IDCM Section 3: Amebiasis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Tea Tree) Oil and Dimethyl Sulfoxide (DMSO) Against Trophozoites and Cysts of Acanthamoeba Strains
pathogens Article In Vitro Evaluation of the Combination of Melaleuca alternifolia (Tea Tree) Oil and Dimethyl Sulfoxide (DMSO) against Trophozoites and Cysts of Acanthamoeba Strains. Oxygen Consumption Rate (OCR) Assay as a Method for Drug Screening Tania Martín-Pérez *, Irene Heredero-Bermejo , Cristina Verdú-Expósito and Jorge Pérez-Serrano Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; [email protected] (I.H.-B.); [email protected] (C.V.-E.); [email protected] (J.P.-S.) * Correspondence: [email protected] Abstract: Ameobae belonging to the genus Acanthamoeba are responsible for the human diseases Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). The treatment of these illnesses is hampered by the existence of a resistance stage (cysts). In an attempt to add new agents that are effective against trophozoites and cysts, tea tree oil (TTO) and dimethyl sulfoxide (DMSO), separately and in combination, were tested In Vitro against two Acanthamoeba isolates, Citation: Martín-Pérez, T.; T3 and T4 genotypes. The oxygen consumption rate (OCR) assay was used as a drug screening Heredero-Bermejo, I.; Verdú-Expósito, method, which is to some extent useful in amoebicide drug screening; however, evaluation of lethal C.; Pérez-Serrano, J. In Vitro effects may be misleading when testing products that promote encystment. Trophozoite viability Evaluation of the Combination of analysis showed that the effectiveness of the combination of both compounds is higher than when Melaleuca alternifolia (Tea Tree) Oil either compound is used alone. Therefore, the TTO alone or TTO + DMSO in combination were and Dimethyl Sulfoxide (DMSO) against Trophozoites and Cysts of an amoebicide, but most of the amoebicidal activity in the combination’s treatments seemed to be Acanthamoeba Strains. -
2012 Case Definitions Infectious Disease
Arizona Department of Health Services Case Definitions for Reportable Communicable Morbidities 2012 TABLE OF CONTENTS Definition of Terms Used in Case Classification .......................................................................................................... 6 Definition of Bi-national Case ............................................................................................................................................. 7 ------------------------------------------------------------------------------------------------------- ............................................... 7 AMEBIASIS ............................................................................................................................................................................. 8 ANTHRAX (β) ......................................................................................................................................................................... 9 ASEPTIC MENINGITIS (viral) ......................................................................................................................................... 11 BASIDIOBOLOMYCOSIS ................................................................................................................................................. 12 BOTULISM, FOODBORNE (β) ....................................................................................................................................... 13 BOTULISM, INFANT (β) ................................................................................................................................................... -
The Intestinal Protozoa
The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately. -
Entamoeba Histos>Fca and Entamoeba Dispar
Entamoeba histoS>fcaand Entamoeba dispar: Mechanisms of adherence and implications for virulence Dylan Ravindran Pillai A thesis subrnitted in confonnity with the requirements for the degree of Doctor of Philosophy Institute of Medicai Science University of Toronto O Copyright Dylan R. Pillai, 2000 AcquiSiiand Acquisiins et Bblibgtaphic Services services bibliographques The author has granteci a non- L'auteur a accordé une licence non exclusive iicence allowing the exclusive pettantà la National Lïbrary of Canada to BïbIioth&pe nationale du Canada de reproduce, loan, disûibute or seil reproduire, prêter, disniiuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfichef61m, de reproduction sur papier ou sur fotmat electronique. The author retams ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts hmit Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimes reproduced without the author's ou autrement reproduits sans son permission. autonsatioa, In 1925, Emile Brumpt had proposed the existence of two morphologically identical species, Entarnoeba hisrolylica (a human pathogen) and Entmoeba dispm (a non-pathogenic human commensal). Recent molecuiar and genetic evidence has supported the two-species concept. The pathogen relies on the galactose/N-Acetyl-O- galactosamine Iecth for adherence that leads to contact-dependent cytolysis of host target ceils, a key step in amebic vinilence. Work presented here explores the structure, fiinction, and expression of the lectin nom E-histoZyticu and E-dispar. -
