Seed Treatments for Control of Acidovorax Citrulli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Whole Issue
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 7 PARIS, 2009-07-01 CONTENTS _____________________________________________________________________ Pests & Diseases 2009/128 - First record of Monilinia fructicola in Switzerland 2009/129 - First report of Gymnosporangium yamadae in the USA 2009/130 - Isolated finding of Diaporthe vaccinii in the Netherlands 2009/131 - Hymenoscyphus albidus is the teleomorph of Chalara fraxinea 2009/132 - A new real-time PCR assay to detect Chalara fraxinea 2009/133 - Acidovorax citrulli: addition to the EPPO Alert List 2009/134 - First report of Chrysanthemum stunt viroid in Finland 2009/135 - First report of Tomato chlorotic dwarf viroid in Finland 2009/136 - Transmission of Tomato chlorotic dwarf viroid by tomato seeds 2009/137 - Potato spindle tuber viroid detected on tomatoes growing near infected Solanum jasminoides in Liguria, Italy 2009/138 - Strawberry vein banding virus detected in Italy 2009/139 - Incursion of Tomato spotted wilt virus in Finland 2009/140 - Incursion of Bemisia tabaci in Finland 2009/141 - Incursion of Liriomyza huidobrensis in Finland 2009/142 - New data on quarantine pests and pests of the EPPO Alert List 2009/143 - Quarantine List of Moldova 2009/144 - EPPO report on notifications of non-compliance CONTENTS _______________________________________________________________________Invasive Plants 2009/145 - New records of Hydrocotyle ranunculoides in France 2009/146 - Report of the Bern Convention meeting on Invasive Alien Species, Brijuni National Park (HR), 2009-05-05/07 2009/147 - “Plant invasion in Italy, an overview”: a new publication 2009/148 - New data on alien plants in Italy 2009/149 - Lists of invasive alien plants in Russia 2009/150 - The new NOBANIS Newsletter 2009/151 - The Convention on Biological Diversity magazine “business 2010” dedicated to invasive alien species 1, rue Le Nôtre Tel. -
Proteomic and Phenotypic Analyses of a Putative Glycerol-3-Phosphate Dehydrogenase Required for Virulence in Acidovorax Citrulli
Plant Pathol. J. 37(1) : 36-46 (2021) https://doi.org/10.5423/PPJ.OA.12.2020.0221 The Plant Pathology Journal pISSN 1598-2254 eISSN 2093-9280 ©The Korean Society of Plant Pathology Research Article Open Access Fast Track Proteomic and Phenotypic Analyses of a Putative Glycerol-3-Phosphate Dehydrogenase Required for Virulence in Acidovorax citrulli Minyoung Kim1, Jongchan Lee1, Lynn Heo1, Sang Jun Lee 2*, and Sang-Wook Han 1* 1Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea 2Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea (Received on December 9, 2020; Revised on December 28, 2020; Accepted on December 29, 2020) Acidovorax citrulli (Ac) is the causal agent of bacterial presence of glycerol, indicating that GlpdAc is involved fruit blotch (BFB) in watermelon, a disease that poses in glycolysis. AcΔglpdAc(EV) also displayed higher cell- a serious threat to watermelon production. Because of to-cell aggregation than the wild-type bacteria, and tol- the lack of resistant cultivars against BFB, virulence erance to osmotic stress and ciprofloxacin was reduced factors or mechanisms need to be elucidated to control and enhanced in the mutant, respectively. These results the disease. Glycerol-3-phosphate dehydrogenase is the indicate that GlpdAc is involved in glycerol metabolism enzyme involved in glycerol production from glucose and other mechanisms, including virulence, demon- during glycolysis. In this study, we report the functions strating that the protein has pleiotropic effects. Our of a putative glycerol-3-phosphate dehydrogenase in study expands the understanding of the functions of Ac (GlpdAc) using comparative proteomic analysis and proteins associated with virulence in Ac. -
Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method. -
Acidovorax Citrulli
