The Influence of Secondary Structure, Selection and Recombination On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Requirements for the Packaging of Geminivirus Circular Single-Stranded DNA: Effect of DNA Length and Coat Protein Sequence
viruses Article Requirements for the Packaging of Geminivirus Circular Single-Stranded DNA: Effect of DNA Length and Coat Protein Sequence Keith Saunders 1,* , Jake Richardson 2, David M. Lawson 1 and George P. Lomonossoff 1 1 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; [email protected] (D.M.L.); george.lomonossoff@jic.ac.uk (G.P.L.) 2 Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1603-450733 Received: 10 September 2020; Accepted: 28 October 2020; Published: 30 October 2020 Abstract: Geminivirus particles, consisting of a pair of twinned isometric structures, have one of the most distinctive capsids in the virological world. Until recently, there was little information as to how these structures are generated. To address this, we developed a system to produce capsid structures following the delivery of geminivirus coat protein and replicating circular single-stranded DNA (cssDNA) by the infiltration of gene constructs into plant leaves. The transencapsidation of cssDNA of the Begomovirus genus by coat protein of different geminivirus genera was shown to occur with full-length but not half-length molecules. Double capsid structures, distinct from geminate capsid structures, were also generated in this expression system. By increasing the length of the encapsidated cssDNA, triple geminate capsid structures, consisting of straight, bent and condensed forms were generated. The straight geminate triple structures generated were similar in morphology to those recorded for a potato-infecting virus from Peru. -
Multiple Origins of Prokaryotic and Eukaryotic Single-Stranded DNA Viruses from Bacterial and Archaeal Plasmids
ARTICLE https://doi.org/10.1038/s41467-019-11433-0 OPEN Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids Darius Kazlauskas 1, Arvind Varsani 2,3, Eugene V. Koonin 4 & Mart Krupovic 5 Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance 1234567890():,; in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occa- sions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. 1 Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania. 2 The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA. 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700 Cape Town, South Africa. -
Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs. -
Characterization of the Rubella Virus Nonstructural Protease Domain and Its Cleavage Site
JOURNAL OF VIROLOGY, July 1996, p. 4707–4713 Vol. 70, No. 7 0022-538X/96/$04.0010 Copyright q 1996, American Society for Microbiology Characterization of the Rubella Virus Nonstructural Protease Domain and Its Cleavage Site 1 2 2 1 JUN-PING CHEN, JAMES H. STRAUSS, ELLEN G. STRAUSS, AND TERYL K. FREY * Department of Biology, Georgia State University, Atlanta, Georgia 30303,1 and Division of Biology, California Institute of Technology, Pasadena, California 911252 Received 27 October 1995/Accepted 3 April 1996 The region of the rubella virus nonstructural open reading frame that contains the papain-like cysteine protease domain and its cleavage site was expressed with a Sindbis virus vector. Cys-1151 has previously been shown to be required for the activity of the protease (L. D. Marr, C.-Y. Wang, and T. K. Frey, Virology 198:586–592, 1994). Here we show that His-1272 is also necessary for protease activity, consistent with the active site of the enzyme being composed of a catalytic dyad consisting of Cys-1151 and His-1272. By means of radiochemical amino acid sequencing, the site in the polyprotein cleaved by the nonstructural protease was found to follow Gly-1300 in the sequence Gly-1299–Gly-1300–Gly-1301. Mutagenesis studies demonstrated that change of Gly-1300 to alanine or valine abrogated cleavage. In contrast, Gly-1299 and Gly-1301 could be changed to alanine with retention of cleavage, but a change to valine abrogated cleavage. Coexpression of a construct that contains a cleavage site mutation (to serve as a protease) together with a construct that contains a protease mutation (to serve as a substrate) failed to reveal trans cleavage. -
Measles and Rubella Initiative Outbreak Response Fund Application Standard Operating Procedures
