Meninges,Cerebrospinal Fluid, and the Spinal Cord

Total Page:16

File Type:pdf, Size:1020Kb

Meninges,Cerebrospinal Fluid, and the Spinal Cord The Nervous System SPINAL CORD Spinal Cord Continuation of CNS inferior to foramen magnum (medulla) Simpler Conducts impulses to and from brain Two way conduction pathway Reflex actions Spinal Cord Passes through vertebral canal Foramen magnum L2 Conus medullaris Filum terminale Cauda equina Cervical Cervical spinal nerves enlargement Dura and arachnoid Thoracic mater spinal nerves Lumbar enlargement Conus medullaris Lumbar Cauda spinal nerves equina Filum (a) The spinal cord and its nerve terminale Sacral roots, with the bony vertebral spinal nerves arches removed. The dura mater and arachnoid mater are cut open and reflected laterally. Figure 12.29a Spinal Cord Spinal nerves 31 pairs Cervical and lumbar enlargements The nerves serving the upper and lower limbs emerge here Cervical Cervical spinal nerves enlargement Dura and arachnoid Thoracic mater spinal nerves Lumbar enlargement Conus medullaris Lumbar Cauda spinal nerves equina Filum (a) The spinal cord and its nerve terminale Sacral roots, with the bony vertebral spinal nerves arches removed. The dura mater and arachnoid mater are cut open and reflected laterally. Figure 12.29a Spinal Cord Protection Bone, meninges, and CSF Spinal tap-inferior to second lumbar vertebra T12 Ligamentum flavum L5 Lumbar puncture needle entering subarachnoid space L4 Supra- spinous ligament L5 Filum terminale S1 Inter- Cauda equina vertebral Arachnoid Dura in subarachnoid disc matter mater space Figure 12.30 Spinal Cord Cross section Central gray matter Cortex of white matter Epidural space Pia mater (contains fat) Arachnoid mater Spinal Subdural space meninges Dura mater Subarachnoid space Bone of (contains CSF) vertebra Dorsal root ganglion Body of vertebra (a) Cross section of spinal cord and vertebra Figure 12.31a Dorsal median sulcus Gray commissure Dorsal funiculus Dorsal horn White Ventral funiculus Gray Ventral horn columns Lateral funiculus matter Lateral horn Dorsal root ganglion Spinal nerve Central canal Dorsal root (fans out into Ventral median dorsal rootlets) fissure Ventral root (derived from several Pia mater ventral rootlets) Arachnoid mater Spinal dura mater (b) The spinal cord and its meningeal coverings Figure 12.31b Gray Matter Association neurons and motor neuron cell bodies site of synapses Dorsal (posterior) horns Ventral (anterior)horns Lateral horns (only in thoracic and lumbar regions) Dorsal root (sensory) Dorsal root ganglion Dorsal horn (interneurons) Somatic sensory neuron Visceral sensory neuron Visceral motor Spinal nerve neuron Ventral horn Ventral root (motor neurons) Somatic (motor) motor neuron Interneurons receiving input from somatic sensory neurons Interneurons receiving input from visceral sensory neurons Visceral motor (autonomic) neurons Somatic motor neurons Figure 12.32 White Matter Myelinated ascending (sensory) and descending (motor) tracts Tracts are located in three white columns (funiculi) on each side Dorsal (posterior), lateral, and ventral (anterior) Dorsal median sulcus Gray commissure Dorsal funiculus Dorsal horn White Ventral funiculus Gray Ventral horn columns Lateral funiculus matter Lateral horn Dorsal root ganglion Spinal nerve Central canal Dorsal root (fans out into Ventral median dorsal rootlets) fissure Ventral root (derived from several Pia mater ventral rootlets) Arachnoid mater Spinal dura mater (b) The spinal cord and its meningeal coverings Figure 12.31b Spinal Tracts Multineural pathways Decussate (cross over) Most exhibit somatotopy Pathways are paired symmetrically Ventral corticospinal tract Medulla oblongata Pyramids Decussation of pyramid Lateral corticospinal Cervical spinal cord tract Skeletal muscle Lumbar spinal cord Somatic motor neurons (lower motor neurons) (a) Pyramidal (lateral and ventral corticospinal) pathways