Bulletin OEPP/EPPO Bulletin (2016) 46 (3), 444–462 ISSN 0250-8052. DOI: 10.1111/epp.12330 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/127 (1) Diagnostics Diagnostic PM 7/127 (1) Acidovorax citrulli Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved in 2016-09. Acidovorax citrulli.1 This Standard should be used in conjunction with PM 7/76 Use of EPPO diagnostic protocols. strain, were mainly isolated from non-watermelon, cucurbit 1. Introduction hosts such as cantaloupe melon (Cucumis melo var. Acidovorax citrulli is the causal agent of bacterial fruit cantalupensis), cucumber (Cucumis sativus), honeydew blotch and seedling blight of cucurbits (Webb & Goth, melon (Cucumis melo var. indorus), squash and pumpkin 1965; Schaad et al., 1978). This disease was sporadic until (Cucurbita pepo, Cucurbita maxima and Cucurbita the late 1980s (Wall & Santos, 1988), but recurrent epi- moschata) whereas Group II isolates were mainly recovered demics have been reported in the last 20 years (Zhang & from watermelon (Walcott et al., 2000, 2004; Burdman Rhodes, 1990; Somodi et al., 1991; Latin & Hopkins, et al., 2005). While Group I isolates were moderately 1995; Demir, 1996; Assis et al., 1999; Langston et al., aggressive on a range of cucurbit hosts, Group II isolates 1999; O’Brien & Martin, 1999; Burdman et al., 2005; Har- were highly aggressive on watermelon but moderately ighi, 2007; Holeva et al., 2010; Popovic & Ivanovic, 2015). aggressive on non-watermelon hosts (Walcott et al., 2000, The disease is particularly severe on watermelon (Citrullus 2004). -
Development of Molecular Markers for Detection of Acidovorax Citrulli Strains Causing Bacterial Fruit Blotch Disease in Melon
International Journal of Molecular Sciences Article Development of Molecular Markers for Detection of Acidovorax citrulli Strains Causing Bacterial Fruit Blotch Disease in Melon Md. Rafiqul Islam, Mohammad Rashed Hossain, Hoy-Taek Kim *, Denison Michael Immanuel Jesse , Md. Abuyusuf, Hee-Jeong Jung, Jong-In Park and Ill-Sup Nou * Department of Horticulture, Sunchon National University, Suncheon, Jeonnam 57922, Korea; rafi[email protected] (M.R.I.); [email protected] (M.R.H.); [email protected] (D.M.I.J.); [email protected] (M.A.); [email protected] (H.-J.J.); [email protected] (J.-I.P.) * Correspondence: [email protected] (H.-T.K.); [email protected] (I.-S.N.); Tel.: +82-61-750-3249 (I.-S.N.) Received: 4 May 2019; Accepted: 31 May 2019; Published: 2 June 2019 Abstract: Acidovorax citrulli (A. citrulli) strains cause bacterial fruit blotch (BFB) in cucurbit crops and affect melon significantly. Numerous strains of the bacterium have been isolated from melon hosts globally. Strains that are aggressively virulent towards melon and diagnostic markers for detecting such strains are yet to be identified. Using a cross-inoculation assay, we demonstrated that two Korean strains of A. citrulli, NIHHS15-280 and KACC18782, are highly virulent towards melon but avirulent/mildly virulent to the other cucurbit crops. The whole genomes of three A. citrulli strains isolated from melon and three from watermelon were aligned, allowing the design of three primer sets (AcM13, AcM380, and AcM797) that are specific to melon host strains, from three pathogenesis-related genes. These primers successfully detected the target strain NIHHS15-280 in polymerase chain reaction (PCR) assays from a very low concentration of bacterial gDNA. -
Insights from the Genome Sequence of Acidovorax Citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits
fmicb-07-00430 April 4, 2016 Time: 15:30 # 1 ORIGINAL RESEARCH published: 06 April 2016 doi: 10.3389/fmicb.2016.00430 Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits Noam Eckshtain-Levi1, Dafna Shkedy2, Michael Gershovits2, Gustavo M. Da Silva3, Dafna Tamir-Ariel1, Ron Walcott3, Tal Pupko2 and Saul Burdman1* 1 Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel, 2 Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel, 3 Department of Plant Pathology, The University of Georgia, Athens, GA, USA Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major Edited by: groups based on DNA fingerprint analyses and biochemical properties. Group I strains Gail Preston, University of Oxford, UK have been generally isolated from non-watermelon cucurbits, while group II strains Reviewed by: are closely associated with watermelon. In the present study, we report the genome Weixing Shan, sequence of M6, a group I model A. citrulli strain, isolated from melon. We used Northwest A&F University, China comparative genome analysis to investigate differences between the genome of strain Melanie J. Filiatrault, United States Department M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of Agriculture-Agricultural Research of A. -
Memorias De Avances De
