Sechium Edule(Jacq.)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Resources of the Genus Cucumis and Their Morphological Description (English-Czech Version)
Genetic resources of the genus Cucumis and their morphological description (English-Czech version) E. KŘÍSTKOVÁ1, A. LEBEDA2, V. VINTER2, O. BLAHOUŠEK3 1Research Institute of Crop Production, Praha-Ruzyně, Division of Genetics and Plant Breeding, Department of Gene Bank, Workplace Olomouc, Olomouc-Holice, Czech Republic 2Palacký University, Faculty of Science, Department of Botany, Olomouc-Holice, Czech Republic 3Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, Olomouc-Holice, Czech Republic ABSTRACT: Czech collections of Cucumis spp. genetic resources includes 895 accessions of cultivated C. sativus and C. melo species and 89 accessions of wild species. Knowledge of their morphological and biological features and a correct taxonomical ranging serve a base for successful use of germplasm in modern breeding. List of morphological descriptors consists of 65 descriptors and 20 of them are elucidated by figures. It provides a tool for Cucumis species determination and characterization and for a discrimination of an infraspecific variation. Obtained data can be used for description of genetic resources and also for research purposes. Keywords: Cucurbitaceae; cucumber; melon; germplasm; data; descriptors; infraspecific variation; Cucumis spp.; wild Cucumis species Collections of Cucumis genetic resources include pollen grains and ovules, there are clear relation of this not only cultivated species C. sativus (cucumbers) taxon with the order Passiflorales (NOVÁK 1961). Based and C. melo (melons) but also wild Cucumis species. on latest knowledge of cytology, cytogenetics, phyto- Knowledge of their morphological and biological fea- chemistry and molecular genetics (PERL-TREVES et al. tures and a correct taxonomical ranging serve a base for 1985; RAAMSDONK et al. -
Chayote (Sechium Edule): a Review of Nutritional Composition, Bioactivities And
Chayote (Sechium edule): a review of nutritional composition, bioactivities and potential applications Corresponding author: E-mail address: [email protected] (Elsa F. Vieira). Tel: +351-228340500 | ext. 1286. ABSTRACT Chayote (Sechium edule) has gained widespread consuming acceptance and recognized by its nutritional and bio-functional properties. The present review surveys and describes the current findings about the nutritional, phytochemical and pharmacological properties of chayote and identifies opportunities for further research. It also discusses chayote’s versatile utility in nutrition, as a functional ingredient in food, cosmetic and pharmaceutical industries, as well as in nanotechnology and biotechnological processes. It was concluded that although the pharmacological properties of chayote are currently well-established, only a few reports have been conducted on the isolation and identification of individual chemical constituents, and similarly, only a few in vivo studies have been conducted to assess their biological efficacy. In addition, the valorisation of the underutilized chayote by-products can be an important aspect in waste management from both economic and environmental standpoints. Thus, the recovery and utilization of valuable compounds from chayote is an important challenge for scientists. Keywords: chayote, bioactive compounds, health-benefits, valorisation. 1 1. Introduction Sechium edule (Jacq.) Swartz is a herbaceous perennial climbing plant with tendrils and tuberous roots, cultivated since pre-Colombian times in Mexico (Cadena-Iñiguez et al., 2007). The edible fruit is popularly known as chayote, christophene, vegetable pear, mirliton, merleton choko (in Australia and New Zealand), starprecianté, citrayota, citrayote (Ecuador and Colombia), chuchu (Brazil), machucha, caiota, pipinela (Portugal), chow chow (India), cho cho (Jamaica), Sayote (Philippines), güisquil (Guatemala, El Salvador), pear squash or iskus (Nepal) (Bermejo & León, 1994; Lim, 2012). -
Phylogenetics of the Genus Sechium P. Brown: a Review Luis A