Figure 12.35a (2 of 2) Naming of tracts Many are named for origin and termination Example Anterior (ventral) spinothalamic tract Ascending Pathways Consist of two or three neurons First-order neuron Receptor to spinal cord Synapses with second-order neuron Examples Posterior (Dorsal) Column Receptor to medulla Spinothalamic Tract Receptor to spinal cord Ascending Pathways Second-order neuron Interneuron Synapse with third-order neuron Examples Posterior (Dorsal) Column Medulla to thalamus (decussates in medulla) Spinothalamic Spinal cord to thalamus (decussates in spinal cord) Ascending Pathways Third-order neuron Interneuron Examples Posterior (Dorsal) Column Thalamus to cortex Spinothalamic Thalamus to cortex Ascending Pathways Two pathways transmit somatosensory information to the sensory cortex via the thalamus Posterior (Dorsal) column Spinothalamic pathways Ascending tracts Descending tracts Fasciculus gracilis Ventral white Dorsal commissure white Fasciculus cuneatus column Lateral reticulospinal tract Dorsal Lateral spinocerebellar corticospinal tract tract Rubrospinal tract Ventral spinocerebellar Medial tract reticulospinal Lateral tract spinothalamic tract Ventral corticospinal Ventral (anterior) tract spinothalamic Vestibulospinal tract Tectospinal tract tract Figure 12.33 Lateral spinothalamic tract (axons of second-order neurons) Medulla oblongata Pain receptors Cervical spinal cord Axons of first-order neurons Temperature Lumbar spinal cord receptors (b) Spinothalamic pathway Figure 12.34b (2 of 2) Primary somatosensory cortex Axons of third-order neurons Thalamus Cerebrum Midbrain Cerebellum Pons (b) Spinothalamic pathway Figure 12.34b (1 of 2) Dorsal Medial lemniscus (tract) spinocerebellar (axons of second-order neurons) (axons of tract Nucleus gracilis second-order Nucleus cuneatus neurons) Medulla oblongata Fasciculus cuneatus (axon of first-order sensory neuron) Joint stretch receptor Axon of (proprioceptor) first-order Cervical spinal cord neuron Fasciculus gracilis Muscle spindle (axon of first-order sensory neuron) (proprioceptor) Lumbar spinal cord Touch receptor (a) Spinocerebellar Dorsal (posterior) pathway column Figure 12.34a (2 of 2) Primary somatosensory cortex Axons of third-order neurons Thalamus Cerebrum Midbrain Cerebellum Pons (a) Spinocerebellar Dorsal (posterior) pathway column Figure 12.34a (1 of 2) Descending Pathways and Tracts Deliver efferent impulses from the brain to the spinal cord Direct pathways—pyramidal tracts Indirect pathways (extrapyramidal) —all others Pyramidal Tracts From primary motor cortex to cord Involve two neurons: 1. Upper motor neurons (1st order) Cortex to cord (decussate in pyramids) 2. Lower motor neurons (2nd order) Spinal cord to muscle Innervate skeletal muscles (voluntary) Pyramidal cells (upper motor Primary motor cortex neurons) Internal capsule Cerebrum Midbrain Cerebral peduncle Cerebellum Pons (a) Pyramidal (lateral and ventral corticospinal) pathways Figure 12.35a (1 of 2) Ventral corticospinal tract Medulla oblongata Pyramids Decussation of pyramid Lateral corticospinal Cervical spinal cord tract Skeletal muscle Lumbar spinal cord Somatic motor neurons (lower motor neurons) (a) Pyramidal (lateral and ventral corticospinal) pathways Figure 12.35a (2 of 2) Extrapyramidal (Indirect) Tracts Various CNS regions (avoiding pyramids) to cord Impulses regarding unconscious motor control Posture and balance Involve two neurons: 1. Upper motor neurons (1st order) Subcortex or pons (decussate) to cord 2. Lower motor neurons (2nd order) Spinal cord to muscle Innervate skeletal muscles (involunatry) An extra pyramidal pathway Cerebrum Red nucleus Midbrain Cerebellum Pons (b) Rubrospinal tract Figure 12.35b (1 of 2) Rubrospinal tract Medulla oblongata Cervical spinal cord (b) Rubrospinal tract Figure 12.35b (2 of 2) Motor neuron damage Damage to LMN=flaccid paralysis Damage to UMN=spastic paralysis Questions? .
