Landscape Alternatives to Invasive Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lonicera Spp
Species: Lonicera spp. http://www.fs.fed.us/database/feis/plants/shrub/lonspp/all.html SPECIES: Lonicera spp. Choose from the following categories of information. Introductory Distribution and occurrence Botanical and ecological characteristics Fire ecology Fire effects Fire case studies Management considerations References INTRODUCTORY SPECIES: Lonicera spp. AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS AUTHORSHIP AND CITATION: Munger, Gregory T. 2005. Lonicera spp. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATIONS: LONSPP LONFRA LONMAA LONMOR LONTAT LONXYL LONBEL SYNONYMS: None NRCS PLANT CODES [172]: LOFR LOMA6 LOMO2 LOTA LOXY 1 of 67 9/24/2007 4:44 PM Species: Lonicera spp. http://www.fs.fed.us/database/feis/plants/shrub/lonspp/all.html LOBE COMMON NAMES: winter honeysuckle Amur honeysuckle Morrow's honeysuckle Tatarian honeysuckle European fly honeysuckle Bell's honeysuckle TAXONOMY: The currently accepted genus name for honeysuckle is Lonicera L. (Caprifoliaceae) [18,36,54,59,82,83,93,133,161,189,190,191,197]. This report summarizes information on 5 species and 1 hybrid of Lonicera: Lonicera fragrantissima Lindl. & Paxt. [36,82,83,133,191] winter honeysuckle Lonicera maackii Maxim. [18,27,36,54,59,82,83,131,137,186] Amur honeysuckle Lonicera morrowii A. Gray [18,39,54,60,83,161,186,189,190,197] Morrow's honeysuckle Lonicera tatarica L. [18,38,39,54,59,60,82,83,92,93,157,161,186,190,191] Tatarian honeysuckle Lonicera xylosteum L. -
1. EUONYMUS Linnaeus, Sp. Pl. 1: 197
Fl. China 11: 440–463. 2008. 1. EUONYMUS Linnaeus, Sp. Pl. 1: 197. 1753 [“Evonymus”], nom. cons. 卫矛属 wei mao shu Ma Jinshuang (马金双); A. Michele Funston Shrubs, sometimes small trees, ascending or clambering, evergreen or deciduous, glabrous, rarely pubescent. Leaves opposite, rarely also alternate or whorled, entire, serrulate, or crenate, stipulate. Inflorescences axillary, occasionally terminal, cymose. Flowers bisexual, 4(or 5)-merous; petals light yellow to dark purple. Disk fleshy, annular, 4- or 5-lobed, intrastaminal or stamens on disk; anthers longitudinally or obliquely dehiscent, introrse. Ovary 4- or 5-locular; ovules erect to pendulous, 2(–12) per locule. Capsule globose, rugose, prickly, laterally winged or deeply lobed, occasionally only 1–3 lobes developing, loculicidally dehiscent. Seeds 1 to several, typically 2 developing, ellipsoid; aril basal to enveloping seed. Two subgenera and ca. 130 species: Asia, Australasia, Europe, Madagascar, North America; 90 species (50 endemic, one introduced) in China. Euonymus omeiensis W. P. Fang (J. Sichuan Univ., Nat. Sci. Ed. 1: 38. 1955) was described from Sichuan (Emei Shan, Shishungou, ca. 1300 m). This putative species was misdiagnosed; it is a synonym of Reevesia pubescens Masters in the Sterculiaceae (see Fl. China 12: 317. 2007). The protologue describes the fruit as having bracts. The placement of Euonymus tibeticus W. W. Smith (Rec. Bot. Surv. India 4: 264. 1911), described from Xizang (3000–3100 m) and also occurring in Bhutan (Lhakhang) and India (Sikkim), is unclear, as only a specimen with flower buds is available. Euonymus cinereus M. A. Lawson (in J. D. Hooker, Fl. Brit. India 1: 611. 1875) was described from India. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Plant Materials Tech Note
