FAA-H-8083-3A, Airplane Flying Handbook -- 5 of 7 Files
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Propeller Operation and Malfunctions Basic Familiarization for Flight Crews
PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS INTRODUCTION The following is basic material to help pilots understand how the propellers on turbine engines work, and how they sometimes fail. Some of these failures and malfunctions cannot be duplicated well in the simulator, which can cause recognition difficulties when they happen in actual operation. This text is not meant to replace other instructional texts. However, completion of the material can provide pilots with additional understanding of turbopropeller operation and the handling of malfunctions. GENERAL PROPELLER PRINCIPLES Propeller and engine system designs vary widely. They range from wood propellers on reciprocating engines to fully reversing and feathering constant- speed propellers on turbine engines. Each of these propulsion systems has the similar basic function of producing thrust to propel the airplane, but with different control and operational requirements. Since the full range of combinations is too broad to cover fully in this summary, it will focus on a typical system for transport category airplanes - the constant speed, feathering and reversing propellers on turbine engines. Major propeller components The propeller consists of several blades held in place by a central hub. The propeller hub holds the blades in place and is connected to the engine through a propeller drive shaft and a gearbox. There is also a control system for the propeller, which will be discussed later. Modern propellers on large turboprop airplanes typically have 4 to 6 blades. Other components typically include: The spinner, which creates aerodynamic streamlining over the propeller hub. The bulkhead, which allows the spinner to be attached to the rest of the propeller. -
Epic Performance for Tнe Entire King Air 200 Family
BEECHCRAFT KING AIR B200GT EPIC PERFORMANCE FOR THE B200 ENTIRE KING AIR 200 FAMILY... 200 ...utilizing Swept Blade Technology Simply more of what you bought your King Air for! THE ELEMENTS OF RAISBECK’S 200-SERIES EPIC PERFORMANCE PACKAGE (Elements available separately) SWEPT BLADE TURBOFAN PROPELLERS RAM AIR RECOVERY SYSTEM ENHANCED PERFORMANCE LEADING EDGES DUAL AFT BODY STRAKES HIGH FLOTATION GEAR DOORS OPTIONAL CROWN WING LOCKERS Diaphragm Seal Particle Separator with flap Ice Shedder Turning Vane Flap Bypass Door Seal Benefits Benefits Benefits Benefits Benefits Benefits • Stunning ramp presence • Significantly increases climb and cruise • Cruise speeds and range are increased • Passenger ride quality is improved • Climb and cruise performance of standard- • FAA-certified to carry 600 pounds total cargo in • Quiet and virtually vibrationless operation performance in both normal and anti-ice • Stall speeds and characteristics are improved • Pilot control and handling qualities are gear King Airs is restored 17 cubic feet of luggage space from takeoff to touchdown operating modes • Air conditioning and cooling are more efficient enhanced • Cruise speed is increased 8 to 12 knots • Returns your cabin to your passengers • Certified around the world to meet the most • Protects against FOD—deployable for all • Outboard wing fatigue life is inherently • Air Minimum Control Speed is inherently depending on altitude • Handles skis, snowboards, camping and stringent regulations and noise requirements ground, takeoff and landing operations -
The Role and the Use of the Rudder
of us have ignorantly followed sim- The Role and the Use plistic rules. When the aircraft is in equilibrium flight, it is not accelerating in any di- of the Rudder rection or about any axis. It is only then that the attitude indicators are reli- able. You know how long it takes for Daniel L. Johnson, Different parts of the aircraft may the airspeed indicator to catch up with reporter be in quite different air. This causes a change in angle of attack. Such lags uncommanded pitch, yaw, and roll are present in all indicators, reflecting changes, to which we respond swiftly time needed for the aircraft to come "It is interesting that we, as student with control movements. The thermal into equilibrium after any change in a pilots, are given several hard and fast tries to spit you out. force or moment. rules, which, as we venture out on our There are two situations in which The primary purpose of the vertical own, arent so hard and fast after all." this is especially important: circling in stabilizer is to achieve yaw, or weath- — RBick a thermal and landing in turbulence. ercock, stability. When the fuselage is We also learn that we cannot correct yawed, the vertical stabilizer creates a - Author caveat: I have done my best to every wrinkle in the air, and we must restoring moment that realigns it with be faithful to the science while clarifying learn to "fly attitude," knowing when the airflow, in the same way a weather- control use. But like all inexpert writing, to let the little wrinkles average them- vane works. -
P180E User Guide IMPORTANT INFORMATION
