Oak Species, Varieties, and Hybrids in California by Lineage Group (Subgenus) Life Form Red Oaks (Erythrobalanus)

Total Page:16

File Type:pdf, Size:1020Kb

Oak Species, Varieties, and Hybrids in California by Lineage Group (Subgenus) Life Form Red Oaks (Erythrobalanus) Oak Species, Varieties, and Hybrids in California by Lineage Group (Subgenus) Life Form Red Oaks (Erythrobalanus) *Quercus agrifolia Coast Live Oak ET Quercus agrifolia var. oxyadenia (var. in S. Cal and Baja) ET Quercus ilex1 Holly Oak (native to Med.) ET *Quercus kelloggii California Black Oak DT Quercus parvula var. parvula Santa Cruz Island Oak ES *Quercus parvula var. shrevei Shreve Oak ET *Quercus parvula var. tamalpaisensis Tamalpais oak ES *Quercus wislizeni var. frutescens Dwarf Interior Live Oak ES *Quercus wislizeni var. wislizeni Interior Live Oak ET Quercus X chasei Chase Oak (Hybrid of Q. agrifolia & Q. kelloggii) DT Quercus X moreha Oracle Oak (Hybrid of Q. kelloggii & Q. wislizeni) DT Intermediate Oaks (Protobalanus) Quercus cedrosensis Cedros Island Oak ET *Quercus chrysolepis Canyon Live Oak, Golden Oak, Maul Oak ET *Quercus vaccinifolia Huckleberry Oak ES Quercus palmeri Palmers Oak ES Quercus tomentella Island Oak ET White Oaks (Lepidobalanus) *Quercus berberidifolia Scrub Oak ES *Quercus douglasii Blue Oak DT *Quercus durata var. durata Leather Oak ES Quercus durata var. gabrielensis San Gabriel oak ES *Quercus garryana var. breweri Brewer’s Oak DS *Quercus garryana var. garryana Oregon or Garry Oak DT *Quercus garryana var. semota DS *Quercus lobata Valley Oak DT *Quercus sadleriana Deer Oak ES Quercus cornelius-mulleri Muller’s Oak ES Quercus dumosa Nuttall’s Scrub oak ES Quercus engelmanii Engelmann or Mesa Oak ET Quercus john-tuckeri Tucker’s Oak ES Quercus pacifica Pacific Oak ES Quercus turbinella Shrub Live Oak ES Quercus X acutidens X acutidens (Hybrid of Q. cornelius-mulleri & Q. engelmannii) ETorS Quercus X alvordiana Alford Oak (Hybrid of Q. douglasii & Q. john-tuckeri) ETorS Quercus X macdonaldii MacDonald Oak (Hybrid of Q. berberidifolia & Q. lobata) DT Quercus X eplingii Epling Oak (Hybrid of Q. garryana & Q. douglasii) DT Quercus X howellii Howell Oak (Hybrid of Q. garryana & Q. berberidifolia) DSorT Quercus X subconvexa Hybrid of Q. garryana or Q. douglasii & Q. durata DSorT Lifeform: E = Evergreen, D = Deciduous, T = Tree, S = Shrub * Occurs in northwest California 1 non-native species .