0 MEMORIAS DE AVANCES DE INVESTIGACIÓN POSGRADO EN FITOSANIDAD 2019 COLEGIO DE POSTGRADUADOS CAMPUS MONTECILLO EDITORES OBDULIA LOURDES SEGURA LEON REMIGIO ANASTACIO GUZMÁN PLAZOLA MARCO ANTONIO MAGALLANES TAPIA GONZALO ESPINOSA VÁSQUEZ COMITÉ ORGANIZADOR REMIGIO ANASTACIO GUZMÁN PLAZOLA OBDULIA LOURDES SEGURA LEÓN MARCO ANTONIO MAGALLANES TAPIA GONZALO ESPINOSA VÁSQUEZ COORDINACIÓN DE DIFUSIÓN CLAUDIA CONTRERAS ORTÍZ DISEÑO DE PORTADA JORGE VALDEZ CARRASCO Montecillo, Texcoco, México, 15 de noviembre de 2019 0 AVANCES DE INVESTIGACIÓN - POSGRADO EN FITOSANIDAD 2019 PRESENTACIÓN El evento de Avances de Investigación, tuvo su origen en 1990, como una iniciativa dentro del entonces Instituto de Fitosanidad, ahora Posgrado en Fitosanidad. En 2019, se cumplen 28 años de su inicio y por primera vez; estos se unen al festejo del 60 aniversario de la creación de los Programas que le dieron su origen: Fitopatología y Entomología, en 1959. El evento de presentación de los avances de investigación del Posgrado en Fitosanidad tiene diferentes objetivos académicos, entre estos: a) que los estudiantes de maestría y doctorado próximos a graduarse como maestros o doctores en ciencias expongan, de forma oral, los trabajos de investigación que desarrollan; b) que obtengan experiencia para presentase ante un público académico experto en el área; c) favorecer la interacción académica entre las diferentes áreas de la Fitosanidad y del Colegio de Postgraduados y d) conocer los avances científicos y tecnológicos que se desarrollan en favor de la protección -
Genomic Features of Bacterial Adaptation to Plants
ARTICLES https://doi.org/10.1038/s41588-017-0012-9 Genomic features of bacterial adaptation to plants Asaf Levy 1, Isai Salas Gonzalez2,3, Maximilian Mittelviefhaus4, Scott Clingenpeel 1, Sur Herrera Paredes 2,3,15, Jiamin Miao5,16, Kunru Wang5, Giulia Devescovi6, Kyra Stillman1, Freddy Monteiro2,3, Bryan Rangel Alvarez1, Derek S. Lundberg2,3, Tse-Yuan Lu7, Sarah Lebeis8, Zhao Jin9, Meredith McDonald2,3, Andrew P. Klein2,3, Meghan E. Feltcher2,3,17, Tijana Glavina Rio1, Sarah R. Grant 2, Sharon L. Doty 10, Ruth E. Ley 11, Bingyu Zhao5, Vittorio Venturi6, Dale A. Pelletier7, Julia A. Vorholt4, Susannah G. Tringe 1,12*, Tanja Woyke 1,12* and Jeffery L. Dangl 2,3,13,14* Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then com- pared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe–microbe competition between plant-associated bacteria. We also identified 64 plant-associated pro- tein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant–microbe interactions and provides potential leads for efficient and sustain- able agriculture through microbiome engineering. -
Transfer of Several Phytopathogenic Pseudomonas Species to Acidovorax As Acidovorax Avenae Subsp
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1992, p. 107-119 Vol. 42, No. 1 0020-7713/92/010107-13$02 .OO/O Copyright 0 1992, International Union of Microbiological Societies Transfer of Several Phytopathogenic Pseudomonas Species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov. , Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci A. WILLEMS,? M. GOOR, S. THIELEMANS, M. GILLIS,” K. KERSTERS, AND J. DE LEY Laboratorium voor Microbiologie en microbiele Genetica, Rijksuniversiteit Gent, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium DNA-rRNA hybridizations, DNA-DNA hybridizations, polyacrylamide gel electrophoresis of whole-cell proteins, and a numerical analysis of carbon assimilation tests were carried out to determine the relationships among the phylogenetically misnamed phytopathogenic taxa Pseudomonas avenue, Pseudomonas rubrilineans, “Pseudomonas setariae, ” Pseudomonas cattleyae, Pseudomonas pseudoalcaligenes subsp. citrulli, and Pseudo- monas pseudoalcaligenes subsp. konjaci. These organisms are all members of the family Comamonadaceae, within which they constitute a separate rRNA branch. Only P. pseudoalcaligenes subsp. konjaci is situated on the lower part of this rRNA branch; all of the other taxa cluster very closely around the type strain of P. avenue. When they are compared phenotypically, all of the members of this rRNA branch can be differentiated from each other, and they are, as a group, most closely related to the genus Acidovorax. DNA-DNA hybridization experiments showed that these organisms constitute two genotypic groups. We propose that the generically misnamed phytopathogenic Pseudomonas species should be transferred to the genus Acidovorax as Acidovorax avenue and Acidovorax konjaci. Within Acidovorax avenue we distinguished the following three subspecies: Acidovorax avenue subsp. -
Complete Assembly of the Genome of an Acidovorax Citrulli Strain Reveals a Naturally Occurring Plasmid in This Species
