 7.93 36.6 26.9 66 44/ 45 73/79/98 •V492 AQL M2 IA 38.6 .7 1Ó.31 3.23 5.52 6.65 83 83 RZ OPH F3E ‘IB 38.7 4.5 9.29 1.62 .95 9.27 • 7 51 98 HD 180028.
Recommended publications
  • Chemical Abundances for the Transiting Planet Host Stars OGLE-TR-10, 56, 111, 113, 132, and Tres-1, Abundances in Different Galactic Populations
    A&A 458, 997–1005 (2006) Astronomy DOI: 10.1051/0004-6361:20065683 & c ESO 2006 Astrophysics Chemical abundances for the transiting planet host stars OGLE-TR-10, 56, 111, 113, 132, and TrES-1, Abundances in different galactic populations N. C. Santos1,2,3, A. Ecuvillon4, G. Israelian4, M. Mayor2,C.Melo5,D.Queloz2,S.Udry2, J. P. Ribeiro1,andS.Jorge1 1 Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal e-mail: [email protected] 2 Observatoire de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland 3 Centro de Geofisica de Évora, Rua Romão Ramalho 59, 7002-554 Évora, Portugal 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 European Southern Observatory, Casilla 19001, Santiago 19, Chile Received 24 May 2006 / Accepted 22 June 2006 ABSTRACT Aims. We used the UVES spectrograph (VLT-UT2 telescope) to obtain high-resolution spectra of 6 stars hosting transiting planets, namely for OGLE-TR-10, 56, 111, 113, 132, and TrES-1. These spectra are now used to derive and discuss the chemical abundances forC,O,Na,Mg,Al,Si,S,Ca,Sc,Ti,V,Cr,Mn,Co,Ni,Cu,andZn. Methods. Abundances were derived in LTE, using 1D plane-parallel Kurucz model atmospheres. For S, Zn, and Cu, we used a spectral synthesis procedure, while for the remaining cases the abundances were derived from measurements of line-equivalent widths. Results. The resulting abundances were compared with those found for stars in the solar neighborhood. Distances and galactic coordinates were estimated for the stars.
    [Show full text]
  • Relaxation Time
    Today in Astronomy 142: the Milky Way’s disk More on stars as a gas: stellar relaxation time, equilibrium Differential rotation of the stars in the disk The local standard of rest Rotation curves and the distribution of mass The rotation curve of the Galaxy Figure: spiral structure in the first Galactic quadrant, deduced from CO observations. (Clemens, Sanders, Scoville 1988) 21 March 2013 Astronomy 142, Spring 2013 1 Stellar encounters: relaxation time of a stellar cluster In order to behave like a gas, as we assumed last time, stars have to collide elastically enough times for their random kinetic energy to be shared in a thermal fashion. But stellar encounters, even distant ones, are rare on human time scales. How long does it take a cluster of stars to thermalize? One characteristic time: the time between stellar elastic encounters, called the relaxation time. If a gravitationally bound cluster is a lot older than its relaxation time, then the stars will be describable as a gas (the star system has temperature, pressure, etc.). 21 March 2013 Astronomy 142, Spring 2013 2 Stellar encounters: relaxation time of a stellar cluster (continued) Suppose a star has a gravitational “sphere of influence” with radius r (>>R, the radius of the star), and moves at speed v between encounters, with its sphere of influence sweeping out a cylinder as it does: v V= π r2 vt r vt If the number density of stars (stars per unit volume) is n, then there will be exactly one star in the cylinder if 2 1 nV= nπ r vtcc =⇒=1 t Relaxation time nrvπ 2 21 March 2013 Astronomy 142, Spring 2013 3 Stellar encounters: relaxation time of a stellar cluster (continued) What is the appropriate radius, r? Choose that for which the gravitational potential energy is equal in magnitude to the average stellar kinetic energy.
    [Show full text]
  • In-Class Worksheet on the Galaxy
    Ay 20 / Fall Term 2014-2015 Hillenbrand In-Class Worksheet on The Galaxy Today is another collaborative learning day. As earlier in the term when working on blackbody radiation, divide yourselves into groups of 2-3 people. Then find a broad space at the white boards around the room. Work through the logic of the following two topics. Oort Constants. From the vantage point of the Sun within the plane of the Galaxy, we have managed to infer its structure by observing line-of-sight velocities as a function of galactic longitude. Let’s see why this works by considering basic geometry and observables. • Begin by drawing a picture. Consider the Sun at a distance Ro from the center of the Galaxy (a.k.a. the GC) on a circular orbit with velocity θ(Ro) = θo. Draw several concentric circles interior to the Sun’s orbit that represent the circular orbits of other stars or gas. Now consider some line of sight at a longitude l from the direction of the GC, that intersects one of your concentric circles at only one point. The circular velocity of an object on that (also circular) orbit at galactocentric distance R is θ(R); the direction of θ(R) forms an angle α with respect to the line of sight. You should also label the components of θ(R): they are vr along the line-of-sight, and vt tangential to the line-of-sight. If you need some assistance, Figure 18.14 of C/O shows the desired result. What we are aiming to do is derive formulae for vr and vt, which in principle are measureable, as a function of the distance d from us, the galactic longitude l, and some constants.
