Evolution of Geminiviruses and Their Satellites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Requirements for the Packaging of Geminivirus Circular Single-Stranded DNA: Effect of DNA Length and Coat Protein Sequence
viruses Article Requirements for the Packaging of Geminivirus Circular Single-Stranded DNA: Effect of DNA Length and Coat Protein Sequence Keith Saunders 1,* , Jake Richardson 2, David M. Lawson 1 and George P. Lomonossoff 1 1 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; [email protected] (D.M.L.); george.lomonossoff@jic.ac.uk (G.P.L.) 2 Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1603-450733 Received: 10 September 2020; Accepted: 28 October 2020; Published: 30 October 2020 Abstract: Geminivirus particles, consisting of a pair of twinned isometric structures, have one of the most distinctive capsids in the virological world. Until recently, there was little information as to how these structures are generated. To address this, we developed a system to produce capsid structures following the delivery of geminivirus coat protein and replicating circular single-stranded DNA (cssDNA) by the infiltration of gene constructs into plant leaves. The transencapsidation of cssDNA of the Begomovirus genus by coat protein of different geminivirus genera was shown to occur with full-length but not half-length molecules. Double capsid structures, distinct from geminate capsid structures, were also generated in this expression system. By increasing the length of the encapsidated cssDNA, triple geminate capsid structures, consisting of straight, bent and condensed forms were generated. The straight geminate triple structures generated were similar in morphology to those recorded for a potato-infecting virus from Peru. -
Multiple Origins of Prokaryotic and Eukaryotic Single-Stranded DNA Viruses from Bacterial and Archaeal Plasmids
ARTICLE https://doi.org/10.1038/s41467-019-11433-0 OPEN Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids Darius Kazlauskas 1, Arvind Varsani 2,3, Eugene V. Koonin 4 & Mart Krupovic 5 Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance 1234567890():,; in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occa- sions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. 1 Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania. 2 The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA. 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700 Cape Town, South Africa. -
Frequent Occurrence of Mungbean Yellow Mosaic India Virus in Tomato Leaf Curl Disease Afected Tomato in Oman M
www.nature.com/scientificreports OPEN Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease afected tomato in Oman M. S. Shahid 1*, M. Shafq 1, M. Ilyas2, A. Raza1, M. N. Al-Sadrani1, A. M. Al-Sadi 1 & R. W. Briddon 3 Next generation sequencing (NGS) of DNAs amplifed by rolling circle amplifcation from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identifed a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identifed infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confrmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efciency. This is the frst identifcation of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This fnding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material. -
Icosahedral Viruses Defined by Their Positively Charged Domains: a Signature for Viral Identity and Capsid Assembly Strategy
Support Information for: Icosahedral viruses defined by their positively charged domains: a signature for viral identity and capsid assembly strategy Rodrigo D. Requião1, Rodolfo L. Carneiro 1, Mariana Hoyer Moreira1, Marcelo Ribeiro- Alves2, Silvana Rossetto3, Fernando L. Palhano*1 and Tatiana Domitrovic*4 1 Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. 2 Laboratório de Pesquisa Clínica em DST/Aids, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil 3 Programa de Pós-Graduação em Informática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. 4 Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. *Corresponding author: [email protected] or [email protected] MATERIALS AND METHODS Software and Source Identifier Algorithms Calculation of net charge (1) Calculation of R/K ratio This paper https://github.com/mhoyerm/Total_ratio Identify proteins of This paper https://github.com/mhoyerm/Modulate_RK determined net charge and R/K ratio Identify proteins of This paper https://github.com/mhoyerm/Modulate_KR determined net charge and K/R ratio Data sources For all viral proteins, we used UniRef with the advanced search options (uniprot:(proteome:(taxonomy:"Viruses [10239]") reviewed:yes) AND identity:1.0). For viral capsid proteins, we used the advanced search options (proteome:(taxonomy:"Viruses [10239]") goa:("viral capsid [19028]") AND reviewed:yes) followed by a manual selection of major capsid proteins. Advanced search options for H. -
Identification of a Nanovirus-Alphasatellite Complex in Sophora Alopecuroides
