Part 125/135 ARC Recommendations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
168 Subpart P—Aircraft Dispatcher Qualifications and Duty Time
§ 121.445 14 CFR Ch. I (1–1–12 Edition) § 121.445 Pilot in command airport (3) By completing the training pro- qualification: Special areas and air- gram requirements of appendix G of ports. this part. (a) The Administrator may deter- [Doc. No. 17897, 45 FR 41594, June 19, 1980] mine that certain airports (due to items such as surrounding terrain, ob- § 121.447 [Reserved] structions, or complex approach or de- parture procedures) are special airports § 121.453 Flight engineer qualifica- requiring special airport qualifications tions. and that certain areas or routes, or (a) No certificate holder may use any both, require a special type of naviga- person nor may any person serve as a tion qualification. flight engineer on an airplane unless, (b) Except as provided in paragraph within the preceding 6 calendar (c) of this section, no certificate holder months, he has had at least 50 hours of may use any person, nor may any per- flight time as a flight engineer on that son serve, as pilot in command to or type airplane or the certificate holder from an airport determined to require or the Administrator has checked him special airport qualifications unless, on that type airplane and determined within the preceding 12 calendar that he is familiar and competent with months: all essential current information and (1) The pilot in command or second in operating procedures. command has made an entry to that (b) A flight check given in accord- airport (including a takeoff and land- ance with § 121.425(a)(2) satisfies the re- ing) while serving as a pilot flight quirements of paragraph (a) of this sec- crewmember; or tion. -
E. Runway Length Analysis
JOSLIN FIELD, MAGIC VALLEY REGIONAL AIRPORT DECEMBER 2012 E. Runway Length Analysis This appendix describes the runway length analysis conducted for the Airport. Runway 7-25, the Airport’s primary runway, has a length of 8,700 feet and the existing crosswind runway (Runway 12-30) has a length of 3,207 feet. A runway length analysis was conducted to determine if additional runway length is required to meet the needs of aircraft forecasted to operate at the Airport through the planning period. The analysis was conducted according to Federal Aviation Administration (FAA) guidance contained in Advisory Circular (AC) 150/5325-4B, Runway Length Requirements for Airport Design. The runway length analysis set forth in AC 150/5325-4B relates to both arrivals and departures, although departures typically require more runway length. Runway length requirements were determined separately for Runway 7-25 and Runway 12-30. E.1 Primary Runway Length Requirements According to AC 150/5325-4B, the design objective for the primary runway is to provide a runway length for all aircraft without causing operational weight restrictions. The methodology used to determine required runway lengths is based on the MTOW of the aircraft types to be evaluated, which are grouped into the following categories: Small aircraft (MTOW of 12,500 pounds or less) – Aircraft in this category range in size from ultralight aircraft to small turboprop aircraft. Within this category, aircraft are broken out by approach speeds (less than 30 knots, at least 30 knots but less than 50 knots, and more than 50 knots). Aircraft with approach speeds of more than 50 knots are further broken out by passenger seat capacity (less than 10 passenger seats and 10 or more passenger seats). -
AUTHOR Pilots and Flight Engineers. Aviation Careers Federal
DOCUMENT RESUME ED 242 987 CE 038 867 AUTHOR Zaharevitz, Walter TITLE Pilots and Flight Engineers. Aviation Careers Series. INSTITUTION Federal Aviation Administration (DOT). Washington, TC. Office of Aviation Policy. REPORT NO GA-300-122 PUB.DATE 180] NOTE 16p.; For related documents, -see CE 038 868-871. PUB TYPE Guides - Non-Classroom Use (055) EDRS PRICE MF01/PC01 Plus Postage: P DESCRIPTORS *Aerospace Ifidustry; *Aircraft Pilots; Transportation; Aviation Technology; Caeepc Development; *Career Education; *Employment Opportunities; Employmeht Projections; Employment Qualifications; engineers; *Occupational Information; PostseCondary Education; Secondery Education; Wages IDENTIFIERS *Kviation Occupations ABSTRACT' This booklet, one in a series on aviation- careers;. outl nes the v4riety of careers available for Airplane pilots and fli t engineers: The first part of the booklet provides general information about careers for pilots and summarizes, the information in a table..In the main pert of the booklet, the following 11 job categories are outlined: flight instructor, corporate pilot, air taxi or_charter pilot, commercial airplane ox helicopter pilot, patrol pilot, ferry pilot, agricultural pilot, test pilot, airline pilot or captain, airline co-pilot onkOirst officer, and flight'engineer or second officer. FOr each job classification, information on the e nature of the work, working conditions, where the 'jobs are, qualifications, wages, opportunities for training, and outlook for the future is provided: (KC) *********************************************************************** -
How Become an Airline Pilot Handout