    [Show full text]
  • Download This Article in PDF Format
    EPJ Web of Conferences 228, 00023 (2020) https://doi.org/10.1051/epjconf/202022800023 mm Universe @ NIKA2 NIKA2 observations around LBV stars Emission from stars and circumstellar material 1,3, 2 1 J. Ricardo Rizzo ∗, Alessia Ritacco , and Cristobal Bordiu 1Centro de Astrobiología (CSIC-INTA), Ctra. M-108, km. 4, E-28850 Torrejón de Ardoz, Madrid, Spain 2Institut de Radioastronomie Milimétrique (IRAM), E-18012 Granada, Spain 3ISDEFE, Beatriz de Bobadilla 3, E-28040 Madrid, Spain Abstract. Luminous Blue Variable (LBV) stars are evolved massive objects, previous to core-collapse supernova. LBVs are characterized by photometric and spectroscopic variability, produced by strong and dense winds, mass-loss events and very intense UV radiation. LBVs strongly disturb their surroundings by heating and shocking, and produce important amounts of dust. The study of the circumstellar material is therefore crucial to understand how these massive stars evolve, and also to characterize their effects onto the interstellar medium. The versatility of NIKA2 is a key in providing simultaneous observations of both the stellar continuum and the extended, circumstellar contribution. The NIKA2 frequencies (150 and 260 GHz) are in the range where thermal dust and free-free emission compete, and hence NIKA2 has the capacity to provide key information about the spatial distribution of circumstellar ionized gas, warm dust and nearby dark clouds; non-thermal emission is also possible even at these high frequencies. We show the results of the first NIKA2 survey towards five LBVs. We detected emission from four stars, three of them immersed in tenuous circumstellar material. The spectral indices show a complex distribution and allowed us to separate and characterize different components.
    [Show full text]
  • Interstellarum 85 • Dezember/Januar 2013 1 Inhalt
    Editorial fokussiert Liebe Leserinnen und Leser, wissen Sie schon, was Sie am 21. Dezember tun werden? Wahrschein- lich werden Sie auf der Jagd nach letzten Geschenken durch die Geschäfte ziehen oder einen Glühwein auf dem Weihnachtsmarkt trinken. Geht es nach vielen Paranoikern im Internet, wird dieser Tag aber weniger beschau- lich enden – nichts weniger als der Weltuntergang ist angekündigt. Nun . t könnte uns diese unsinnige Prophezeiung so wenig interessieren wie viele g andere zuvor, doch diesmal wird die Astronomie als Schreckgespenst miss- braucht: Ein mythischer »Planet X« soll sich uns nähern, die anderen Pla- neten die Erde aus ihrer Bahn reißen, die Sonne sich mit dem Zentrum der Milchstraße »synchronisieren«, und zu allem Überfl uss »endet« auch noch ist untersa g der Kalender der Maya. Was sich hinter dieser wüsten Ankündigung ver- Ronald Stoyan, Chefredakteur birgt, haben Oliver Debus und Oliver Dreißigacker recherchiert (Seite 12). reitun Dass viele Menschen diese Ankündigungen tatsächlich glauben, berichtet b Florian Freistetter in einem Interview auf interstellarum.de. Jupiter steht nicht nur bestens platziert am Abendhimmel, sondern auch im Zentrum dieses Heftes. Neben Details zur aktuellen Oppositions- stellung (Seite 18) und Neuigkeiten von seiner veränderlichen Wolkenober- fl äche (Seite 23), bringt dieses Heft eine ausführliche Anleitung zur Beob- achtung des Riesenplaneten (Seite 34). Außerdem erklärt Peter M. Oden in seinem Beitrag, wie man aus Webcam-Aufnahmen Rotations-Animationen der Planeten erstellt (Seite 52). Nutzen Sie den idealen Stand von Jupiter für eigene Versuche! Sind Sie Astrofotograf – oder gerade dabei, einer zu werden? Dann sollten Sie unbedingt an unserem neuen Fotowettbewerb teilnehmen, zu dem wir mit der Firma Astrosysteme Austria (ASA) zusammen einladen: In den Kategorien Einsteiger und Experten sind Preise im Gesamtwert von über 15000 Euro ausgelobt – so viel gab es noch bei keinem astro- nur zu privaten Zwecken.