fmicb-10-01400 June 19, 2019 Time: 15:19 # 1 ORIGINAL RESEARCH published: 20 June 2019 doi: 10.3389/fmicb.2019.01400 Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species Rongzhi Yang1, Diego Santos Garcia2, Francisco Pérez Montaño1,3, Gustavo Mateus da Silva1, Mei Zhao4, Irene Jiménez Guerrero1, Tally Rosenberg1, Gong Chen4, Inbar Plaschkes5, Shai Morin2, Ron Walcott4 and Saul Burdman1* 1 Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel, 2 Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel, 3 Department of Microbiology, University of Seville, Seville, Spain, 4 Department of Plant Pathology, University of Georgia, Athens, GA, United States, 5 Bioinformatics Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel Edited by: Martin G. Klotz, Washington State University, Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat United States to cucurbit crop production worldwide. Based on genetic and phenotypic properties, Reviewed by: A. citrulli strains are divided into two major groups: group I strains have been generally Robert Wilson Jackson, isolated from melon and other non-watermelon cucurbits, while group II strains are University of Reading, United Kingdom closely associated with watermelon. In a previous study, we reported the genome Tingchang Zhao, of the group I model strain, M6. At that time, the M6 genome was sequenced by Chinese Academy of Agricultural Sciences, China MiSeq Illumina technology, with reads assembled into 139 contigs. -
Characterization of Acidovorax Citrulli Virulence on Watermelon
CHARACTERIZATION OF ACIDOVORAX CITRULLI VIRULENCE ON WATERMELON AND MELON by MARIJA ZIVANOVIC (Under the Direction of Ronald R. Walcott) ABSTRACT Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB) of cucurbits whose population can be distinguished into two groups (I and II). The goal of this research was to further characterize the differences between these groups. We observed no difference in temporal population growth dynamics between AAC00-1 (group II) and M6 (group I) on watermelon and melon. In contrast, in a natural infection assay relative BFB incidence on melon seedlings exposed to group II A. citrulli strains was significantly lower (~ 14.5 %) than on melon seedlings exposed to group I strains (~ 85.3 %), or watermelon seedlings exposed to group I and II strains (81.7 % and 82.3 %, respectively). We also investigated the role of the type III effector AvrBsT from AAC00-1 by expression in M6 and found decreased virulence of the mutant on watermelon and melon seedlings relative to wild-type AC00-1 and M6 strains. INDEX WORDS: Acidovorax citrulli, bacterial fruit blotch, relative BFB incidence CHARACTERIZATION OF ACIDOVORAX CITRULLI VIRULENCE ON WATERMELON AND MELON by MARIJA ZIVANOVIC B.S., University of Belgrade, Serbia, 2010 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2014 © 2014 MARIJA ZIVANOVIC All Rights Reserved CHARACTERIZATION OF ACIDOVORAX CITRULLI VIRULENCE ON WATERMELON AND MELON by MARIJA ZIVANOVIC Major Professor: Ronald R. Walcott Committee: Timothy P. Denny David Langston Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2014 ACKNOWLEDGEMENTS I would like to thank everybody who made the completion of my thesis possible: Dr. -
Eukaryota Fungi Bacteria
Streptomyces-antibioticus Streptomyces-griseus Streptomyces-lincolnensis Streptomyces-phaeochromogenes Streptomyces-scabiei Streptomyces-violaceoruber Streptomyces-viridochromogenes Streptomyces-griseoruber Streptomyces-sclerotialus Streptomyces-olivochromogenes Streptomyces-cellulosae Streptomyces-chartreusis Streptomyces-cattleya Streptomyces-galbus Streptomyces-caelestis Streptomyces-subrutilus Streptomyces-acidiscabies Streptomyces-diastatochromogenes Streptomyces-neyagawaensis Streptomyces-canus Streptomyces-yerevanensis Streptomyces-afghaniensis Streptomyces-bicolor Streptomyces-cellostaticus Streptomyces-griseorubiginosus Streptomyces-phaeopurpureus Streptomyces-prasinus Streptomyces-prunicolor Streptomyces-pseudovenezuelae Streptomyces-resistomycificus Streptomyces Streptomyces-iakyrus Streptomyces-katrae Streptomyces-mirabilis Streptomyces-peruviensis Streptomyces-regalis Streptomyces-torulosus Streptomyces-turgidiscabies Streptomyces-ipomoeae Streptomyces-phaeoluteigriseus Streptomyces-curacoi Streptomyces-azureus Streptomyces-europaeiscabiei Streptomyces-stelliscabiei Streptomyces-puniciscabiei Streptomyces-aureus Streptomyces-ossamyceticus Streptomyces-variegatus Streptomyces-roseochromogenus Streptomyces-xylophagus Streptomyces-sviceus Streptomyces-fulvoviolaceus Streptomyces-bungoensis Streptomyces-erythrochromogenes Streptomycetaceae Streptomyces-davaonensis Streptomyces-olindensis Streptomyces-rubellomurinus Streptomyces-indicus Streptomyces-caeruleatus Streptomyces-hokutonensis Streptomyces-humi Streptomyces-jeddahensis