Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Diversity of Cultivable Hydrocarbon-Degrading
THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA Sonia Sekkour, Abdelkader Bekki, Zoulikha Bouchiba, Timothy Vogel, Elisabeth Navarro, Ing Sonia To cite this version: Sonia Sekkour, Abdelkader Bekki, Zoulikha Bouchiba, Timothy Vogel, Elisabeth Navarro, et al.. THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA. Journal of Microbiology, Biotechnology and Food Sciences, Faculty of Biotechnology and Food Sci- ences, Slovak University of Agriculture in Nitra, 2019, 9 (1), pp.70-77. 10.15414/jmbfs.2019.9.1.70-77. ird-02497490 HAL Id: ird-02497490 https://hal.ird.fr/ird-02497490 Submitted on 3 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA Sonia SEKKOUR1*, Abdelkader BEKKI1, Zoulikha BOUCHIBA1, Timothy M. Vogel2, Elisabeth NAVARRO2 Address(es): Ing. Sonia SEKKOUR PhD., 1Université Ahmed Benbella, Faculté des sciences de la nature et de la vie, Département de Biotechnologie, Laboratoire de biotechnologie des rhizobiums et amélioration des plantes, 31000 Oran, Algérie. -
Identification of Genes Responsible for Ochratoxin-A Biodegradation By
Szent István University PhD School of Environmental Sciences Identification of genes responsible for ochratoxin-A biodegradation by Cupriavidus basilensis ŐR16 and valuation of Cupriavidus genus for mycotoxins biodegradation potential Thesis of Doctoral Dissertation (PhD) Mohammed Talib Jasim AL-Nussairawi Gödöllő, Hungary 2020 I. DECLARATION I declare that this thesis is a record of original work and contains no material that has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text. Name: Ph.D. School of Environmental Sciences Discipline: Environmental Sciences / Biotechnology Leader of Doctoral School: Csákiné Dr. Erika Michéli, Ph.D. professor, head of department Department of Soil science and Agrochemistry Faculty of Agricultural and Environmental Sciences Institute of Environmental Sciences Szent István University Supervisor: Matyas Cserhati, Ph.D. associate professor Department of Environmental Protection and Ecotoxicology Faculty of Agricultural and Environmental Sciences Institute of Aquaculture and Environmental Protection Szent István University ........................................................... ................................................... Approval of School Leader Approval of Supervisor 2 Table of Contents I. DECLARATION ................................................................................................................... -
Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms. -
Caracterización Fenotípica Y Genotípica De Doce Rizobios Aislados De Diversas Regiones Geográficas De Venezuela
Caracterización fenotípica y genotípica de doce rizobios aislados de diversas regiones geográficas de Venezuela María Eugenia Marquina, Néstor Enrique González & Yulimar Castro Laboratorio de Fijación Biológica de Nitrógeno y Cultivos de Tejidos Vegetales in vitro, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes. Núcleo Pedro Rincón Gutiérrez, Edificio A, 2º piso, La Hechicera, Mérida, Venezuela; [email protected], [email protected], [email protected] Recibido 10-VIII-2010. Corregido 08-I-2011. Aceptado 08-II-2011. Abstract: Phenotypic and genotypic characterization of twelve rhizobial isolates from different regions of Venezuela. Rhizobial taxonomy and systematics have progressed substantially, nevertheless, few studies have been developed on venezuelan species. This study evaluated the phenotypic and genetic variation between 12 venezuelan indigenous rhizobial isolates and 10 international referential strains, by phenotypical traits and DNA molecular markers. In this regard, a PCR-RFLP of the 16S rDNA gene, the presence of large plasmids, metabolic assays in solid media, salinity resistance, pH and temperature growth conditions, and intrinsic antibiotic resis- tance were assayed. In reference to the phenotypic attributes, we recognized three main groups: A group I, which comprised all the strains metabolizing between 67.5%-90% of the C and N sources. They were also acid-tolerant, as well as acid producers, capable of growing at 40ºC and in high salinity conditions (2-2.5% NaCl). With regard to the antibiotic sensitivity, this group was susceptible to a 30% of the antibiotic assayed. Strains belonging to Group II exhibited a lower salt tolerance (0.1-1.5%NaCl), as well as a lower acid tolerance, since they grew well at pH values equal or higher than 5.0. -