Recommended publications
  • NS201C Anatomy 1: Sensory and Motor Systems
    NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent.
    [Show full text]
  • Spinal Cord Organization
    Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges.
    [Show full text]
  • Major Motor & Sensory Projections
    Major Motor & Sensory Projections Neuroanatomy > Brainstem > Brainstem MAJOR MOTOR & SENSORY PROJECTIONS  FULL TEXT OVERVIEW • Here, we will learn a consolidated view of the major descending (motor) and ascending (sensory) pathways from the cerebrum through the brainstem into the spinal cord. • Start a table, specify that we will learn about the following major pathway projections: Motor • Corticospinal tract (CST) • Corticobulbar (aka corticonuclear) tract Sensory • Posterior column/medial lemniscus • Anterolateral system (spinothalamic) tract • Trigeminothalamic tract MOTOR PATHWAYS Anatomical Structures Begin with the motor pathways. • Label the superior/inferior axes. • Draw a coronal view of the right brain. • Then, the brainstem. • The upper cervical spinal cord. 1 / 5 • And the lumbar cord. Innervation • Start another table. Write that for the motor fibers: • The corticospinal tract fibers innervate the body via spinal motor neurons. - Specify that the lateral CST innervates distal musculature for fine motor movements - Whereas the anterior CST innervates proximal musculature for gross motor movements. • The corticobulbar fibers (aka corticonuclear fibers) innervate the face via the CNs. Projections • Now, demarcate the internal capsule deep within the cerebrum – the motor fibers consolidate here before entering the ipsilateral cerebral peduncle in the midbrain. • Next, draw the twisting descent of each fiber group through the subcortical white matter. • Show that the facial fibers [RED] emerge from the lateral convexity, descend medially and, generally, decussate to synapse on different cranial nerve nuclei throughout their descent. • Then, show that the leg fibers [GREEN] emerge paracentrally, descend laterally through the brainstem into the ipsilateral medullary pyramid. • Show that the arm fibers [BLUE] emerge from the upper convexity, descend in between the facial and leg fibers, medial to the leg fibers through the brainstem into the ipsilateral medullary pyramid.
    [Show full text]
  • Review of Spinal Cord Basics of Neuroanatomy Brain Meninges
    Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Parts of Nervous System Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Neurons and Neuroglia Neuron Human brain contains per 1011-12 (trillions) neurons Body (soma) Perikaryon Nissl substance or Tigroid Dendrites Axon Myelin Terminals Synapses Neuronal types Unipolar, pseudounipolar, bipolar, multipolar Afferent (sensory, centripetal) Efferent (motor, centrifugal, effector) Associate (interneurons) Synapse Presynaptic membrane Postsynaptic membrane, receptors Synaptic cleft Synaptic vesicles, neuromediator Mitochondria In human brain – neurons 1011 (100 trillions) Synapses – 1015 (quadrillions) Neuromediators •Acetylcholine •Noradrenaline •Serotonin •GABA •Endorphin •Encephalin •P substance •Neuronal nitric oxide Adrenergic nerve ending. There are many 50-nm-diameter vesicles (arrow) with dark, electron-dense cores containing norepinephrine. x40,000. Cell Types of Neuroglia Astrocytes - Oligodendrocytes – Ependimocytes - Microglia Astrocytes – a part of hemoencephalic barrier Oligodendrocytes Ependimocytes and microglial cells Microglia represent the endogenous brain defense and immune system, which is responsible for CNS protection against various types of pathogenic factors. After invading the CNS, microglial precursors disseminate relatively homogeneously throughout the neural tissue and acquire a specific phenotype, which clearly distinguish them from their precursors, the blood-derived monocytes. The ´resting´ microglia