Recommended publications
  • The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens
    The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens Francisco Garin Garcia Iturraran Botanical Gardens, northern Spain [email protected] Overview Iturraran Botanical Gardens occupy 25 hectares of the northern area of Spain’s Pagoeta Natural Park. They extend along the slopes of the Iturraran hill upon the former hay meadows belonging to the farmhouse of the same name, currently the Reception Centre of the Park. The minimum altitude is 130 m above sea level, and the maximum is 220 m. Within its bounds there are indigenous wooded copses of Quercus robur and other non-coniferous species. Annual precipitation ranges from 140 to 160 cm/year. The maximum temperatures can reach 30º C on some days of summer and even during periods of southern winds on isolated days from October to March; the winter minimums fall to -3º C or -5 º C, occasionally registering as low as -7º C. Frosty days are few and they do not last long. It may snow several days each year. Soils are fairly shallow, with a calcareous substratum, but acidified by the abundant rainfall. In general, the pH is neutral due to their action. Collections The first plantations date back to late 1987. There are currently approximately 5,000 different taxa, the majority being trees and shrubs. There are around 3,000 species, including around 300 species from the genus Quercus; 100 of them are from Mexico and Central America. Quercus costaricensis photo©Francisco Garcia 48 International Oak Journal No. 22 Spring 2011 Oaks from Mexico and Oaks from Mexico
    [Show full text]
  • Ecological Site R038XB205AZ Limestone Hills 16-20" P.Z
    Natural Resources Conservation Service Ecological site R038XB205AZ Limestone Hills 16-20" p.z. Accessed: 09/28/2021 General information Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. Figure 1. Mapped extent Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated. MLRA notes Major Land Resource Area (MLRA): 038X–Mogollon Transition AZ 38-2 - Middle Mogollon Transition Elevations in this Land Resource Unit (LRU) range from 4500 to 6000 feet and precipitation averages 16 to 20 inches per year. Vegetation includes turbinella oak, Wright silktassel, hollyleaf buckthorn, desert buckbrush, one- seed juniper, alligator juniper, pinyon, algerita, sugar sumac, prairie junegrass, blue grama, curly mesquite, bottlebrush squirreltail, muttongrass, cane beardgrass, plains lovegrass and bullgrass. The soil temperature regime ranges from thermic to mesic and the soil moisture regime is aridic ustic. This unit occurs within the Transition Zone Physiographic Province and is characterized by canyons and structural troughs or valleys. Igneous, metamorphic and sedimentary rock classes occur on rough mountainous terrain in association with less extensive sediment filled valleys exhibiting little integrated drainage. Associated sites R038XB204AZ Granitic Hills 16-20" p.z. R038XB215AZ Clayey Hills 16-20" p.z. Similar sites R039XA105AZ Shallow Loamy 17-22" p.z. Table 1. Dominant plant species Tree (1) Juniperus coahuilensis (2) Pinus edulis Shrub (1) Quercus turbinella (2) Dasylirion wheeleri Herbaceous (1) Bouteloua curtipendula (2) Aristida purpurea var.
    [Show full text]
  • Historical Mortality of Valley Oak (Quercus Lobata, Nee) in the Santa Ynez Valley, Santa Barbara County, 1938-19891
    Historical Mortality of Valley Oak (Quercus lobata, Nee) in the Santa Ynez Valley, Santa Barbara County, 1938-19891 Rodney W. Brown Frank W. Davis2 Abstract: The range and abundance of valley oak (Quercus thus represents, at least for the present, a thinning process lobata, Née) have steadily decreased in the last 100 years due to ultimately resulting in a treeless grassland. low rates of regeneration during this period. Documented low Scheidlinger and Zedler (1980) used aerial coverage from rates of sapling recruitment must be compared to adult mortality 1928 and 1970 to measure change in canopy cover of coast live rates in order to evaluate the severity of this decline. The purpose oak stands in southern San Diego County. We have analyzed of this research is to measure and analyze the mortality rate of historical aerial photography to measure the mortality rates of established valley oaks in different habitat types over the past 51 valley oaks in different habitat types over the past 51 years and years. Valley oak stands of the Santa Ynez Valley in Santa to investigate how mortality varies among sites, habitats, and Barbara County were mapped and stratified into three major time periods. habitat types: valley floor alluvium, lower hillslopes and swales, and rolling uplands. Mortality rates of canopy individuals in each habitat type were determined for a sample of 600 valley oaks censused in 1938 aerial photography and re-censused in 1954,1967,1978, and 1989.125 of 600 (20.8 percent) sampled METHODS individuals disappeared during the 51 year period. No new individuals were recruited into the canopy layer during this time.