Spanish Journal of Agricultural Research 19 (1), e07R01, 13 pages (2021) eISSN: 2171-9292 https://doi.org/10.5424/sjar/2021191-17036 Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) REVIEW ARTICLE OPEN ACCESS Phylogenetics of the genus Sechium P. Brown: A review Luis A. Barrera-Guzmán1, Jorge Cadena-Iñiguez2,3, Juan P. Legaria-Solano1 and Jaime Sahagún-Castellanos1 1Universidad Autónoma Chapingo, Dept. de Fitotecnia, Ctra. México-Texcoco, Km 38.5, 56230 Texcoco, Estado de México, Mexico. 2Colegio de Postgraduados, Campus San Luis Potosí, Salinas de Hidalgo, 78600 San Luis Potosí, Mexico. 3Grupo Interdisciplinario de Investigación de Sechium edule en México (GISeM), 56153 Texcoco, Estado de México, Mexico. Abstract The Sechium P. Br. genus composed of 11 species, which originated from the mountainous regions of Mesoamerica, have been domes- ticated and diversified. These species are clustered in two large groups: the Mexican clade and the Central American clade. Morphological and molecular studies have shown that species of the Mexican clade are formed through interspecific hybridizations and genetic flow, with the exception of S. mexicanum, which is strongly linked to the genus Sicyos. The objective of this review was to analyze the phylogenetics of Sechium based on morphological and molecular studies, which contributed to taxonomic knowledge and utilization, thereby favoring its conservation and improvement. The Central American clade is well supported with molecular data, but not so with morphological data. The species in this clade were geographically isolated and endemic. S. edule and S. tacaco are exploited species in the agricultural and industrial sectors, and both have an extensive genetic and phenotypic diversity that has allowed them to diversify and expand into different ecological niches. -
Limiting Factors of Five Rare Plant Species in Mesic Forests, Hawai`I Volcanoes National Park
Technical Report HCSU-015 LIMITING FACTORS OF FIVE RARE PLANT SPECIES IN MESIC FORESTS, HAWAI`I VOLCANOES NATIONAL PARK Linda W. Pratt1, Joshua R. VanDeMark2, and Melody Euaparadorn2 1U.S. Geological Survey, Pacifi c Island Ecosystems Research Center, Kilauea Field Station, P.O. Box 44, Hawai`i National Park, HI 96718 2Hawai`i Cooperative Studies Unit, University of Hawai`i at Hilo, Pacifi c Aquaculture and Coastal Resources Center, P.O. Box 44, Hawai`i National Park, HI 96718 Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo Pacifi c Aquaculture and Coastal Resources Center (PACRC) 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 May 2010 The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U. S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U. S. Government. Technical Report HCSU-015 LIMITING FACTORS OF FIVE RARE PLANT SPECIES IN MESIC FORESTS OF HAWAI`I VOLCANOES NATIONAL PARK Linda W. Pratt1, Joshua R. VanDeMark2, and Melody Euaparadorn2 1U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, Hawai`i National Park, HI 96718 2U.S. Geological Survey Hawai`i Cooperative Studies Unit, Pacific Aquaculture and Coastal Resources Center, University of Hawai‘i at Hilo, Kīlauea Field Station, Hawai`i National Park, HI 96718 KEY WORDS Limiting factors, rare and endangered plant species, Hawai`i Volcanoes National Park CITATION Pratt, L. W., J. R. VanDeMark, and M. Euaparadorn. 2010. Limiting factors of five rare plant species in mesic forests of Hawai`i Volcanoes National Park. -
Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae)
Schaefer & Renner • Phylogenetic relationships in Cucurbitales TAXON 60 (1) • February 2011: 122–138 TAXONOMY Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae) Hanno Schaefer1 & Susanne S. Renner2 1 Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. 2 University of Munich (LMU), Systematic Botany and Mycology, Menzinger Str. 67, 80638 Munich, Germany Author for correspondence: Hanno Schaefer, [email protected] Abstract We analysed phylogenetic relationships in the order Cucurbitales using 14 DNA regions from the three plant genomes: the mitochondrial nad1 b/c intron and matR gene, the nuclear ribosomal 18S, ITS1-5.8S-ITS2, and 28S genes, and the plastid rbcL, matK, ndhF, atpB, trnL, trnL-trnF, rpl20-rps12, trnS-trnG and trnH-psbA genes, spacers, and introns. The dataset includes 664 ingroup species, representating all but two genera and over 25% of the ca. 2600 species in the order. Maximum likelihood analyses yielded mostly congruent topologies for the datasets from the three genomes. Relationships among the eight families of Cucurbitales were: (Apodanthaceae, Anisophylleaceae, (Cucurbitaceae, ((Coriariaceae, Corynocarpaceae), (Tetramelaceae, (Datiscaceae, Begoniaceae))))). Based on these molecular data and morphological data from the literature, we recircumscribe tribes and genera within Cucurbitaceae and present a more natural classification for this family. Our new system comprises 95 genera in 15 tribes, five of them new: Actinostemmateae, Indofevilleeae, Thladiantheae, Momordiceae, and Siraitieae. Formal naming requires 44 new combinations and two new names in Cucurbitaceae. Keywords Cucurbitoideae; Fevilleoideae; nomenclature; nuclear ribosomal ITS; systematics; tribal classification Supplementary Material Figures S1–S5 are available in the free Electronic Supplement to the online version of this article (http://www.ingentaconnect.com/content/iapt/tax). -