    [Show full text]
  • Closed-Loop Neuromodulation Restores Network Connectivity And
    RESEARCH ARTICLE Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury Patrick D Ganzer1,2*, Michael J Darrow1, Eric C Meyers1,2, Bleyda R Solorzano2, Andrea D Ruiz2, Nicole M Robertson2, Katherine S Adcock3, Justin T James2, Han S Jeong2, April M Becker4, Mark P Goldberg4, David T Pruitt1,2, Seth A Hays1,2,3, Michael P Kilgard1,2,3, Robert L Rennaker II1,2,3* 1Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, United States; 2Texas Biomedical Device Center, Richardson, United States; 3School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, United States; 4Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, United States Abstract Recovery from serious neurological injury requires substantial rewiring of neural circuits. Precisely-timed electrical stimulation could be used to restore corrective feedback mechanisms and promote adaptive plasticity after neurological insult, such as spinal cord injury (SCI) or stroke. This study provides the first evidence that closed-loop vagus nerve stimulation (CLV) based on the synaptic eligibility trace leads to dramatic recovery from the most common forms of SCI. The addition of CLV to rehabilitation promoted substantially more recovery of forelimb function compared to rehabilitation alone following chronic unilateral or bilateral cervical SCI in a rat model. Triggering stimulation on the most successful movements is critical to maximize recovery. CLV enhances recovery by strengthening synaptic connectivity from remaining motor *For correspondence: networks to the grasping muscles in the forelimb. The benefits of CLV persist long after the end of [email protected] stimulation because connectivity in critical neural circuits has been restored.
    [Show full text]
  • Spinal Cord, Spinal Nerves, and the Autonomic Nervous System
    ighapmLre21pg211_216 5/12/04 2:24 PM Page 211 impos03 302:bjighapmL:ighapmLrevshts:layouts: NAME ___________________________________ LAB TIME/DATE _______________________ REVIEW SHEET Spinal Cord, Spinal Nerves, exercise and the Autonomic Nervous System 21 Anatomy of the Spinal Cord 1. Match the descriptions given below to the proper anatomical term: Key: a. cauda equina b. conus medullaris c. filum terminale d. foramen magnum d 1. most superior boundary of the spinal cord c 2. meningeal extension beyond the spinal cord terminus b 3. spinal cord terminus a 4. collection of spinal nerves traveling in the vertebral canal below the terminus of the spinal cord 2. Match the key letters on the diagram with the following terms. m 1. anterior (ventral) hornn 6. dorsal root of spinal nervec 11. posterior (dorsal) horn k 2. arachnoid materj 7. dura materf 12. spinal nerve a 3. central canalo 8. gray commissure i 13. ventral ramus of spinal nerve h 4. dorsal ramus of spinald 9. lateral horne 14. ventral root of spinal nerve nerve g l 5. dorsal root ganglion 10. pia materb 15. white matter o a b n c m d e l f g k h j i Review Sheet 21 211 ighapmLre21pg211_216 5/12/04 2:24 PM Page 212 impos03 302:bjighapmL:ighapmLrevshts:layouts: 3. Choose the proper answer from the following key to respond to the descriptions relating to spinal cord anatomy. Key: a. afferent b. efferent c. both afferent and efferent d. association d 1. neuron type found in posterior hornb 4. fiber type in ventral root b 2.