    [Show full text]
  • West-Side Prairies & Woodlands
    Washington State Natural Regions Beyond the Treeline: Beyond the Forested Ecosystems: Prairies, Alpine & Drylands WA Dept. of Natural Resources 1998 West-side Prairies & Woodlands Oak Woodland & Prairie Ecosystems West-side Oak Woodland & Prairie Ecosystems in Grey San Juan Island Prairies 1. South Puget Sound prairies & oak woodlands 2. Island / Peninsula coastal prairies & woodlands Olympic Peninsula 3. Rocky balds Prairies South Puget Prairies WA GAP Analysis project 1996 Oak Woodland & Prairie Ecosystems San Juan West-side Island South Puget Sound Prairie Ecosystems Oak Woodland & Prairie Prairies Ecosystems in Grey Grasslands dominated by Olympic • Grasses Peninsula Herbs Prairies • • Bracken fern South • Mosses & lichens Puget Prairies With scattered shrubs Camas (Camassia quamash) WA GAP Analysis project 1996 •1 South Puget Sound Prairie Ecosystems South Puget Sound Prairie Ecosystems Mounded prairie Some of these are “mounded” prairies Mima Mounds Research Natural Area South Puget Sound Prairie Ecosystems South Puget Sound Prairie Ecosystems Scattered shrubs Lichen mats in the prairie Serviceberry Cascara South Puget Sound Prairie Ecosystems South Puget Sound Prairie Ecosystems As unique ecosystems they provide habitat for unique plants As unique ecosystems they provide habitat for unique critters Camas (Camassia quamash) Mazama Pocket Gopher Golden paintbrush Many unique species of butterflies (Castilleja levisecta) (this is an Anise Swallowtail) Photos from Dunn & Ewing (1997) •2 South Puget Sound Prairie Ecosystems Fire is
    [Show full text]
  • The Oak Woodland Bird Conservation Plan: a Strategy for Protecting and Managing Oak Woodland Habitats and Associated Birds in California1
    The Oak Woodland Bird Conservation Plan: A Strategy for Protecting and Managing Oak Woodland Habitats and Associated Birds in California1 Steve Zack,2 Mary K. Chase,3 Geoffrey R. Geupel,3 and Diana Stralberg3 ________________________________________ Introduction Over 330 species of birds, mammals, reptiles, and protected status. Lack of recruitment of young oaks amphibians depend on oak woodlands in California combined with the SOD epidemic affect seven of the (fig. 1) at some stage in their life cycle (Barrett 1980; ten acorn-bearing species of oak trees in California Verner 1980; Block and Morrison 1998). These wood- (table 1). The combined effect of these two problems lands are able to sustain such abundant wildlife pri- on native wildlife populations is inestimable. marily because they produce acorns, a high quality and frequently copious food supply. The birds of Cali- The Oak Woodland Bird Conservation Plan (BCP) fornia’s oak woodlands are connected to this distinctive (Zack et al., 2002; see also http://www.prbo.org/calpif habitat mainly through acorns, the fruits of oaks that /plans.html and printed copies (albeit without species’ are eaten and stored by dozens of species. This ecologi- accounts) are available from PRBO) has been devel- cal relationship is also reciprocal: species like Western oped by California Partners in Flight to guide conser- Scrub-Jays (Aphelocoma californica), Steller’s Jays vation policy and action on behalf of oak woodland (Cyanocita stelleri), and Yellow-billed Magpies (Pica habitats and wildlife, with the goal of supporting the nuttalli) do not completely retrieve cached acorns and long-term viability and recovery of both native bird thus act as dispersers of oak seedlings across the land- populations and other native species.
    [Show full text]
  • Oaks (Quercus Spp.): a Brief History
    Publication WSFNR-20-25A April 2020 Oaks (Quercus spp.): A Brief History Dr. Kim D. Coder, Professor of Tree Biology & Health Care / University Hill Fellow University of Georgia Warnell School of Forestry & Natural Resources Quercus (oak) is the largest tree genus in temperate and sub-tropical areas of the Northern Hemisphere with an extensive distribution. (Denk et.al. 2010) Oaks are the most dominant trees of North America both in species number and biomass. (Hipp et.al. 2018) The three North America oak groups (white, red / black, and golden-cup) represent roughly 60% (~255) of the ~435 species within the Quercus genus worldwide. (Hipp et.al. 2018; McVay et.al. 2017a) Oak group development over time helped determine current species, and can suggest relationships which foster hybridization. The red / black and white oaks developed during a warm phase in global climate at high latitudes in what today is the boreal forest zone. From this northern location, both oak groups spread together southward across the continent splitting into a large eastern United States pathway, and much smaller western and far western paths. Both species groups spread into the eastern United States, then southward, and continued into Mexico and Central America as far as Columbia. (Hipp et.al. 2018) Today, Mexico is considered the world center of oak diversity. (Hipp et.al. 2018) Figure 1 shows genus, sub-genus and sections of Quercus (oak). History of Oak Species Groups Oaks developed under much different climates and environments than today. By examining how oaks developed and diversified into small, closely related groups, the native set of Georgia oak species can be better appreciated and understood in how they are related, share gene sets, or hybridize.