M&RI SOP Feb 24, 2020 Final Measles and Rubella Initiative Outbreak Response Fund Application Standard Operating Procedures This update of the M&RI ORF Standard Operating Procedures (SOPs) includes the following modifications: 1. To encourage countries to submit applications for ORF support early in the evolution of the outbreak in order to effectively stop measles virus transmission before it becomes more widespread, M&RI will monitor indicators of timeliness of outbreak response immunization in accordance with Immunization Agenda 2030 guidelines; 2. To accelerate the process to receive support, M&RI has removed requirements for advance notification when requesting ORF support and has established a limited timeframe to evaluate the application for ORF support and to provide feedback or issue a decision letter; 3. To more comprehensively address outbreak response linked to timely and efficient use of vaccine, M&RI will allow for greater flexibility in areas of support on an exceptional basis and with adequate justification; 4. To reduce the likelihood of requested additional information or clarifications from M&RI, the SOPs provide greater detail regarding the key data elements and analysis recommended when investigating measles outbreaks and preparing reports, plans and budgets; 5. To maximize use of outbreak investigations and their follow up to strengthen immunization systems, M&RI requests countries to include findings from root cause analyses and, based on these, plans to improve routine immunization, surveillance and outbreak preparedness in the required post-outbreak report. A. Background The Measles and Rubella Initiative (M&RI) has provided funding through an outbreak response fund (ORF) since 2012 to support bundled vaccine and operational costs for measles and rubella outbreak response immunization (ORI), with Gavi supporting up to a total of US$10 million per year for Gavi-eligible countries. -
Diagnosis and Treatment of Orf
Vet Times The website for the veterinary profession https://www.vettimes.co.uk Diagnosis and treatment of orf Author : Graham Duncanson Categories : Farm animal, Vets Date : March 3, 2008 When I used to do a meat inspection for an hour each week, I came across a case of orf in one of the slaughtermen. The lesion was on the back of his hand. The GP thought it was an abscess and lanced the pustule. I was certain it was orf and got some pus into a viral transport medium. The Veterinary Investigation Centre in Norwich confirmed the case as orf and it took weeks to heal. I have always taken the zoonotic aspects of this disease very seriously ever since. When I got a pustule on my finger from my own sheep, I took potentiated sulphonamides by mouth and it healed within three weeks. I always advise clients to wear rubber gloves when dealing with the disease. I also advise any affected people to go to their GP, but not to let the doctor lance the lesion. Virus Orf, which should be called contagious pustular dermatitis, is not a pox virus but a Parapoxvirus. It is allied to viral diseases in cattle, pseudocowpox (caused by the most common virus found on the bovine udder) and bovine papular stomatitis (the oral form of pseudocowpox occurring in young cattle). Both these cattle viruses are self-limiting, rarely causing problems. Sheeppox, which is a Capripoxvirus, is not found in the UK or western Europe. However, it seems to have spread from the Middle East to Hungary. -
Icosahedral Viruses Defined by Their Positively Charged Domains: a Signature for Viral Identity and Capsid Assembly Strategy
Support Information for: Icosahedral viruses defined by their positively charged domains: a signature for viral identity and capsid assembly strategy Rodrigo D. Requião1, Rodolfo L. Carneiro 1, Mariana Hoyer Moreira1, Marcelo Ribeiro- Alves2, Silvana Rossetto3, Fernando L. Palhano*1 and Tatiana Domitrovic*4 1 Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. 2 Laboratório de Pesquisa Clínica em DST/Aids, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil 3 Programa de Pós-Graduação em Informática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. 4 Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. *Corresponding author: [email protected] or [email protected] MATERIALS AND METHODS Software and Source Identifier Algorithms Calculation of net charge (1) Calculation of R/K ratio This paper https://github.com/mhoyerm/Total_ratio Identify proteins of This paper https://github.com/mhoyerm/Modulate_RK determined net charge and R/K ratio Identify proteins of This paper https://github.com/mhoyerm/Modulate_KR determined net charge and K/R ratio Data sources For all viral proteins, we used UniRef with the advanced search options (uniprot:(proteome:(taxonomy:"Viruses [10239]") reviewed:yes) AND identity:1.0). For viral capsid proteins, we used the advanced search options (proteome:(taxonomy:"Viruses [10239]") goa:("viral capsid [19028]") AND reviewed:yes) followed by a manual selection of major capsid proteins. Advanced search options for H. -
Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates. -
Clustering and Visualizing the Distribution of Overlapping Reading