    [Show full text]
  • Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury
    Neurotherapeutics (2016) 13:370–381 DOI 10.1007/s13311-016-0422-x REVIEW Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury Kathren L. Fink1 & William B. J. Cafferty 1 Published online: 3 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Neurons have a limited capacity to regenerate in the molecular mechanisms that drive plasticity within intact cir- adult central nervous system (CNS). The inability of damaged cuits is crucial in developing novel, potent, and specific ther- axons to re-establish original circuits results in permanent apeutics to restore function after SCI. In this review we dis- functional impairment after spinal cord injury (SCI). Despite cuss the evidence supporting a focus on exploring the capacity abortive regeneration of axotomized CNS neurons, limited of intact motor circuits to functionally repair the damaged spontaneous recovery of motor function emerges after partial CNS after SCI. SCI in humans and experimental rodent models of SCI. It is hypothesized that this spontaneous functional recovery is the result of the reorganization of descending motor pathways Keywords Spinal cord injury . Plasticity . Regeneration . spared by the injury, suggesting that plasticity of intact circuits Repair . Axon . Neuron is a potent alternative conduit to enhance functional recovery after SCI. In support of this hypothesis, several studies have shown that after unilateral corticospinal tract (CST) lesion (unilateral pyramidotomy),
    [Show full text]
  • Cerebral Cortex
    Cerebral Cortex • Research on the structure and function of the brain reveals that there are both specialized and diffuse areas of function • Motor and sensory areas are localized in discrete cortical areas called domains • Many higher mental functions such as memory and language appear to have overlapping domains and are more diffusely located • Broadmann areas are areas of localized function Cerebral Cortex - Generalizations • The cerebral cortex has three types of functional areas – Motor areas / control voluntary motor function – Sensory areas / provide conscious awareness of sensation – Association areas / act mainly to integrate diverse information for purposeful action • Each hemisphere is chiefly concerned with the sensory and motor functions of the opposite (contralateral) side of the body Motor Areas • Cortical areas controlling motor functions lie in the posterior part of the frontal lobes • Motor areas include the primary motor cortex, the premotor cortex, Broca’s area, and the front eye field Primary Motor Cortex • The primary motor cortex is located in the precentral gyrus of the frontal lobe of each hemisphere • Large neurons (pyramidal cells) in these gyri allow us to consciously control the precise or skill voluntary movements of our skeletal muscles Pyramidal cells • These long axons, which project to the spinal cord, form the massive Dendrites voluntary motor tracts called the pyramidal, or corticospinal tracts • All other descending motor tracts issue from brain stem nuclei and consists of chains of two, three, or
    [Show full text]
  • Functional Significance of the Ventral and Lateral Funiculi in the Frog's Spinal Cord
    ACTA NEUROBIOL. EXP. 1976, 36: 593-812 FUNCTIONAL SIGNIFICANCE OF THE VENTRAL AND LATERAL FUNICULI IN THE FROG'S SPINAL CORD Zofia AFELT Department of Neurophysiology, Nencki Institute of Experimental Biology Warsaw, Poland Abstract. The spinal cord was transected at the level of calamus scriptorius either completely (spinal preparation) or partially (funicular preparation). In the operated frogs and in normal controls cranial and peripheral receptive fields were stimulated by natural stimuli. Results indicated that the information necessary for somatic activation of the protective flight ascends in the dorsolateral funiculus, which can be characterized as an ascending part of the reflex arc of somatotopically guided avoidance behavior. The tectal region is apparently a center of responses. The information necessary for activating different patterns of locomotion adequate to environmental conditions goes unilaterally through the ventral and ventrolateral funiculus. A diminished specifi- city of these motor patterns observed after injury of the ventrolateral funiculus seems to be related to a reduced feedback from the periphery. Lacking of aquatic pattern of limb movements (even when terrestrial patterns of locomotion were undisturbed), and drowning in water seem to be related to an injury of a vestibulo-spinal system in the ventral funiculus. It is concluded that the ventrolateral area of the frog spinal cord, i.e., the area between median fissure and dorsal root, forms a clo- sed system providing afferent and efferent information sufficient to evoke normal behavior. INTRODUCTION A high autonomy of the spinal cord function in lower vertebrates has been repeatedly stressed since the last century. However, even in the most primitive forms, a supraspinal control over body movement has 594 Z.