Accepted Manuscript Title: Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides Author: Jahangir Heydarnejad Mehdi Kamali Hossain Massumi Anders Kvarnheden Maketalena F. Male Simona Kraberger Daisy Stainton Darren P. Martin Arvind Varsani PII: S0168-1702(17)30009-6 DOI: http://dx.doi.org/doi:10.1016/j.virusres.2017.03.023 Reference: VIRUS 97113 To appear in: Virus Research Received date: 5-1-2017 Revised date: 15-3-2017 Accepted date: 18-3-2017 Please cite this article as: Heydarnejad, J., Kamali, M., Massumi, H., Kvarnheden, A., Male, M.F., Kraberger, S., Stainton, D., Martin, D.P., Varsani, A.,Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides, Virus Research (2017), http://dx.doi.org/10.1016/j.virusres.2017.03.023 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Identification of a nanovirus-alphasatellite complex in Sophora alopecuroides 2 Jahangir Heydarnejad 1* , Mehdi Kamali 1, Hossain Massumi 1, Anders Kvarnheden 2, Maketalena 3 F. Male 3, Simona Kraberger 3,4 , Daisy Stainton 3,5 , Darren P. Martin 6 and Arvind Varsani 3,7,8* 4 5 1Department of Plant Protection, College -
Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates. -
Clustering and Visualizing the Distribution of Overlapping Reading
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447953; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Clustering and visualizing the distribution of overlapping read- ing frames in virus genomes Laura Munoz-Baena˜ 1 and Art F. Y. Poon1;2 1 Department of Microbiology and Immunology, Western University, London, ON, Canada. 2 Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada. ABSTRACT 1 Gene overlap occurs when two or more genes are encoded by the same nucleotides. This phe- 2 nomenon is found in all taxonomic domains, but is particularly common in viruses, where it may 3 increase the information content of compact genomes or influence the creation of new genes. Here 4 we report a global comparative study of overlapping reading frames (OvRFs) of 12,609 virus refer- 5 ence genomes in the NCBI database. We retrieved metadata associated with all annotated reading 6 frames in each genome record to calculate the number, length, and frameshift of OvRFs. Our re- 7 sults show that while the number of OvRFs increases with genome length, they tend to be shorter 8 in longer genomes. The majority of overlaps involve +2 frameshifts, predominantly found in ds- 9 DNA viruses. However, the longest overlaps involve no shift in reading frame (+0), increasing 10 the selective burden of the same nucleotide positions within codons, instead of exposing additional 11 sites to purifying selection. -
An Unusual Alphasatellite Associated with Monopartite Begomoviruses Attenuates Symptoms and Reduces Betasatellite Accumulation
Journal of General Virology (2011), 92, 706–717 DOI 10.1099/vir.0.025288-0 An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation Ali M. Idris,1,2 M. Shafiq Shahid,1,3 Rob W. Briddon,3 A. J. Khan,4 J.-K. Zhu2 and J. K. Brown1 Correspondence 1School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA J. K. Brown 2Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, [email protected] Thuwal 23955-6900, Kingdom of Saudi Arabia 3National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan 4Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman The Oman strain of Tomato yellow leaf curl virus (TYLCV-OM) and its associated betasatellite, an isolate of Tomato leaf curl betasatellite (ToLCB), were previously reported from Oman. Here we report the isolation of a second, previously undescribed, begomovirus [Tomato leaf curl Oman virus (ToLCOMV)] and an alphasatellite from that same plant sample. This alphasatellite is closely related (90 % shared nucleotide identity) to an unusual DNA-2-type Ageratum yellow vein Singapore alphasatellite (AYVSGA), thus far identified only in Singapore. ToLCOMV was found to have a recombinant genome comprising sequences derived from two extant parents, TYLCV-OM, which is indigenous to Oman, and Papaya leaf curl virus from the Indian subcontinent. All possible combinations of ToLCOMV, TYLCV-OM, ToLCB and AYVSGA were used to agro-inoculate tomato and Nicotiana benthamiana. Infection with ToLCOMV yielded mild leaf-curl symptoms in both hosts; however, plants inoculated with TYLCV-OM developed more severe symptoms. -
Using Transfer Learning for Image-Based Cassava Disease
Using Transfer Learning for Image-Based Cassava Disease Detection Amanda Ramcharan 1, Kelsee Baranowski 1, Peter McCloskey 2,Babuali Ahmed 3, James Legg 3, and David Hughes 1;4;5∗ 1Department of Entomology, College of Agricultural Sciences, Penn State University, State College, PA, USA 2Department of Computer Science, Pittsburgh University,Pittsburgh, PA, USA 3International Institute for Tropical Agriculture, Dar el Salaam, Tanzania 4Department of Biology, Eberly College of Sciences, Penn State University, State College, PA, USA 5Center for Infectious Disease Dynamics, Huck Institutes of Life Sciences, Penn State University, State College, PA, USA Correspondence*: David Hughes [email protected] ABSTRACT Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New transfer learning methods offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. -
Suivi De La Thèse