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447953; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Clustering and visualizing the distribution of overlapping read- ing frames in virus genomes Laura Munoz-Baena˜ 1 and Art F. Y. Poon1;2 1 Department of Microbiology and Immunology, Western University, London, ON, Canada. 2 Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada. ABSTRACT 1 Gene overlap occurs when two or more genes are encoded by the same nucleotides. This phe- 2 nomenon is found in all taxonomic domains, but is particularly common in viruses, where it may 3 increase the information content of compact genomes or influence the creation of new genes. Here 4 we report a global comparative study of overlapping reading frames (OvRFs) of 12,609 virus refer- 5 ence genomes in the NCBI database. We retrieved metadata associated with all annotated reading 6 frames in each genome record to calculate the number, length, and frameshift of OvRFs. Our re- 7 sults show that while the number of OvRFs increases with genome length, they tend to be shorter 8 in longer genomes. The majority of overlaps involve +2 frameshifts, predominantly found in ds- 9 DNA viruses. However, the longest overlaps involve no shift in reading frame (+0), increasing 10 the selective burden of the same nucleotide positions within codons, instead of exposing additional 11 sites to purifying selection. -
Orf, Also Known As Sheep Pox, Is a Common Disease
ORF http://www.aocd.org Orf, also known as sheep pox, is a common disease in sheep-farming regions of the world. Human infection with the orf virus is typically acquired by direct contact with open lesions of an infected animal. However, infection from fomites can also occur due to the virus being resistant to heat and dryness. An infected person will usually have a single nodular lesion at the point of contact, on the hand or forearm. The cause of orf is attributed to the orf virus. This virus is a member of the parapoxvirus genus which also contains milker’s nodule virus. The parapoxvirus genus is a member of the poxviridae family which also includes small pox and cowpox viruses. Orf is considered a zoonotic disease, meaning it affects animals; yet humans can contract the disease from infected sheep and goats. However, the orf virus is not transmitted human-to-human. Occupational acquisition of the disease is the most common means of contraction of the virus. Once a human is infected with the parapoxvirus a nodular lesion will appear. This lesion evolves through several stages. It begins as a papule but then progresses into a lesion with a red center surrounded by a white ring. The lesion then becomes red and weeping. If the lesion is located in an area with hair, temporary alopecia (hair loss) occurs. With further progression, the lesion becomes dry with black spots on the surface. It then flattens and forms a dry crust. The lesion then heals with minimal scarring. The progression of this disease occurs in about 6 weeks. -
Using Transfer Learning for Image-Based Cassava Disease
Using Transfer Learning for Image-Based Cassava Disease Detection Amanda Ramcharan 1, Kelsee Baranowski 1, Peter McCloskey 2,Babuali Ahmed 3, James Legg 3, and David Hughes 1;4;5∗ 1Department of Entomology, College of Agricultural Sciences, Penn State University, State College, PA, USA 2Department of Computer Science, Pittsburgh University,Pittsburgh, PA, USA 3International Institute for Tropical Agriculture, Dar el Salaam, Tanzania 4Department of Biology, Eberly College of Sciences, Penn State University, State College, PA, USA 5Center for Infectious Disease Dynamics, Huck Institutes of Life Sciences, Penn State University, State College, PA, USA Correspondence*: David Hughes [email protected] ABSTRACT Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New transfer learning methods offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. -
Human Papillomavirus and HPV Vaccines: a Review
Human papillomavirus and HPV vaccines: a review FT Cutts,a S Franceschi,b S Goldie,c X Castellsague,d S de Sanjose,d G Garnett,e WJ Edmunds,f P Claeys,g KL Goldenthal,h DM Harper i & L Markowitz j Abstract Cervical cancer, the most common cancer affecting women in developing countries, is caused by persistent infection with “high-risk” genotypes of human papillomaviruses (HPV). The most common oncogenic HPV genotypes are 16 and 18, causing approximately 70% of all cervical cancers. Types 6 and 11 do not contribute to the incidence of high-grade dysplasias (precancerous lesions) or cervical cancer, but do cause laryngeal papillomas and most genital warts. HPV is highly transmissible, with peak incidence soon after the onset of sexual activity. A quadrivalent (types 6, 11, 16 and 18) HPV vaccine has recently been licensed in several countries following the determination that it has an acceptable benefit/risk profile. In large phase III trials, the vaccine prevented 100% of moderate and severe precancerous cervical lesions associated with types 16 or 18 among women with no previous infection with these types. A bivalent (types 16 and 18) vaccine has also undergone extensive evaluation and been licensed in at least one country. Both vaccines are prepared from non-infectious, DNA-free virus-like particles produced by recombinant technology and combined with an adjuvant. With three doses administered, they induce high levels of serum antibodies in virtually all vaccinated individuals. In women who have no evidence of past or current infection with the HPV genotypes in the vaccine, both vaccines show > 90% protection against persistent HPV infection for up to 5 years after vaccination, which is the longest reported follow-up so far.