New Contribution to the Study of Alien Flora in Romania
SÎRBU CULIŢĂ, OPREA ADRIAN, ELIÁŠ PAVOL jun., FERUS PETER J. Plant Develop. 18(2011): 121-134 NEW CONTRIBUTION TO THE STUDY OF ALIEN FLORA IN ROMANIA SÎRBU CULIŢĂ1, OPREA ADRIAN2, ELIÁŠ PAVOL jun.3, FERUS PETER4 Abstract: In this paper, a number of seventeen alien plant species are presented, one of them being now for the first time reported in Romania (Sedum sarmentosum Bunge). Some species are mentioned for the first time in the flora of Moldavia (Aster novae-angliae L., Cenchrus incertus M. A. Curtis, Chenopodium pumilio R. Br., Fraxinus americana L., Lindernia dubia (L.) Pennell, Petunia × atkinsiana D. Don, Solidago gigantea Aiton, Tagetes erecta L.) or Transylvania (Kochia sieversiana (Pallas) C. A. Mey.), and some are reported from new localities (seven species). For each species, there are presented general data on the geographical origin, its distribution in Europe and worldwide, as well as its invasion history and current distribution in Romania. Some of these species manifest a remarkable spreading tendency, expanding their invasion area in Romania. Voucher specimens were deposited in the Herbarium of University of Agricultural Sciences and Veterinary Medicine Iaşi (IASI). Keywords: alien plants, flora, new records, Romania Introduction According to ANASTASIU & NEGREAN (2005), the alien flora of Romania includes 435 species, of which 88.3% are neophytes and 11.7% are archaeophytes. Therefore, species of alien origin currently represent ca 13% of the total flora of the country, which was estimated by CIOCÂRLAN (2009) to 3335 species. In the last years there is a continuous enrichment of Romania’s flora with new alien plant species [ANASTASIU & NEGREAN, 2008; OPREA & SÎRBU, 2010; SÎRBU & OPREA, 2011]. -
D-299 Webster, Grady L
UC Davis Special Collections This document represents a preliminary list of the contents of the boxes of this collection. The preliminary list was created for the most part by listing the creators' folder headings. At this time researchers should be aware that we cannot verify exact contents of this collection, but provide this information to assist your research. D-299 Webster, Grady L. Papers. BOX 1 Correspondence Folder 1: Misc. (1954-1955) Folder 2: A (1953-1954) Folder 3: B (1954) Folder 4: C (1954) Folder 5: E, F (1954-1955) Folder 6: H, I, J (1953-1954) Folder 7: K, L (1954) Folder 8: M (1954) Folder 9: N, O (1954) Folder 10: P, Q (1954) Folder 11: R (1954) Folder 12: S (1954) Folder 13: T, U, V (1954) Folder 14: W (1954) Folder 15: Y, Z (1954) Folder 16: Misc. (1949-1954) D-299 Copyright ©2014 Regents of the University of California 1 Folder 17: Misc. (1952) Folder 18: A (1952) Folder 19: B (1952) Folder 20: C (1952) Folder 21: E, F (1952) Folder 22: H, I, J (1952) Folder 23: K, L (1952) Folder 24: M (1952) Folder 25: N, O (1952) Folder 26: P, Q (1952-1953) Folder 27: R (1952) Folder 28: S (1951-1952) Folder 29: T, U, V (1951-1952) Folder 30: W (1952) Folder 31: Misc. (1954-1955) Folder 32: A (1955) Folder 33: B (1955) Folder 34: C (1954-1955) Folder 35: D (1955) Folder 36: E, F (1955) Folder 37: H, I, J (1955-1956) Folder 38: K, L (1955) Folder 39: M (1955) D-299 Copyright ©2014 Regents of the University of California 2 Folder 40: N, O (1955) Folder 41: P, Q (1954-1955) Folder 42: R (1955) Folder 43: S (1955) Folder 44: T, U, V (1955) Folder 45: W (1955) Folder 46: Y, Z (1955?) Folder 47: Misc. -
Of 2 BIOL 325 – Plants Systematics Laboratory Rosid Eudicots, Part
BIOL 325 – Plants Systematics Laboratory Rosid Eudicots, Part 2 Rosids Part 2 A. Families to Know on Sight 1. Vitaceae - p. 500 Diagnostic Summary: Woody vines (lianas) with simple, palmately-veined leaves or palmately compound leaves, and woody tenrdils. Fruit a thin-walled berry. Generalized Flora Formula: Ca [4-5] Co 4-5 A 4-5 G [2]; Berry 2. Cucurbitaceae - p. 566 Diagnostic Summary: Herbaceous vines or scrambling herbs with simple, palmately-veined leaves and herbaceous, highly-coiled tendrils. Fruit a thick-walled berry (pepo), capsule or achene. Generalized Flora Formula: Unisexual: Ca [5] Co [5] A [5] Ḡ [3], parietal placentation; pepo, capsule, achene B. Genera to Know (you can write your own key to genera) Vitaceae – p. 500 1. Vitis (lianas) Hamamelidaceae - p. 487 2. Parthenocissus (lianas) 9. Hamamelis (shrubs) Cucurbitaceae – p. 566 Altingiaceae - p. 487 3. Echinocystis (vines) 10. Liquidambar (trees) 4. Sicyos (vines) Anacardiaceae - p. 703 Cannabaceae – p. 659 11. Rhus (shrubs to trees) 5. Celtis (trees & shrubs) 12. Toxicodendron (shrubs or lianas) Moraceae – p. 661 Simaroubaceae - p. 703 6. Morus (trees & shrubs) 13. Ailanthus (trees) Urticaceae – p. 663 Sapindaceae - p. 707 7. Urtica (herbs) 14. Acer (trees) Malvaceae – p. 695 8. Hibiscus (herbs to shrubs) C. Economic Botany 1. Anacardiaceae is the source of cashews (Anacardium), pistachios (Pistacia), mangoes (Mangifera), as well as poison-ivy and poison-sumac (Toxicodendron). 