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • A Study of Two Open Clusters Containing Wolf-Rayet Stars
    A STUDY OF TWO OPEN CLUSTERS CONTAINING WOLF-RAYET STARS by Stephen L. Shorlin A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF ASTRONOlMY AND PHYSICS SAINT MARY'S UMNERSITY MAY 1998 HALIFAX, NOVA SCOTIA Ostephen L. Shorlin, 1998 National Library Bibliothèque nationale I*m of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. nie Wellington Ottawa ON K1A ON4 Ottawa ON KIA ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loau, distribute or seU reproduire, prêter, distribuer ou copies of this thesis in microfoq vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/nIm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimes reproduced *out the author's ou autrement reproduits sans son permission. autorisation- Abstract The results of UBV CCD photornetry are presented for a newly discovered open cluster, as well as new photornetry for thirty-seven members of the open cluster HM 1. The new open cluster, to be designated OCL 1104610, has a distance modulus of Vo - l'LIV = 15.5 & 0.2: corresponding to a distance of 12.61::: kpc, and is several Myr old.
    [Show full text]
  • Long-Term Spectroscopic Monitoring of the Luminous Blue Variable
    Astronomy & Astrophysics manuscript no. HD160529 June 9, 2018 (DOI: will be inserted by hand later) Long-term spectroscopic monitoring of the Luminous Blue Variable HD 160529 ⋆ Otmar Stahl1, Thomas G¨ang2, Chris Sterken3, Andreas Kaufer4, Thomas Rivinius1,4, Thomas Szeifert4, and Bernhard Wolf1 1 Landessternwarte K¨onigstuhl, D-69117 Heidelberg, Germany 2 L-3 Communications, NASA/GSFC, Greenbelt, MD 20771, USA 3 Astronomy Group, Vrije Universiteit Brussel, Pleinlan 2, B-1050 Brussels, Belgium 4 European Southern Observatory, D-85748 Garching, Karl-Schwarzschild-Str. 2, Germany Received / Accepted Abstract. We have spectroscopically monitored the galactic Luminous Blue Variable HD 160529 and obtained an extensive high-resolution data set that covers the years 1991 to 2002. During this period, the star evolved from an extended photometric minimum phase towards a new visual maximum. In several observing seasons, we covered up to four months with almost daily spectra. Our spectra typically cover most of the visual spectral range with a high spectral resolution (λ/∆λ ≈ 20 000 or more). This allows us to investigate the variability in many lines and on many time scales from days to years. We find a correlation between the photospheric Hei lines and the brightness of the star, both on a time scale of months and on a time scale of years. The short-term variations are smaller and do not follow the long-term trend, strongly suggesting different physical mechanisms. Metal lines also show both short-term and long-term variations in strength and also a long-term trend in radial velocity. Most of the line-profile variations can be attributed to changing strengths of lines.
    [Show full text]
  • Luminous Blue Variables: an Imaging Perspective on Their Binarity and Near Environment?,??
    A&A 587, A115 (2016) Astronomy DOI: 10.1051/0004-6361/201526578 & c ESO 2016 Astrophysics Luminous blue variables: An imaging perspective on their binarity and near environment?;?? Christophe Martayan1, Alex Lobel2, Dietrich Baade3, Andrea Mehner1, Thomas Rivinius1, Henri M. J. Boffin1, Julien Girard1, Dimitri Mawet4, Guillaume Montagnier5, Ronny Blomme2, Pierre Kervella7;6, Hugues Sana8, Stanislav Štefl???;9, Juan Zorec10, Sylvestre Lacour6, Jean-Baptiste Le Bouquin11, Fabrice Martins12, Antoine Mérand1, Fabien Patru11, Fernando Selman1, and Yves Frémat2 1 European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Córdova 3107, Vitacura, 19001 Casilla, Santiago de Chile, Chile e-mail: [email protected] 2 Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium 3 European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 4 Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’Observatoire, France 6 LESIA (UMR 8109), Observatoire de Paris, PSL, CNRS, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France 7 Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 8 ESA/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218,
    [Show full text]
  • Galactic Rotation in Gaia DR1
    Mon. Not. R. Astron. Soc. 000,1{6 (2017) Printed 10 February 2017 (MN LATEX style file v2.2) Galactic rotation in Gaia DR1 Jo Bovy? Department ofy Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada and Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA 30 January 2017 ABSTRACT The spatial variations of the velocity field of local stars provide direct evidence of Galactic differential rotation. The local divergence, shear, and vorticity of the velocity field—the traditional Oort constants|can be measured based purely on astrometric measurements and in particular depend linearly on proper motion and parallax. I use data for 304,267 main-sequence stars from the Gaia DR1 Tycho-Gaia Astrometric Solution to perform a local, precise measurement of the Oort constants at a typical heliocentric distance of 230 pc. The pattern of proper motions for these stars clearly displays the expected effects from differential rotation. I measure the Oort constants to be: A = 15:3 0:4 km s−1 kpc−1, B = 11:9 0:4 km s−1 kpc−1, C = 3:2 0:4 km s−1 kpc−1 ±and K = 3:3 0:6 km s−−1 kpc−1±, with no color trend over− a wide± range of stellar populations.− These± first confident measurements of C and K clearly demonstrate the importance of non-axisymmetry for the velocity field of local stars and they provide strong constraints on non-axisymmetric models of the Milky Way. Key words: Galaxy: disk | Galaxy: fundamental parameters | Galaxy: kinematics and dynamics | stars: kinematics and dynamics | solar neighborhood 1 INTRODUCTION use Cepheids to investigate the velocity field on large scales (> 1 kpc) with a kinematically-cold stellar tracer population Determining the rotation of the Milky Way's disk is diffi- (e.g., Feast & Whitelock 1997; Metzger et al.