United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Plant Materials Plant Materials Technical Note No. MT-33 September 1999 PLANT MATERIALS TECH NOTE DESCRIPTION, PROPAGATION, AND USE OF SILVERBERRY Elaeagnus commutata. Introduction: Silverberry Elaeagnus commutata Bernh. ex. Rydb is a native shrub with potential use in streambank stabilization, wildlife habitat, windbreaks, and naturalistic landscaping projects. The purpose of this bulletin is to transfer information on the identification, culture, and proper use of this species. FIGURE 1 FRUIT STEM FOLIAGE I. DESCRIPTION Silverberry is a multi-stemmed, deciduous shrub ranging from 1.5 to 3.6 m (5 to 12 ft.) tall. In Montana, heights of 1.5 to 2.4 m (5 to 8 ft.) are most common. It has an erect, upright habit with slender and sometimes twisted branches. The new stems are initially a light to medium brown color, the bark becoming dark gray, but remaining smooth, with age. The leaves are deciduous, alternate, 38 to 89 mm (1.5 to 3.5 in.) long and 19 to 38 mm (0.75 to 1.5 in.) wide (see Figure 1). The leaf shape is described as oval to narrowly ovate with an entire leaf margin. Both the upper and lower leaf surfaces are covered with silvery white scales, the bottom sometimes with brown spots. The highly fragrant, yellow flowers are trumpet-shaped (tubular), approximately 13 mm (0.5 in.) in length, and borne in the leaf axils in large numbers in May or June. The fruit is a silvery-colored, 7.6 mm (0.3 in.) long, egg-shaped drupe that ripens in September to October. -
Invasive Landscape Plants in Arkansas
Invasive Landscape Plants in Arkansas Janet B. Carson Extension Horticulture Specialist Not all Landscape Plants are invasive Invasive plants are not all equally invasive. An invasive plant has the ability to thrive and spread aggressively outside its natural range. Top 10 Arkansas Landscape Invasives Alphabetically 1. Bamboo Phyllostachys species 2. Bradford Pears Pyrus calleryana ‘Bradford’ They are coming up everywhere! 3. English Ivy Hedera helix 4. Japanese Honeysuckle Lonicera japonica 5. Kudzu Pueraria montana 6. Mimosa Albizia julibrissin 7. Privet Ligustrum sinense Privet is the most invasive plant in Arkansas! 8. Running Monkey Grass Liriope spicata 9. Large leaf vinca Vinca major 10. Wisteria Wisteria floribunda Other Invasive Landscape Plants The following plants have been invasive in some landscape situations, and should be used with caution. They are more invasive under certain soil and weather conditions. Bishop’s Weed Aegopodium podagraria Ajuga Ajuga reptans Garlic Chives Allium tuberosum Devil’s Walking Stick Aralia spinosa Ardisia Ardisia japonica Artemesia Artemisia vulgaris Artemisia absinthium 'Oriental Limelight' Trumpet Creeper Campsis radicans Sweet Autumn Clematis Clematis terniflora Mexican Hydrangea Clereodendron bungei Wild Ageratum Conoclinium coelestinum Queen Ann’s Lace Daucus carota Russian Olive Elaeagnus angustifolia Horsetail - Scouring Rush Equisetum hyemale Wintercreeper Euonymus Euonymus fortunei Carolina Jessamine Gelsemium sempervirens Ground Ivy Glechoma hederacea Chameleon Plant Houttuynia cordata -
Miscanthus Sinensis
As a neighbor or property owner, you Resources for more information: can play a special role in protecting the Websites Conservancy. How can Wisconsin DNR’s website, www.dnr.wi.us. This brochure covers seven invasive plants that Recommended search terms: Euonymus, Common buckthorn, Eurasian bush honeysuckle land managers are targeting for control in the neighbors Conservancy. Wisconsin First Detector Network (WIFDN), fyi.extension.wisc.edu/wifdn. On the right side, click help protect the Invasive plants pose a threat to the Pheasant on “Access fact sheets and ID videos” and scroll down Branch Conservancy. to Terrestrial Plants. Get fact sheets for Bird’s-foot trefoil, Buckthorns, Bush honeysuckles/Japanese Pheasant Branch honeysuckle, Crown vetch Invasive plants can disrupt or degrade diversity and function of an ecosystem resulting in The Invasive Plant Atlas of the United States, Conservancy? simplified and less resiliant plant communities. invasiveplantatlas.org. Click on the tabs (Grasses, Herbs/Forbs, Shrubs/Subshrubs). The plants are arranged alphabetically by scientific name. Click on While land managers and volunteers spend the plant name for detailed information. time