Dartmouth College Dartmouth Digital Commons ENGS 88 Honors Thesis (AB Students) Other Engineering Materials Spring 6-6-2021 Design of Autonomous Coupling Mechanism for Modular Reconfigurable Lunar Rovers Christopher Lyke
[email protected] Follow this and additional works at: https://digitalcommons.dartmouth.edu/engs88 Part of the Engineering Commons Dartmouth Digital Commons Citation Lyke, Christopher, "Design of Autonomous Coupling Mechanism for Modular Reconfigurable Lunar Rovers" (2021). ENGS 88 Honors Thesis (AB Students). 30. https://digitalcommons.dartmouth.edu/engs88/30 This Thesis (Senior Honors) is brought to you for free and open access by the Other Engineering Materials at Dartmouth Digital Commons. It has been accepted for inclusion in ENGS 88 Honors Thesis (AB Students) by an authorized administrator of Dartmouth Digital Commons. For more information, please contact
[email protected]. DESIGN OF AUTONOMOUS COUPLING MECHANISM FOR MODULAR RECONFIGURABLE LUNAR ROVERS by CHRIS LYKE Bachelor of Arts Honors Thesis Thayer School of Engineering Dartmouth College Hanover, New Hampshire Date: __________________________ Approved:______________________ Advisor’s Signature ______________________________ Author’s Signature Abstract Modular reconfigurable robotics consist of modules that can join together to form larger entities capable of changing their morphologies for improved versatility, robustness, and cost. Coupling mechanisms play a key role in these systems, as they are the component connecting the modules and enabling the robot to change shape. Coupling mechanisms also define the structure, rigidity, and function of modular systems. This paper details the development of the autonomous coupling mechanism for SHREWs, a modular reconfigurable system of rovers designed to explore the permanently shadowed regions of the Moon.