    [Show full text]
  • A Constellation of 6 Nanosatellites 3 Countries
    1 BRIght Target Explorer: a Constellation of 6 nanosatellites 3 countries AUSTRIA CANADA POLAND u www.tugraz.at u www.brite-constellation.at 2 BRITE-Constellation: operating five nano-satellites to serve one mission picture: pre-launch lab at ISRO India, courtesy of SFL Rainer Kuschnig – University of Technology Graz / University Vienna Rainer Kuschnig, 26 June 2017, EWASS, Prague 3 Why BRITE Constellation ? • Collect time series photometry for some of the brightest stars in the sky, mag(V)<4(..6) with high precision ~0.1-0.5% (mmag)/orbit mean • ~ 15-30 stars per observing field at once 15min/orbit • Measurements in two colors: red and blue (two wavelength well separated ranges) • Time bases of up to 180 days for a single observing campaign Rainer Kuschnig, 26 June 2017, EWASS, Prague 4 BRITE-Constellation: Data sampling Rainer Kuschnig, 26 June 2017, EWASS, Prague 5 BRITE - Constellation 3 countries – 6(5) satellites – ONE MISSION BRITE-CA2 “Montreal” was launched with the same rocket as BRITE-CA1 “Toronto”, but did not separate from the upper stage 83% 5 satellites collect science data Rainer Kuschnig, 26 June 2017, EWASS, Prague 6 Satellite Design – BRITE nano satellites • 20cm cubes mass ~ 7kg • Pre-deployed antennas and booms • Power (peak) 7 Watts • Star tracker • Three-axis attitude control (~1.5 arcminute stability) • UHF (up) and S-Band (down) communication all BRITE satellite have the same design except instrument and star tracker Rainer Kuschnig, 26 June 2017, EWASS, Prague 7 Satellite Design: Instrument • 3 cm aperture • 5
    [Show full text]
  • Ejections De Mati`Ere Par Les Astres : Des Étoiles Massives Aux Quasars
    Universite´ de Liege` Faculte´ des Sciences Ejections de matiere` par les astres : des etoiles´ massives aux quasars par Damien HUTSEMEKERS Docteur en Sciences Chercheur Qualifie´ du FNRS Dissertation present´ ee´ en vue de l’obtention du grade d’Agreg´ e´ de l’Enseignement Superieur´ 2003 Illustration de couverture : la n´ebuleuse du Crabe, constitu´ee de gaz ´eject´e`agrande vitesse par l’explosion d’une ´etoile en supernova. Clich´eobtenu avec le VLT et FORS2, ESO, 1999. Table des matieres` Preface´ et remerciements 5 Introduction 7 Articles 21 I Les nebuleuses´ eject´ ees´ par les etoiles´ massives 23 1 HR Carinae : a Luminous Blue Variable surrounded by an arc-shaped nebula 25 2 The nature of the nebula associated with the Luminous Blue Variable star WRA751 37 3 A dusty nebula around the Luminous Blue Variable candidate HD168625 45 4 Evidence for violent ejection of nebulae from massive stars 57 5 Dust in LBV-type nebulae 63 II Quasars de type BAL et microlentilles gravitationnelles 73 6 The use of gravitational microlensing to scan the structureofBALQSOs 75 7 ESO & NOT photometric monitoring of the Cloverleaf quasar 89 8 Selective gravitational microlensing and line profile variations in the BAL quasar H1413+117 99 9 An optical time-delay for the lensed BAL quasar HE2149-2745 113 3 III Quasars de type BAL : polarisation 127 10 A procedure for deriving accurate linear polarimetric measurements 129 11 Optical polarization of 47 quasi-stellar objects : the data 137 12 Polarization properties of a sample of Broad Absorption Line and gravitatio-
    [Show full text]