6.5 X 11 Double Line.P65
Cambridge University Press 978-0-521-53026-2 - The Cambridge Historical Dictionary of Disease Edited by Kenneth F. Kiple Index More information Name Index A Baillie, Matthew, 80, 113–14, 278 Abercrombie, John, 32, 178 Baillou, Guillaume de, 83, 224, 361 Abreu, Aleixo de, 336 Baker, Brenda, 333 Adams, Joseph, 140–41 Baker, George, 187 Adams, Robert, 157 Balardini, Lodovico, 243 Addison, Thomas, 22, 350 Balfour, Francis, 152 Aesculapius, 246 Balmis, Francisco Xavier, 303 Aetius of Amida, 82, 232, 248 Bancroft, Edward, 364 Afzelius, Arvid, 203 Bancroft, Joseph, 128 Ainsworth, Geoffrey C., 128–32, 132–34 Bancroft, Thomas, 87, 128 Albert, Jose, 48 Bang, Bernhard, 60 Alexander of Tralles, 135 Bannwarth, A., 203 Alibert, Jean Louis, 147, 162, 359 Bard, Samuel, 83 Ali ibn Isa, 232 Barensprung,¨ F. von, 360 Allchin, W. H., 177 Bargen, J. A., 177 Allison, A. C., 25, 300 Barker, William H., 57–58 Allison, Marvin J., 70–71, 191–92 Barthelemy,´ Eloy, 31 Alpert, S., 178 Bartlett, Elisha, 351 Altman, Roy D., 238–40 Bartoletti, Fabrizio, 103 Alzheimer, Alois, 14, 17 Barton, Alberto, 69 Ammonios, 358 Bartram, M., 328 Amos, H. L., 162 Bassereau, Leon,´ 317 Andersen, Dorothy, 84 Bateman, Thomas, 145, 162 Anderson, John, 353 Bateson, William, 141 Andral, Gabriel, 80 Battistine, T., 69 Annesley, James, 21 Baumann, Eugen, 149 Arad-Nana, 246 Beard, George, 106 Archibald, R. G., 131 Beet, E. A., 24, 25 Aretaeus the Cappadocian, 80, 82, 88, 177, 257, 324 Behring, Emil, 95–96, 325 Aristotle, 135, 248, 272, 328 Bell, Benjamin, 152 Armelagos, George, 333 Bell, J., 31 Armstrong, B. -
Amoebic Dysentery
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1934 Amoebic dysentery H. C. Dix University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Dix, H. C., "Amoebic dysentery" (1934). MD Theses. 320. https://digitalcommons.unmc.edu/mdtheses/320 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. A MOE B leD Y SEN T E R Y By H. c. Dix University of Nebraska College of Medicine Omaha, N~braska April 1934 Preface This paper is presented to the University of Nebraska College of MediCine to fulfill the senior requirements. The subject of amoebic dysentery wa,s chosen due to the interest aroused from the previous epidemic, which started in Chicago la,st summer (1933). This disea,se has previously been considered as a tropical disease, B.nd was rarely seen and recognized in the temperate zone. Except in indl vidu8,ls who had been in the tropics previously. In reviewing the literature, I find that amoebio dysentery may be seen in any part of the world, and from surveys made, the incidence is five in every hun- dred which harbor the Entamoeba histolytlca, it being the only pathogeniC amoeba of the human gastro-intes tinal tract. -
Enteric Protozoa in the Developed World: a Public Health Perspective
Enteric Protozoa in the Developed World: a Public Health Perspective Stephanie M. Fletcher,a Damien Stark,b,c John Harkness,b,c and John Ellisa,b The ithree Institute, University of Technology Sydney, Sydney, NSW, Australiaa; School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australiab; and St. Vincent’s Hospital, Sydney, Division of Microbiology, SydPath, Darlinghurst, NSW, Australiac INTRODUCTION ............................................................................................................................................420 Distribution in Developed Countries .....................................................................................................................421 EPIDEMIOLOGY, DIAGNOSIS, AND TREATMENT ..........................................................................................................421 Cryptosporidium Species..................................................................................................................................421 Dientamoeba fragilis ......................................................................................................................................427 Entamoeba Species.......................................................................................................................................427 Giardia intestinalis.........................................................................................................................................429 Cyclospora cayetanensis...................................................................................................................................430 -
Entamoeba Histolytica?