P180E User Guide IMPORTANT INFORMATION This manual is for flight simulation use only. Do not attempt to use any part for real flight operations. This software is an artistic representation of the subject matter. Military Visualizations Inc. does not endorse, nor in turn, is endorsed by the manufacturer(s) of the depicted subject matter. End User License Agreement By purchasing the Milviz P180E, you are consenting to be bound by and agree to the following: COPYRIGHT: Copyright © 2021 Military Visualizations (Milviz). Milviz retains FULL copyright on the entire P180E package. DISTRIBUTION: You may NOT redistribute the P180E package in whole or in part. Any such distribution is strictly prohibited. GRANT OF LICENSE: A limited license is granted to use the Milviz P180E for personal entertainment purposes only. Commercial, training or any other use without the express permission of Military Visualizations Inc. is expressly prohibited. Any such usage will be litigated to the full extent of the law. This does NOT give you the license to modify in anyway part or whole based on the designers original work except for your own personal use. You MAY of course use the paint kit provided to create new liveries for public distribution, provided no charge is made for them! Any inquiries regarding use of this product in a commercial or training capacity should be directed via e-mail to [email protected]. DISCLAIMER: Milviz and all associates shall NOT be held responsible for any damages arising from the use of the P180E product. Copyright © 2021 Military -
How to Spin Unintentionally
so there's margin for roll correction in either direction. The yaw string in that moment, due to turbulence or normal awkwardness, will DANIEL L.JOHNSON wobble back and forth between a slip and a skid, "centered" on the average. But the wing does not care about its average air- flow; it cares about each moment's flow. How to Spin "The middle of the air" (metaphori- cally) is the safe place to be, but the centered yaw string, in a steep turn, is at the border between a skid and a slip, Unintentionally so a (literally) centered yaw string is (metaphorically) "on the edge of the air" vector pointing straight down? (centered Try to stay in the middle of the air. in a slow turn. Humorously, an actually- Do not yo near the edges of it. ball) o o J middle yaw string is metaphorically at • Does it mean drag is balanced be- The edges of the air can be recognized the brink of the cliff. by the appearance of ground, tween the wings? Thus, we should prefer the yaw string buildings, sea, trees, • Does it mean that each wing is to flop between center and our high side, and interstellar space. about equally far from stalling? not crossing the center to the low side. It is much more difficult to fly there. These things are easy to synchronize "Attention," as we explained last - unknown wit when nearly level (up to a 30-degree month, acts through 'built-in brain net- bank). But as the turn becomes steeper, works that can be improved with training hesis: Most gliding fatal accidents it becomes impossible to meet all four of and practice. -
Speed, Angle of Bank and Yaw String
Speed, Angle of Bank and Yaw String. Over the years I have been coaching it surprises me how few pilots are able to fly gliders in circles, in a manner that is necessary to milk the most out of thermals. Hopefully if you put into practice what I will mention in the next few paragraphs you will be able to take a major step forward in your flying performance. Much is spoken of the importance when thermalling of maintaining a constant angle of bank and speed. Without accuracy your circle will shift erratically and thus any deliberate modification of the circle will be negated by the otherwise inaccurate flying. However how accurate is accurate? Below is a chart giving angle of bank, on the left, against speed in knots along the top. The figures given in the grid are the diameter of the circle. E.g. a speed of 50 knots and 45° angle of bank will give a circle of 129 meters. 40 45 50 55 60 30° 145 184 227 275 328 35° 112 152 188 227 270 40° 100 126 156 189 226 45° 82 105129 156186 50° 70 89 110 133159 55° 59 74 92 111132 Now let us consider a pilot with an angle of bank of 45° and speed from 45 Knots giving a circle of 105 meters diameter. He maintains this for half a turn, and follows it by a further half a turn of 40° at 50 Knots. The very small change in speed and angle of bank but giving 156-metre diameter turn, for the next half circle, It can now be seen that these small changes of speed and angles of bank will move the centre of the original circle by around 25%. -
2009 Pocket Reference