2. Cucurbitaceae includes many edible or ornamental gourds, squashes and melons, such as: Cucurbita (squashes generally, incl. pumpkins, zucchini, acorn squash, etc.), Cucumis (melons Page 1 of 2 generally, incl. honeydew, cantelope, & cucumber), Citrullus (watermelon). -
Flora-Lab-Manual.Pdf
LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae -
Anatomical and Histochemical Study of Sechium Edule (Jacq.) Sw
Anales de Biología 42: 173-181, 2020 ARTICLE http://dx.doi.org/10.6018/analesbio.42.19 Anatomical and histochemical study of Sechium edule (Jacq.) Sw. Francilainy Karina de Andrade Silva1, Cledson dos Santos Magalhães1, Rafaela Damasceno Sá1, Flávia Carolina Lins da Silva2 & Karina Perrelli Randau1 1 Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, 50740-321, Recife, Pernambuco, Brazil. 2 Departamento de Biologia, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil. Resumen Correspondence Estudio anatómico e histoquímico de Sechium edule (Jacq.) Sw. K.P. Randau Sechium edule (Jacq.) Sw. tiene un papel importante nutricional y E-mail: [email protected] terapéuticamente en la medicina popular, especialmente utilizado Received: 2 April 2020 como agente hipotensor. Para ampliar la información farmacológi- Accepted: 31 August 2020 ca sobre esta especie, este trabajo tiene como objetivo el estudio Published on-line: 18 December 2020 histoanatómico de sus hojas. Se prepararon muestras con seccio- nes transversales y paradérmicas de la hoja para el estudio mi- croscópico. Para el análisis histoquímico, se utilizaron reactivos es- pecíficos para los metabolitos objetivo. A través del análisis realiza- do se identificaron estructuras anatómicas para la correcta identifi- cación de la especie estudiada. La histoquímica mostró la presen- cia de alcaloides, triterpenos y esteroides, compuestos lipofílicos y lignina. Esta información sobre la localización de los compuestos no tiene precedentes. Así, el trabajo amplía el conocimiento sobre la especie y la familia Cucurbitaceae. Palabras clave: Chuchu, Chayote, Cucurbitaceae, Farmacobotánica, Microscopía. Abstract Sechium edule (Jacq.) Sw. plays an important role as for its nutri- tional and therapeutical use in folk medicine, being especially used as a hypotensive agent. -
Draft Plant Propagation Protocol
Plant Propagation Protocol for Echinocystis lobata ESRM 412 – Native Plant Production Protocol URL: https://courses.washington.edu/esrm412/protocols/ECLO.pdf Photo by Stevens Co. Noxious Weed Control Board TAXONOMY Plant Family Scientific Name Cucurbitaceae Common Name Gourd Family Species Scientific Name Scientific Name Echinocystis lobata (Michx.) Torr. & A. Gray Varieties None recognized by USDA plant database Sub-species None recognized by USDA plant database Cultivar None specified Common Synonym(s) Micrampelis lobate (Michx.) Greene Sicyos lobate Michx. Common Name(s) Wild balsam apple Wild cucumber Wild mock cucumber Prickly cucumber Species Code (as per ECLO USDA Plants database) GENERAL INFORMATION Geographical range Throughout most of North America, within Washington it occurs primarily east of the Cascades.3 Occurs as an introduced invasive in many European countries as well4 Note: although the USDA plants database categorizes this plant as Native1 to the areas shown below, the Burke Herbarium qualifies it as introduced3, and the Invasive Species Compendium categorizes it as naturalized to Western North America4 Maps courtesy of USFS plants database Ecological distribution Moist bottomlands and thickets3 with rich moist soil, riparian areas, and forest edges4 Climate and elevation Low elevations range Local habitat and Associated with lowland forests and stream banks4 abundance Plant strategy type / Weedy4, rapid growing5 successional stage In areas where it is categorized as invasive, it occurs in productive habitats where -
On the Flora of Australia
L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.