UNIVERSITE OUAGA I UNIVERSITÉ DE LA PR JOSEPH KI-ZERBO RÉUNION ---------- ---------- Unité de Formation et de Recherche Faculté des Sciences et Sciences de la Vie et de la Terre Technologies UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical CIRAD – Université de La Réunion INERA – LMI Patho-Bios THÈSE EN COTUTELLE Pour obtenir le diplôme de Doctorat en Sciences Epidémiologie moléculaire des géminivirus responsables de maladies émergentes sur les cultures maraîchères au Burkina Faso par Alassane Ouattara Soutenance le 14 Décembre 2017, devant le jury composé de Stéphane POUSSIER Professeur, Université de La Réunion Président Justin PITA Professeur, Université Houphouët-Boigny, Côte d'Ivoire Rapporteur Philippe ROUMAGNAC Chercheur HDR, CIRAD, UMR BGPI, France Rapporteur Fidèle TIENDREBEOGO Chercheur, INERA, Burkina Faso Examinateur Nathalie BECKER Maître de conférences HDR MNHN, UMR ISYEB, France Examinatrice Jean-Michel LETT Chercheur HDR, CIRAD, UMR PVBMT, La Réunion Co-Directeur de thèse Nicolas BARRO Professeur, Université Ouagadougou, Burkina Faso Co-Directeur de thèse DEDICACES A mon épouse Dadjata et à mon fils Jaad Kaamil: merci pour l’amour, les encouragements et la compréhension tout au long de ces trois années. A mon père Kassoum, à ma mère Salimata, à ma belle-mère Bila, à mon oncle Soumaïla et son épouse Abibata : merci pour votre amour, j’ai toujours reçu soutien, encouragements et bénédictions de votre part. Puisse Dieu vous garder en bonne santé ! REMERCIEMENTS Mes remerciements vont à l’endroit du personnel des Universités Ouaga I Pr Joseph KI- ZERBO et de La Réunion pour avoir accepté mon inscription. Je remercie les différents financeurs de mes travaux : l’AIRD (Projet PEERS-EMEB), l’Union Européenne (ERDF), le Conseil Régional de La Réunion et le Cirad (Bourse Cirad-Sud). -
Global Viral Epidemics: a Challenging Threat’’, During 12–14 November, 2018, at PGIMER, Chandigarh, India
VirusDis. (January–March 2019) 30(1):112–169 https://doi.org/10.1007/s13337-019-00523-8 ABSTRACT Abstracts of the papers presented in the international conference of Indian virological society, ‘‘Global viral epidemics: a challenging threat’’, during 12–14 November, 2018, at PGIMER, Chandigarh, India Ó Indian Virological Society 2019 Medical Virology of Indian MuVs is not expected to alter the antigenicity and structural stability. Analysis of Indian and global MeV isolates indicates that the circulating strains during 2009-17 in India belong to genotypes D4 Complete Genome Sequencing of Measles Virus Isolates and D8, which have limited divergence with no potential impact on Obtained during 2009-2017 from different parts antigenicity and efficacy of the current vaccine strains in controlling of India MeV infection to meet elimination target by 2020. Sunil R. Vaidya1, Sunitha M. Kasibhatla2,3, Divya R. Bhattad1, Mukund R. Ramtirthkar4, Mohan M. Kale4, 5 2 Denovo assembly of Hepatitis C virus full-length Chandrashekhar G. Raut and Urmila Kulkarni-Kale genome following next generation sequencing 1ICMR-National Institute of Virology, Pune; 2Bioinformatics Centre, and genetic variations of strains circulating in north Savitribai Phule Pune University; 3HPC-Medical & Bioinformatics and north-east India Applications Group, Centre for Development of Advanced 4 Computing, Pune; Department of Statistics, Savitribai Phule Pune Sonu Kumar1, Renu Yadav1, Yogesh Kumar1, 5 University; ICMR-National Institute for Research in Tribal Health, Chandreswar Prasad1, Jyotish Kumar Jha1, Kekungu Puro4, Nagpur Road, Jabalpur, India Sachin Kumar3, Anoop Saraya1, Shalimar1, 2 1 Measles is a highly contagious viral disease of major public health Suraj Nongthombam , Baibaswata Nayak concern. -
Emergence of a New Cucurbit-Infecting Begomovirus Species Capable of Forming Viable Reassortants with Related Viruses in the Squash Leaf Curl Virus Cluster J
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 3-13-2002 Emergence of a New Cucurbit-Infecting Begomovirus Species Capable of Forming Viable Reassortants with Related Viruses in the Squash leaf curl virus Cluster J. K. Brown University of Arizona, [email protected] A. M. Idris University of Arizona C. Alteri University of Arizona Drake C. Stenger University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/plantpathpapers Brown, J. K.; Idris, A. M.; Alteri, C.; and Stenger, Drake C., "Emergence of a New Cucurbit-Infecting Begomovirus Species Capable of Forming Viable Reassortants with Related Viruses in the Squash leaf curl virus Cluster" (2002). Papers in Plant Pathology. 284. http://digitalcommons.unl.edu/plantpathpapers/284 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Virology Emergence of a New Cucurbit-Infecting Begomovirus Species Capable of Forming Viable Reassortants with Related Viruses in the Squash leaf curl virus Cluster J. K. Brown, A. M. Idris, C. Alteri, and Drake C. Stenger First, second, and third authors: Department of Plant Sciences, University of Arizona, Tucson 85721; and fourth author: USDA-ARS and Department of Plant Pathology, University of Nebraska, Lincoln 68583. Accepted for publication 13 March 2002. ABSTRACT Brown, J. K., Idris, A. M., Alteri, C., and Stenger, D. C. 2002. Emergence virus-R (SLCV-R), SLCV-E, and Bean calico mosaic virus (BCaMV) at of a new cucurbit-infecting begomovirus species capable of forming 84, 83, and 80%, respectively.