Evolution of Gene Blocks in Bacteria Using an Event-Based Model
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Evolution of gene blocks in bacteria using an event-based model Huy Nguyen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Nguyen, Huy, "Evolution of gene blocks in bacteria using an event-based model" (2020). Graduate Theses and Dissertations. 18368. https://lib.dr.iastate.edu/etd/18368 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Evolution of gene blocks in bacteria using an event-based model by Huy Nguyen A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Computer Science Program of Study Committee: Oliver Eulenstein, Co-major Professor Iddo Friedberg, Co-major Professor David Fernandez-Baca Dennis V. Lavrov Xiaoqiu Huang The student author, whose presentation of the scholarship herein was approved by the program of the study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Huy Nguyen, 2020. All rights reserved. ii DEDICATION To my parents, Danh Nguyen and Hoa Tran, who have encouraged, inspired, and enabled me to pursue my educational studies, and my family and friends for their support throughout my studies at home and abroad. -
Hydrogenophaga Electricum Sp. Nov., Isolated from Anodic Biofilms of an Acetate-Fed Microbial Fuel Cell
J. Gen. Appl. Microbiol., 59, 261‒266 (2013) Full Paper Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell Zen-ichiro Kimura and Satoshi Okabe* Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060‒8628, Japan (Received October 25, 2012; Accepted April 2, 2013) A Gram-negative, non-spore-forming, rod-shaped bacterial strain, AR20T, was isolated from an- odic biofilms of an acetate-fed microbial fuel cell in Japan and subjected to a polyphasic taxo- nomic study. Strain AR20T grew optimally at pH 7.0‒8.0 and 25°C. It contained Q-8 as the pre- dominant ubiquinone and C16:0, summed feature 3 (C16:1ω7c and/or iso-C15:02OH), and C18:1ω7c as the major fatty acids. The DNA G+C content was 67.1 mol%. A neighbor-joining phylogenetic tree revealed that strain AR20T clustered with three type strains of the genus Hydrogenophaga (H. flava, H. bisanensis and H. pseudoflava). Strain AR20T exhibited 16S rRNA gene sequence similarity values of 95.8‒97.7% to the type strains of the genus Hydrogenophaga. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain AR20T is considered a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga electricum sp. nov. is pro- posed. The type strain is AR20T (= KCTC 32195T = NBRC 109341T). Key Words—Hydrogenophaga electricum; hydrogenotrophic exoelectrogen; microbial fuel cell Introduction the MFC was analyzed. Results showed that bacteria belonging to the genera Geobacter and Hydrogenoph- Microbial fuel cells (MFCs) are devices that are able aga were abundantly present in the anodic biofilm to directly convert the chemical energy of organic community (Kimura and Okabe, 2013). -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Degradation of 2-Nitrobenzoate by Burkholderia Terrae Strain KU-15
Biosci. Biotechnol. Biochem., 71 (1), 145–151, 2007 Degradation of 2-Nitrobenzoate by Burkholderia terrae Strain KU-15 y Hiroaki IWAKI and Yoshie HASEGAWA Department of Biotechnology, Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan Received July 25, 2006; Accepted September 17, 2006; Online Publication, January 7, 2007 [doi:10.1271/bbb.60419] Bacterial strain KU-15, identified as a Burkholderia tified and characterized. This information has contrib- terrae by 16S rRNA gene sequence analysis, was one of uted to understanding of the nature of the biodegradation 11 new isolates that grew on 2-nitrobenzoate as sole of nitroaromatic compounds and the development of source of carbon and nitrogen. Strain KU-15 was also bioremediation solutions. Very little research, however, found to grow on anthranilate, 4-nitrobenzoate, and 4- has been done on the degradation of 2-nitrobenzoate aminobenzoate. Whole cells of strain KU-15 were found (2-NBA). to accumulate ammonia in the medium, indicating that The degradation pathway of 2-NBA has been estab- the degradation of 2-nitrobenzoate proceeds through a lished from only two microorganisms: Pseudomonas reductive route. Metabolite analyses by high-perform- fluorescens strain KU-7 and Arthrobacter protophor- ance liquid chromatography indicated that 3-hydrox- miae strain RKJ100 (Fig. 5).13–15) These strains share the yanthranilate, anthranilate, and catechol are intermedi- same 2-NBA degradation pathway, including the for- ates of 2-nitrobenzoate metabolism in strain KU-15. mation of 2-hydroxylaminobenzoate (2-HABA) by an Enzyme studies suggested that 2-nitrobenzoate degra- NADPH-dependent nitroreductase. -
Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method. -
Acidovorax Citrulli
Bulletin OEPP/EPPO Bulletin (2016) 46 (3), 444–462 ISSN 0250-8052. DOI: 10.1111/epp.12330 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/127 (1) Diagnostics Diagnostic PM 7/127 (1) Acidovorax citrulli Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved in 2016-09. Acidovorax citrulli.1 This Standard should be used in conjunction with PM 7/76 Use of EPPO diagnostic protocols. strain, were mainly isolated from non-watermelon, cucurbit 1. Introduction hosts such as cantaloupe melon (Cucumis melo var. Acidovorax citrulli is the causal agent of bacterial fruit cantalupensis), cucumber (Cucumis sativus), honeydew blotch and seedling blight of cucurbits (Webb & Goth, melon (Cucumis melo var. indorus), squash and pumpkin 1965; Schaad et al., 1978). This disease was sporadic until (Cucurbita pepo, Cucurbita maxima and Cucurbita the late 1980s (Wall & Santos, 1988), but recurrent epi- moschata) whereas Group II isolates were mainly recovered demics have been reported in the last 20 years (Zhang & from watermelon (Walcott et al., 2000, 2004; Burdman Rhodes, 1990; Somodi et al., 1991; Latin & Hopkins, et al., 2005). While Group I isolates were moderately 1995; Demir, 1996; Assis et al., 1999; Langston et al., aggressive on a range of cucurbit hosts, Group II isolates 1999; O’Brien & Martin, 1999; Burdman et al., 2005; Har- were highly aggressive on watermelon but moderately ighi, 2007; Holeva et al., 2010; Popovic & Ivanovic, 2015). aggressive on non-watermelon hosts (Walcott et al., 2000, The disease is particularly severe on watermelon (Citrullus 2004). -
Diverse Bacterial Communities Are Recruited on Spores of Different
1 Diverse bacterial communities are recruited on spores of different 2 arbuscular mycorrhizal fungal isolates 3 Monica Agnolucci*, Fabio Battini, Caterina Cristani, Manuela Giovannetti 4 Department of Agriculture, Food and Environment, University of Pisa, Via del 5 Borghetto 80, 56124 Pisa, Italy 6 7 RUNNING HEAD: Diverse bacterial communities recruited on AMF spores 8 *Corresponding author: M. Agnolucci, Department of Agriculture, Food and 9 Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy 10 Phone: +39.0502216647, Fax: +39.0502220606, e-mail address: 11 [email protected] 12 13 Abstract 14 Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbioses with the roots of 15 most food crops, playing a key role in soil fertility and plant nutrition and health. The 16 beneficial activity of AMF may be positively affected by bacterial communities living 17 associated with mycorrhizal roots, spores and extraradical hyphae. Here we investigated 18 the diversity of bacterial communities associated with the spores of six AMF isolates, 19 belonging to different genera and species and maintained for several generations in pot- 20 cultures with the same host plant, under the same environmental conditions and with the 21 same soil. The occurrence of large bacterial communities intimately associated with 22 spores of the AMF isolates was revealed by PCR-DGGE analysis and sequencing of 1 23 DGGE bands. Cluster and canonical correspondence analysis showed that the six AMF 24 isolates displayed diverse bacterial community profiles unrelated with their taxonomic 25 position, suggesting that each AMF isolate recruits on its spores a different microbiota. 26 The 48 sequenced fragments were affiliated with Actinomycetales, Bacillales, 27 Pseudomonadales, Burkholderiales, Rhizobiales and with Mollicutes related 28 endobacteria (Mre). -
Phenotypic and Genetic Diversity of Pseudomonads
PHENOTYPIC AND GENETIC DIVERSITY OF PSEUDOMONADS ASSOCIATED WITH THE ROOTS OF FIELD-GROWN CANOLA A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon By Danielle Lynn Marie Hirkala © Copyright Danielle Lynn Marie Hirkala, November 2006. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 i ABSTRACT Pseudomonads, particularly the fluorescent pseudomonads, are common rhizosphere bacteria accounting for a significant portion of the culturable rhizosphere bacteria.