    [Show full text]
  • How to Look at Oaks
    How to Look at Oaks Species name: __________________________________________ Growth habit: tree or shrub Bark type on mature trees: scaly and papery or smooth and furrowed gray or black Foliage: Evergreen or deciduous Leaves Leaf margins: entire (smooth) lobed toothed Leaf edges from the side: wavy fat concave Lobe tips: rounded (not spiny) or spine-tipped Leaf underside: hairless or with small tufs of hairs or covered with hairs color: _______________ Leaf upper surface: dull or shiny hairless or covered with hairs color: _______________ Acorns Time to maturity: one year or two years Acorn shape: oblong elongated round tip: pointed or rounded Acorn size: length: ___________ width: ___________ Acorn cup: deep or shallow % of mature acorn covered by cup: Acorn cup shape: cap saucer bowl cup Acorn cup scales: thin, papery, leafike or thick, knobby, warty Scale tips: loose or pressed tightly to each other Acorn inner surface: densely fuzzy or hairless Based on the features above, is this a: Red/Black Oak White Oak Intermediate Oak Other Notable Features: Characteristics and Taxonomy of Quercus in California Genus Quercus = ~400-600 species Original publication: Linnaeus, Species Plantarum 2: 994. 1753 Sections in the subgenus Quercus: Red Oaks or Black Oaks 1. Foliage evergreen or deciduous (Quercus section Lobatae syn. 2. Mature bark gray to dark brown or black, smooth or Erythrobalanus) deeply furrowed, not scaly or papery ~195 species 3. Leaf blade lobes with bristles 4. Acorn requiring 2 seasons to mature (except Q. Example native species: agrifolia) kelloggii, agrifolia, wislizeni, parvula 5. Cup scales fattened, never knobby or warty, never var.
    [Show full text]
  • The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014
    The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014 In the pages that follow are treatments that have been revised since the publication of the Jepson eFlora, Revision 1 (July 2013). The information in these revisions is intended to supersede that in the second edition of The Jepson Manual (2012). The revised treatments, as well as errata and other small changes not noted here, are included in the Jepson eFlora (http://ucjeps.berkeley.edu/IJM.html). For a list of errata and small changes in treatments that are not included here, please see: http://ucjeps.berkeley.edu/JM12_errata.html Citation for the entire Jepson eFlora: Jepson Flora Project (eds.) [year] Jepson eFlora, http://ucjeps.berkeley.edu/IJM.html [accessed on month, day, year] Citation for an individual treatment in this supplement: [Author of taxon treatment] 2014. [Taxon name], Revision 2, in Jepson Flora Project (eds.) Jepson eFlora, [URL for treatment]. Accessed on [month, day, year]. Copyright © 2014 Regents of the University of California Supplement II, Page 1 Summary of changes made in Revision 2 of the Jepson eFlora, December 2014 PTERIDACEAE *Pteridaceae key to genera: All of the CA members of Cheilanthes transferred to Myriopteris *Cheilanthes: Cheilanthes clevelandii D. C. Eaton changed to Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, as native Cheilanthes cooperae D. C. Eaton changed to Myriopteris cooperae (D. C. Eaton) Grusz & Windham, as native Cheilanthes covillei Maxon changed to Myriopteris covillei (Maxon) Á. Löve & D. Löve, as native Cheilanthes feei T. Moore changed to Myriopteris gracilis Fée, as native Cheilanthes gracillima D.