Raisbeck Performance Systems 2009 for the Beechcraft King Air Family 2009 POCKET REFERENCE Performance Engineering Directory EPIC Performance Packages............................................................................. .2 Systems Overview............................................................................................... .3 The Seven Points of Airplane Productivity................................................ .6 EPIC Performance The.EPIC Performance Advantage......................................................................... .7 200/B200.EPIC PLATINUM.Elements..................................................................... .8 200/B200.EPIC GOLD.Elements............................................................................ .9 200/B200.EPIC PLATINUM.Benefits..................................................................... .10 200/B200.EPIC GOLD.Benefits............................................................................ .11 200/B200.EPIC PLATINUM.Performance.Comparisons....................................... .12 200/B200.EPIC GOLD.Performance.Comparisons............................................... .13 200/B200.EPIC PLATINUM.Noise.Characteristics................................................ .14 200/B200.EPIC PLATINUM.MATOW.Benefits....................................................... .15 EPIC.for.King.Airs.with.PT6A-41.Engines............................................................. .16 EPIC.for.King.Airs.with.PT6A-61.Engines............................................................ -
Aircraft General Knowledge
Part-FCL Question Bank SPL Acc. (EU) 1178/2011 and AMC FCL.115, .120, 210, .215 (Excerpt) 80 – Aircraft General Knowledge 80 Aircraft General Knowledge ECQB-PPL - SPL Publisher: EDUCADEMY GmbH [email protected] COPYRIGHT Remark: All parts of this issue are protected by copyright laws. Commercial use, also part of it requires prior permission of the publisher. For any requests, please contact the publisher. Please note that this excerpt contains only 75% of the total question bank content. Examinations may also contain questions not covered by this issue. Revision & Quality Assurance Within the process of continuous revision and update of the international question bank for Private Pilots (ECQB-PPL), we always appreciate contribution of competent experts. If you are interested in co- operation, please contact us at [email protected]. If you have comments or suggestions for this question bank, please contact us at [email protected]. v2020.2 2 80 Aircraft General Knowledge ECQB-PPL - SPL 1 Which levers in a glider's cockpit are indicated by the colors red, blue and green? Levers for usage of ... (1,00 P.) gear, speed brakes and elevator trim tab. speed brakes, cable release and elevator trim. speed brakes, cabin hood lock and gear. cabin hood release, speed brakes, elevator trim. 2 The thickness of the wing is defined as the distance between the lower and the upper side of the wing at the... (1,00 P.) thinnest part of the wing. most inner part of the wing. thickest part of the wing. most outer part of the wing. 3 How is referred to a tubular steel construction with a non self-supporting skin? (1,00 P.) Grid construction Honeycomb structure Monocoque construction Semi-monocoque construction. -
TOTAL ENERGY COMPENSATION in PRACTICE by Rudolph Brozel ILEC Gmbh Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002
TOTAL ENERGY COMPENSATION IN PRACTICE by Rudolph Brozel ILEC GmbH Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002 This article is copyright protected © ILEC GmbH, all rights reserved. Reproduction with the approval of ILEC GmbH only. FORWARD Rudolf Brozel and Juergen Schindler founded ILEC in 1981. Rudolf Brozel was the original designer of ILEC variometer systems and total energy probes. Sadly, Rudolph Brozel passed away in 1998. ILEC instruments and probes are the result of extensive testing over many years. More than 6,000 pilots around the world now use ILEC total energy probes. ILEC variometers are the variometer of choice of many pilots, for both competition and club use. Current ILEC variometers include the SC7 basic variometer, the SB9 backup variometer, and the SN10 flight computer. INTRODUCTION The following article is a summary of conclusions drawn from theoretical work over several years, including wind tunnel experiments and in-flight measurements. This research helps to explain the differences between the real response of a total energy variometer and what a soaring pilot would prefer, or the ideal behaviour. This article will help glider pilots better understand the response of the variometer, and also aid in improving an existing system. You will understand the semi-technical information better after you read the following article the second or third time. THE INFLUENCE OF ACCELERATION ON THE SINK RATE OF A SAILPLANE AND ON THE INDICATION OF THE VARIOMETER. Astute pilots may have noticed when they perform a normal pull-up manoeuvre, as they might to enter a thermal; the TE (total energy) variometer first indicates a down reading, whereas the non-compensated variometer would rapidly go to the positive stop. -
2012 Edition Raisbeck Systems