and resources to remove invasive plants Grasses – Miscanthus sinensis from the Conservancy, their efforts can be Herbs/Forbs – Lotus corniculatus, Securigera varia hampered by neighboring properties that Shrubs/Subshrubs – Euonymus alatus, Euonymus harbor the very species they are targeting. europaeus, Lonicera (various species), Rhamnus cathartica Invasive plants can easily move across the land- Invasive Plants Association of Wisconsin,www.ipaw. scape. Birds and other animals eat seeds and org. deposit them in their droppings. Wind carries fluffy and winged seeds great distances. -
A Sibling Species of the Persian Parrotia
The Chinese Parrotia: A Sibling Species of the Persian Parrotia Jianhua Li and Peter Del Tredici he Persian ironwood (Parrotia persica) The Persian and Chinese ironwoods are has a well-deserved reputation as a beau- members of the witch hazel family (Hama- Ttiful garden plant—mainly because of its melidaceae), and in order to appreciate their exfoliating bark and gorgeous fall color—but uniqueness and evolutionary history we need also as a tough species that tolerates drought, to first examine one of their more familiar rela- heat, wind, and cold (Dirr 1998). Less well tives, the witch hazels (Hamamelis). There are known is the fact that Persian ironwood has five species of witch hazel distributed through- a sister species, the Chinese ironwood (Parro- out the temperate regions: H. mollis in eastern tia subaequalis) (Figure 1), growing about 5600 China, H. japonica in Japan, and H. virginiana, kilometers (3500 miles) away in eastern China. H. vernalis, H. mexicana in North America. Remarkably, this species was correctly identi- The genus shows the intercontinental disjunct fied only sixteen years ago (Deng et al. 1992a). distribution between eastern Asia and North Figure 1. Geographic distribution of Parrotia persica (in green) and P. subaequalis (in red). Note that the scale bar is 400 kilometers. Parrotia 3 Hamamelis virginiana ..... Distyliopsis tutcheri 55 84 Distylium racemosum UBC Botanical Garden Sycopsis sinensis ................... 100 ➙ MOBOT Parrotia persica ........... 91 7.8±3.8 mya Parrotia subaequalis ................................. 50 mya Parrotiopsis jacquemontana ......... Fothergilla major .... 10 changes Figure 2. Evolutionary relationships of Hamamelis and petalless genera, showing shift (the arrow) from insect to wind pollination. -
Studies of Fruit and Seed Characters of Selected Euonymus Species Bernd Schulz, Translated by Wolfgang Bopp
Studies of fruit and seed characters of selected Euonymus species Bernd Schulz, translated by Wolfgang Bopp Summary Euonymus species are particularly prized for their decorative fruits. This work describes and illustrates (in water colour), the fruits and seeds of 30 commonly cultivated species found in Central European plant collections. The text discusses the criteria for species differentiation. As well as the shape of the fruits and seeds, seed colouration is described and compared to several published accounts in an attempt to correct previous misconceptions. This paper was originally published in German in 2006 (Schulz, 2006a). This translation contains some minor additions and adjustments to the original text and has been translated to the best of our ability, albeit not being a 100% accurate translation. 1 Introduction The German common name of Euonymus europaeus, is “Pfaffenhütchen” which translates as priest’s hat or mitre, in reference to its shape. In past centuries, the wearing of such a hat was a status symbol, showing the belonging to a professional group. Priests in Germany have, since the sixteenth century, been wearing the so-called biretta1,”a stiff and square-shaped head covering as worn by priests, also found in a wider and bigger version“ (Loschek 1993). In Germany today certain clerics wear a very similar head covering, closely resembling the shape of Euonymus europaeus fruits. While I never intended to get as closely involved with this genus, the very attractive nature of the fruits and seeds captivated me, and led me to produce this work. Prior to turning to the fruits of woody broadleaves, I primarily studied the winter buds and twigs of deciduous trees and shrubs (Schulz 1999, 2004, 2006b), a subject which was then little published, apart from the works by Schneider (1903) and Trelease (1931). -