Amebas Friend and foe Facultative Pathogenicity of Entamoeba histolytica? Confusing History 1875 Lösch correlated dysentery with amebic trophozoites 1925 Brumpt proposed two species: E. dysenteriae and E. dispar 1970's biochemical differences noted between invasive and non-invasive isolates 80's/90's several antigenic and DNA differences demonstrated • rRNA 2.2% sequence difference 1993 Diamond and Clark proposed a new species (E. dispar) to describe non-invasive strains 1997 WHO accepted two species 1 Family Entamoebidae Family includes parasites • Entamoeba histolytica and commensals • Entamoeba dispar • Entamoeba coli Species are differentiated • Entamoeba hartmanni based on size, nuclear • Endolimax nana substructures • Iodamoeba bütschlii Entamoeba histolytica one of the most potent killers in nature Entamoeba histolytica • worldwide distribution (cosmopolitan) • higher prevalence in tropical or developing countries (20%) • 1-6% in temperate countries • Possible animal reservoirs • Amebiasis - Amebic dysentery • aka: Montezuma’s revenge Taxonomy • One parasitic species? • E. histolytica • E. dispar • E. hartmanni 2 Entamoeba Life Cycle - Direct Fecal/Oral transmission Cyst - Infective stage Resistant form Trophozoite - feeding, binary fission Different stages of cyst development Precysts - rich in glycogen Young cyst - 2, then 4 nuclei with chromotoid bodies Metacysts - infective stage Metacystic trophozoite - 8 8 Excystation Metacyst Cyst wall disruption Ameba emerges Nuclear division 48 Cytokinesis Nuclear division -
38 Entamoeba Histolytica and Other Rhizophodia
MODULE Entamoeba Histolytica and Other Rhizophodia Microbiology 38 Notes ENTAMOEBA HISTOLYTICA AND OTHER RHIZOPHODIA 38.1 INTRODUCTION Amoebae can be pathogenic called Entamoeba histolytica and non pathogenic called Entamoeba coli (large intestines), Entamoeba gingivalis (oral cavity). These parasites are motile with pseudopodia. The pseudopodia are cytoplasmic processes which are thrown out. OBJECTIVES After reading this lesson you will be able to: z describe morphology, its life cycle, pathogenecity of Entameba Histolytica, other amoebae and free living amoeba z differentiate between amoebic and Bacillary dysentery z differentiate between Entamoeba Histolytica and Entamoeba Coli z demonstrate Laboratory diagnosis of Entameba 38.2 ENTAMOEBA HISTOLYTICA It belongs to the class Rhizopoda and family Entamoebidae. It is the causative agent of amoebiasis. Amoebiasis can be intestinal and extra intestinal like amoebic hepatitis, amoebic liver abscess. 38.3 MORPHOLOGY The Entamoeba is seen in three stages 344 MICROBIOLOGY Entamoeba Histolytica and Other Rhizophodia MODULE (a) Trophozoite: The trophozoite is 18-40 µm in size. The trophozoite is Microbiology actively motile. The cytoplasm is demarcated into endoplasm and ectoplasm. Ingested food particles and red blood cells are seen in the cytoplasm No bacteria are seen in the cytoplasm. The nucleus is 6-15 µm and has a central rounded karyosome. Nuclear membrane has chromatin granules and spoke like radial arrangement of chromatin fibrils. Notes Fig. 38.1 (b) Precyst: Smaller in size. 10-20 µm in diameter. It is round to oval in shape with blunt pseudopodium. The nuclei is similar to the trophozoite. (c) Cyst: These are round 10-15 µm in diameter. It is surrounded by a refractile membrane called as the cyst wall. -
Amoebicidal Drugs Lecturer: Danica B
Amoebicidal Drugs Lecturer: Danica B. Quijano, MD Date Lectured: November 20, 2015 DLSHSI – College of Medicine: PHARMACOLOGY ö Ariba amoeba! Greetings from the amoebas! Yes, ö Improper hygienic practices we’re gonna be talking a lot about the amoeba o Protozoal infections are common among people but only for the Entameoba histolytica , the in underdeveloped tropical & subtropical pathologic agent responsible for the famous countries, where sanitary conditions, hygienic “amoebiasis” we have all heard about. practices, and control of the vectors of ö We will focus our discussion in the transmission are inadequate. However, with pharmacological treatment for infection caused increased world travel, protozoal diseases are by the protozoa