    [Show full text]
  • A Trip to Study Oaks and Conifers in a Californian Landscape with the International Oak Society
    A Trip to Study Oaks and Conifers in a Californian Landscape with the International Oak Society Harry Baldwin and Thomas Fry - 2018 Table of Contents Acknowledgments ....................................................................................................................................................... 3 Introduction .................................................................................................................................................................. 3 Aims and Objectives: .................................................................................................................................................. 4 How to achieve set objectives: ............................................................................................................................................. 4 Sharing knowledge of experience gained: ....................................................................................................................... 4 Map of Places Visited: ................................................................................................................................................. 5 Itinerary .......................................................................................................................................................................... 6 Background to Oaks .................................................................................................................................................... 8 Cosumnes River Preserve ........................................................................................................................................
    [Show full text]
  • Notes Oak News
    The NewsleTTer of The INTerNaTIoNal oak socIeTy&, Volume 15, No. 1, wINTer 2011 Fagaceae atOak the Kruckeberg News Botanic GardenNotes At 90, Art Kruckeberg Looks Back on Oak Collecting and “Taking a Chance” isiting Arthur Rice Kruckeberg in his garden in Shoreline, of the house; other species are from the southwest U.S., and VWashington–near Seattle–is like a rich dream. With over Q. myrsinifolia Blume and Q. phillyraeiodes A.Gray from Ja- 2,000 plant species on the 4 acres, and with stories to go with pan. The Quercus collection now includes about 50 species, every one, the visitor can’t hold all the impressions together some planted together in what was an open meadow and others for long. Talking with Art about his collection of fagaceae interspersed among many towering specimens of Douglas fir, captures one slice of a life and also sheds light on many other Pseudotsuga menziesii (Mirb.) Franco, the most iconic native aspects of his long leadership in botany and horticulture in the conifer. Pacific Northwest of the United States. Though the major segment of the oak collection is drawn Art Kruckeberg arrived in Seattle in 1950, at age 30, to teach from California and southern Oregon, many happy years of botany at the University of Washington. He international seed exchanges and ordering grew up in Pasadena, California, among the from gardens around the world have extended canyon live oaks (Quercus chrysolepis Liebm.) the variety. A friend in Turkey supplied Q. and obtained his doctorate at the University of trojana Webb, Q. pubescens Willd., and–an- California at Berkeley.
    [Show full text]
  • Planting Native Oak in the Pacific Northwest. Gen
    United States Department of Agriculture Planting Native Oak Forest Service in the Pacific Northwest Pacific Northwest Research Station Warren D. Devine and Constance A. Harrington General Technical Report PNW-GTR-804 February 2010 D E E P R A U R T LT MENT OF AGRICU The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Pesticide Precautionary Statement This publication reports research involving pesticides.
    [Show full text]
  • Quercus Lobata Née) at Two California Sites1
    Establishing a Range-Wide Provenance Test in Valley Oak (Quercus lobata Née) at 1 Two California Sites 2 3 4 Annette Delfino Mix, Jessica W. Wright, Paul F. Gugger, 5 6 Christina Liang, and Victoria L. Sork Abstract We present the methods used to establish a provenance test in valley oak, Quercus lobata. Nearly 11,000 acorns were planted and 88 percent of those germinated. The resulting seedlings were measured after 1 and 2 years of growth, and were outplanted in the field in the winter of 2014-2015. This test represents a long-term resource for both research and conservation. Key words: Provenance tests, Quercus lobata, valley oak Introduction We set out to establish a long-term provenance test of valley oak (Quercus lobata) collected from across the species range. Provenance tests are designed to compare survival and growth (plus other morphological and phenological traits) among trees sampled from different parts of the species range (Mátyás 1996). By having different sources grown in a common environment, we are able to look at how different sources perform in a novel climate, and how they might respond to climate change (Aitken and others 2008). This study has a multitude of goals, from very practical management questions on how to source seeds for ecological restoration projects involving oaks, to very detailed ecological genomic studies. Our collecting and plant propagating methods were developed with a standard quantitative genetic analysis in mind (with plans for genomic analyses as well in the future). Here we outline the methods used to establish a provenance test of Quercus lobata trees in California, and we present some very early results from the study.
    [Show full text]