Raisbeck Systems for your King Air 2012 Edition Raisbeck Performance Systems for the entire Beechcraft King Air Family 2012 POCKET REFERENCE A Message from the CEO Performance Systems for the entire UR PERFORMANCE SYSTEMS ARE ON King Air Family OFACTORY-NEW KING AIRS. Hawker Beechcraft and their predecessors have 350ER/350i/350/300 Series added Raisbeck Engineering Systems to • Dual Aft Body Strakes their King Air factory production line. Typical • High Flotation Gear Doors of these has been our Dual Aft Body Strakes • Crown Wing Lockers (2001), Nacelle Wing Lockers (2004) on the King Air 350. In 2011, our Ram Air Recovery System was added to the new King Air 250. And...King Air new aircraft salesmen offer our systems as optional 250/B200GT/B200/200 Series additions prior to delivery. • Power Props • Ram Air Recovery System WHY IS THIS IMPORTANT TO OUR CUSTOM- • Enhanced Performance Leading Edges ERS, OUR DEALERS, AND OUR BUSINEss? • Dual Aft Body Strakes In a word: market acceptance. There is James D. Raisbeck, C.E.O. • High Flotation Gear Doors no question that factory acceptance and [email protected] • Crown Wing Lockers endorsement has been a major milestone in our market penetration. Many millions of flight hours on thousands C90GTx/C90GTi/C90GT/C90/90/E90 Series of King Airs, and not one FAA Airworthi- • Power Props WHY HAVE OUR SYSTEMS BEEN SO UNIVER- ness Directive or FAA-Mandatory Service • Dual Aft Body Strakes SALLY ACCEPTED? Raisbeck Engineering Bulletin! • Crown Wing Lockers has dedicated itself for the past 30 years • Increased Gross Weight to developing systems which measurably FOR ME, A PLEASANT AND REWARDING improve all King Air models. -
Crash Following In-Flight Fire Fresh Air, Inc. Convair CV-440-38, N153JR, San Juan, Puerto Rico, March 15, 2012
Crash Following In-Flight Fire Fresh Air, Inc. Convair CV-440-38, N153JR San Juan, Puerto Rico March 15, 2012 Accident Report NTSB/AAR-14/04 National PB2015-101257 Transportation Safety Board NTSB/AAR-14/04 PB2015-101257 Notation 8601 Adopted November 17, 2014 Aircraft Accident Report Crash Following In-Flight Fire Fresh Air, Inc. Convair CV-440-38, N153JR San Juan, Puerto Rico March 15, 2012 National Transportation Safety Board 490 L’Enfant Plaza, S.W. Washington, D.C. 20594 National Transportation Safety Board. 2014. Crash Following In-Flight Fire, Fresh Air, Inc., Convair CV-440-38, N153JR, San Juan, Puerto Rico, March 15, 2012. Aircraft Accident Report NTSB/AAR-14/04. Washington, DC. Abstract: This report discusses the March 15, 2012, accident involving a Convair CV-440-38, N153JR, operated by Fresh Air, Inc., which crashed into a lagoon about 1 mile east of the departure end of runway 10 at Luis Muñoz Marín International Airport, San Juan, Puerto Rico. The two pilots died, and the airplane was destroyed by impact forces. Safety issues include inadequate Federal Aviation Administration (FAA) oversight of 14 Code of Federal Regulations (CFR) Part 125 operations, inadequate evaluation of Fresh Air’s compliance with FAA-approved procedures, and evaluation of 14 CFR Part 125 pilots using another operator’s operations specifications. Safety recommendations are addressed to the FAA. The National Transportation Safety Board (NTSB) is an independent federal agency dedicated to promoting aviation, railroad, highway, marine, and pipeline safety. Established in 1967, the agency is mandated by Congress through the Independent Safety Board Act of 1974 to investigate transportation accidents, determine the probable causes of the accidents, issue safety recommendations, study transportation safety issues, and evaluate the safety effectiveness of government agencies involved in transportation. -
(JAR)/Federal Aviation Regulations (FAR) 23 Harmonization
Federal Aviation Administration Aviation Rulemaking Advisory Committee General Aviation Certification and Operations Issue Area JAR/FAR 23 Harmonization Working Group Task 4 – Flight test Task Assignment IIIII~IMIIirt•·•·llllllllll .. ll .. lllllllllt•r•::rlrllllllllllllllllllllllllllllllllllll~ to aDd 6:01Bpatible witla tlaat as8ipecl ao D. Draft a separate Notice of Proposed Federal Aviation Admlnlatnitlon the Avi.ation RulemakiJJs Advisory Rulemakina for Tasks 2-5 proposing CoiMriHee. The General Avielion and new or revised requirements, a Aviation Rulemaklng Advlaory Business AU-plaae Subcommittee, supportina economic analysis. and other Commmee; Gener11l Av.. tlon 8IKI consequently, estalliiebed t8e JAR/FAR required analysis, with any other Buslne.. Airplane SubcommlttH: Z3 HannenizatiOit Workiat Greup. conateral documeRts (sucb as. Advisory JAR/FAR 23 HarmonlzaUon Working Specifical1J, dae Work.ina Grevp's Circulars) the Workina Group Group tasb are tbe foliowing: The JAR/FAR 23 determines to be needed. Harmonization Working Group ii E. Give a status reporl oa each task at AGENCY: Federal Aviation ct:arged wUh making recommendations each meetina of the Subcommittee. Administration (FAA), DOT. to the General A viatton and Bulinest The JAR/FAR 23 Harmonization ACTION: Notice of establishment of JAR/ Airplane Subcommittee concerning the Working Croup win be comprised of FAR 23 Harmonization Working Group. FAA disposition of the CoDowing experts from those orpnlzations having rulemalcing subj.ecta recently an interest in the task assigned to it. A SUMMARY: Notice is given of the coordinated between ttse JAA 1111d the working group member need not establishment of the JAR/FAR Z3 FAA~ necessarily be a representative or one of Harmonization Working Group by the Task 1-Review/AR Issue$: Review the organizations of the parent General General Aviation and Business Airplane JAR 23 Issue No.