Entamoeba histolytica. But first, no longer confined to specific geographical let’s have a glimpse of the offending pathogen. locations. ö Amoebiasis is an infection caused by the E. ö Speaking of diarrhea and travel.. histolytica likewise amoebiasis is sometimes o Good to know: I believe you have heard the incorrectly used to refer to infection with other term Traveler’s diarrhea. Its diagnosis does not amoebae, but strictly speaking it should be imply a specific organism, but Enterotoxigenic E. reserved for E. histolytica infection. coli (ETEC) is the most commonly isolated pathogen. While Backpacker’s diarrhea is also ö Entamoeba is a genus of amoeboid protozoa that known as Giardiasis or Beaver fever because live in the human intestine. giardiasis, caused by the protozoan Giardia o Some species within this genus are harmless, lamblia, frequently infects persons who spend a while others are pathogenic. lot of time camping, backpacking, or hunting, so o One, especially, has the potential to become it has gained the nicknames. -
Investigating Rad51 and Dmc1 in Entamoeba Histolytica: Homologous Recombinases with Drug Target Potential
Clemson University TigerPrints All Theses Theses August 2020 Investigating Rad51 and Dmc1 in Entamoeba histolytica: Homologous Recombinases with Drug Target Potential Rachel Evelyn Ham Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Ham, Rachel Evelyn, "Investigating Rad51 and Dmc1 in Entamoeba histolytica: Homologous Recombinases with Drug Target Potential" (2020). All Theses. 3392. https://tigerprints.clemson.edu/all_theses/3392 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. INVESTIGATING RAD51 AND DMC1 IN ENTAMOEBA HISTOLYTICA: HOMOLOGOUS RECOMBINASES WITH DRUG TARGET POTENTIAL A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Microbiology by Rachel Evelyn Ham August 2020 Accepted by: Dr. Lesly A. Temesvari, Committee Chair Dr. James C. Morris Dr. Yanzhang Wei ABSTRACT Entamoeba histolytica is the causative agent of amebic dysentery and is prevalent in developing countries. It has a biphasic lifecycle: active, virulent trophozoites and dormant, environmentally-stable cysts. Only cysts are capable of establishing new infections, and are spread by fecal deposition. Many unknown factors influence stage conversion, and synchronous encystation of E. histolytica is not currently possible in vitro. E. histolytica infections are treated with nitroimidazole drugs, such as metronidazole (Flagyl™). However, several clinical isolates have shown metronidazole resistance. Enhancing the amebicidal mechanisms of metronidazole through drug combination therapy may allow for more effective treatment. -
Acanthamoeba Castellanii
Int. J. Biol. Sci. 2018, Vol. 14 306 Ivyspring International Publisher International Journal of Biological Sciences 2018; 14(3): 306-320. doi: 10.7150/ijbs.23869 Research Paper Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis Victoria Shabardina1, Tabea Kischka1, Hanna Kmita2, Yutaka Suzuki3, Wojciech Maka owski1 1. Institute of Bioinformatics, University Münster, Niels-Stensen Strasse 14, Münster 48149, Germany ł 2. Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University 3. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan Corresponding author: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2017.11.15; Accepted: 2017.12.30; Published: 2018.02.12 Abstract Amoebozoans are in many aspects interesting research objects, as they combine features of single-cell organisms with complex signaling and defense systems, comparable to multicellular organisms. Acanthamoeba castellanii is a cosmopolitan species and developed diverged feeding abilities and strong anti-bacterial resistance; Entamoeba histolytica is a parasitic amoeba, who underwent massive gene loss and its genome is almost twice smaller than that of A. castellanii. Nevertheless, both species prosper, demonstrating fitness to their specific environments. Here we compare transcriptomes of A. castellanii and E. histolytica with application of orthologs’ search and gene ontology to learn how different life strategies influence genome evolution and restructuring of physiology.