    [Show full text]
  • Development of a Neuromodulation-Based Therapy for the Rehabilitation of Patients with SCI
    UNIVERSIDAD DE CASTILLA LA MANCHA Escuela Internacional de Doctorado Development of a neuromodulation-based therapy for the rehabilitation of patients with SCI by Stefano Piazza A thesis submitted in the fulfillment for the degree of Doctor of Philosophy. Directors Dr. José Luis Pons Dr. Julio Gómez Soriano November 2016 i Acknowledgements A Iris, per essere sempre al mio lato, per supportarmi e incoraggiarmi, consigliarmi ed aiutarmi. Per l’energia e l’allegria, il coraggio e la passione. Perché hai aggiunto groove alla mia vita, e da allora non abbiamo piú smesso di ballare. A Mattia, che durante questa tesi sei passato da nano a gigante, per la tua simpatia e irriverenza, per le burle e per le sfide. Mi hai insegnato a non prendermi troppo sul serio ed a vedere tutte le cose con la giusta prospettiva. Ai miei genitori, sempre presenti in questi anni, avete creduto in me fin dal primo momento e non avete mai smesso di appoggiarmi. Grazie per il vostro conforto, la vostra pazienza, e per l’entusiasmo con cui avete colto ogni piccolo passo che mi avvicinava un po’ di piú a questo traguardo. Ed a Tommy, che appoggiato su una spalla non mi perde mai di vista. Alla famiglia spagnola, per accogliermi con calore, sfamarmi in svariate occasioni ed incoraggiare fin da subito tutti i nostri progetti. Ai molti buoni amici, fonte costante di gioia ed evasione, per tutti i bei momenti passati insieme, per essere sempre pronti a rallegrarmi e stimolarmi in tutti questi anni. Credo che una buona parte della mia salute mentale la debba anche a voi.
    [Show full text]
  • High-Resolution MR Imaging of the Cadaveric Human Spinal Cord: Normal Anatomy
    3 High-Resolution MR Imaging of the Cadaveric Human Spinal Cord: Normal Anatomy M. D. Solsberg1 The purpose of this study was to demonstrate the regional MR anatomy of a normal 1 2 C. Lemaire • human spinal cord under near optimal conditions. A spinal cord and meninges were L. Resch3 excised and segments from the cervical (C6), thoracic (T6), lumbar (L3), and sacral/ D. G. Potts1 cauda equina regions were examined on a 2-T MR system. By using a 2.5 x 2.0 em solenoid coil and a multislice spin-echo sequence, we achieved a resolution of 58 llm in the readout direction and 117 llm in the phase-encode direction. Histological sections corresponding to the areas imaged by MR were retained and treated with stains that demonstrated the distributions of collagen (hematoxylin, phloxine, saffron), myelin (Luxol fast bluefH and E), or neuritic processes (Bielschowsky's). Subarachnoid, vas­ cular, white matter, and gray matter structures were demonstrated by MR and light microscopy. The resulting MR images and photomicrographs were correlated. Different signal intensities were observed in the gracile and cuneate fasciculi, and these differ­ ences were similar to the pattern seen with the myelin stain. Decreased signal intensity was present in the region of the spinocerebellar tracts. The anatomic detail demonstrated by this study was clearly superior to that shown by clinical MR examinations. AJNR 11:3-7, January/February 1990 Because MR imaging of the human spinal cord demonstrates clearly the gray and white matter structures [1-5], this technique is useful for diagnosing variou s cord abnormalities, such as syringomyelia, intramedullary tumors, cord atrophy demyelination , cord cysts, and vascular malformations.
    [Show full text]
  • Motor Cortex Activity Organizes the Developing Rubrospinal System
    The Journal of Neuroscience, September 30, 2015 • 35(39):13363–13374 • 13363 Development/Plasticity/Repair Motor Cortex Activity Organizes the Developing Rubrospinal System Preston T.J.A. Williams and John H. Martin Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, New York, New York 10031 The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interac- tions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons.
    [Show full text]