Native Shrubs for Pollinators
SupportSupport PollinatorsPollinators withwith NativeNative ShrubsShrubs BY JAMES GAGLIARDI AND HOLLY WALKER Provide a pollinator smorgasbord through the seasons with these adaptable, deciduous plants. ollinators are an integral part of our gardens and ecosystems. PHowever, loss of habitat, reduction in the number and quality of food sources, and indiscriminate use of pesticides and herbicides have taken a heavy toll on pol- linator populations everywhere. Gardeners can be part of the solution by creating land- scapes that support pollinators of all kinds. Top: A mix of perennials, shrubs, and trees in the Smithsonian Gardens provides an ideal habitat While pollinator or “butterfly” gardens for a variety of wildlife in the heart of Washington, D.C. Bottom: Thriving in a sloped bed bordering consisting of just annuals and herbaceous a parking lot near the Bird Garden, ‘Henry’s Garnet’ Virginia sweetspire draws butterflies and bees perennials are quite common, the addition with its fragrant spring blooms. Opposite page: The spherical, white blooms of buttonbush grab the of shrubs, trees, and vines greatly enhanc- attention of passersby and pollinators alike. es their habitat value. in the smithsonian Gardens in Washington, D.C., where we From a gardening perspective, not only help us to serve pollinators throughout work, we use all these plant types to draw are these tough shrubs relatively unfussy the seasons, from early in spring when the pollinators year-round. But among the about growing conditions and adaptable first insects emerge from dormancy to fall most versatile workhorses are the decidu- to gardens across most of the country, when they start preparing for winter. -
Plant List by Hardiness Zones
Plant List by Hardiness Zones Zone 1 Zone 6 Below -45.6 C -10 to 0 F Below -50 F -23.3 to -17.8 C Betula glandulosa (dwarf birch) Buxus sempervirens (common boxwood) Empetrum nigrum (black crowberry) Carya illinoinensis 'Major' (pecan cultivar - fruits in zone 6) Populus tremuloides (quaking aspen) Cedrus atlantica (Atlas cedar) Potentilla pensylvanica (Pennsylvania cinquefoil) Cercis chinensis (Chinese redbud) Rhododendron lapponicum (Lapland rhododendron) Chamaecyparis lawsoniana (Lawson cypress - zone 6b) Salix reticulata (netleaf willow) Cytisus ×praecox (Warminster broom) Hedera helix (English ivy) Zone 2 Ilex opaca (American holly) -50 to -40 F Ligustrum ovalifolium (California privet) -45.6 to -40 C Nandina domestica (heavenly bamboo) Arctostaphylos uva-ursi (bearberry - zone 2b) Prunus laurocerasus (cherry-laurel) Betula papyrifera (paper birch) Sequoiadendron giganteum (giant sequoia) Cornus canadensis (bunchberry) Taxus baccata (English yew) Dasiphora fruticosa (shrubby cinquefoil) Elaeagnus commutata (silverberry) Zone 7 Larix laricina (eastern larch) 0 to 10 F C Pinus mugo (mugo pine) -17.8 to -12.3 C Ulmus americana (American elm) Acer macrophyllum (bigleaf maple) Viburnum opulus var. americanum (American cranberry-bush) Araucaria araucana (monkey puzzle - zone 7b) Berberis darwinii (Darwin's barberry) Zone 3 Camellia sasanqua (sasanqua camellia) -40 to -30 F Cedrus deodara (deodar cedar) -40 to -34.5 C Cistus laurifolius (laurel rockrose) Acer saccharum (sugar maple) Cunninghamia lanceolata (cunninghamia) Betula pendula -
Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.