Becoming an Airline Pilot Taken from the following article found here: http://www.wikihow.com/Become-an-Airline-Pilot 1) Get a four-year college degree. While a college degree is not required to fly for any of the regional airlines in the United States, a four year degree is required to fly for a major US airline. It's preferable to get a Bachelor of Science degree with an emphasis in aviation (but your degree doesn't necessarily have to be aviation related). Airline pilot training is intense and expensive. A college degree helps to demonstrate to the airline that you will be capable of completing their education program. 2) Look around your local area for a good flight school and flight instructor to begin working on your private pilot certificate. The FAA minimum flight time is 40 hours, but the average is around 60. Schools with FAA oversight can be more desirable if you want a highly regimented training program. 3) Get a First Class medical certificate from a Federal Aviation Administration medical examiner. It is better to apply for a first class medical the first time you apply for a medical certificate to be sure you will qualify for one before you have invested too much time and money into your new career choice. After you earn your private pilot license, begin working on your instrument rating and commercial certificate. An instrument rating requires 50 hours of cross country Pilot-in-Command (PIC) and 40 hours of actual or simulated instrument conditions. For the commercial certificate, you will need 250 hours total time, 100 hours PIC, 50 hours cross country, and 10 hours of dual instruction in a complex aircraft. -
No Left Turns
National Aeronautics and Space Administration Admiation JULY 2008 Volume 2 Issue 6 No Left Turns On July 19, 1989, after a catastrophic engine failure and loss of hydraulic flight controls, United Airlines Flight 232 crashed in an attempted emergency landing at Sioux Gateway Airport in Sioux City, Iowa. Mid-flight, the tail mounted engine on the McDonnell Douglas DC-10 ex- ploded, subsequently severing the plane’s hydraulic con- trol systems and leaving control of the aircraft nearly impossible. While the pilots were able to maneuver the plane to the closest runway, 111 of the 296 people on board died in the crash. Many safety and quality control questions emerged from this disaster, including flight control systems failure, jet engine construction processes and testing, pilot training, and flight procedures. BACKGROUND Figure 1: McDonnell Douglas DC-10 aircraft. nited Airlines Flight 232 was en route from Den- no additional provisions for manual control of the aircraft. ver, Colorado to Philadelphia, Pennsylvania with a This meant that at least one hydraulic system had to be Uplanned stop in Chicago, Illinois. The plane was a operational with hydraulic fluid and pressure in order to McDonnell Douglas DC-10 with three General Electric control the aircraft. engines, one on each wing and one mounted in the tail structure (Figure 1). The tail mounted engine (engine #2) WHAT HAPPENED? had no previously recorded problems and had been in- Engine Failure spected approximately one year prior to the crash. The Not long after the flight reached its cruising altitude of engine had already undergone five other inspections and 37,000 feet, at 3:16 pm on July 19, 1989, the crew and was 1,101 take-off/landing cycles below the mandatory passengers felt and heard the explosive rupture of the #2 engine lifetime maximum of 18,000 cycles. -
Designating and Naming Defense Military Aerospace Vehicles
BY ORDER OF THE SECRETARIES AIR FORCE INSTRUCTION 16-401 OF THE AIR FORCE, ARMY, AND NAVY ARMY REGULATION 70-50 NAVAIRINST 13100.16 16 MAY 2014 Operations DESIGNATING AND NAMING DEFENSE MILITARY AEROSPACE VEHICLES COMPLIANCE WITH THIS PUBLICATION IS MANDATORY ACCESSIBILITY: Publications and forms are available for downloading or ordering on the e- Publishing website at www.e-Publishing.af.mil RELEASABILITY: There are no releasability restrictions on this publication. OPR: HQ USAF/A8PE Certified by: HQ USAF/A8P (Maj Gen Boera) Supersedes: AFI 16-401_IP; Pages: 42 AR 70-50; NAVAIRINST 13100.16; 14 April 2005 This Air Force publication implements DoD Directive 4120.15E, Designating and Naming Military Aerospace Vehicles. It provides guidance and procedures for designating and naming defense military aerospace vehicles across the DoD. This AFI defines the roles and responsibilities of required organizations, the processes for requesting new or retiring old designators and popular names, and the relationship between and military aerospace vehicle designators and names. Additionally, descriptions of standardized Mission Design Series (MDS) designation symbols, military department contacts, and sample MDS and Popular Name request letters are provided. This instruction applies to all military services and departments, including Reserve and National Guard components, which require official designators or names for defense aerospace vehicles. Ensure that all records created as a result of processes prescribed in this publication are maintained in accordance with AFMAN 33-363, Management of Records, and disposed of in accordance with the Air Force Records Disposition Schedule (RDS) located at https://www.my.af.mil/afrims/afrims/afrims/rims.cfm. -
Flight Engineer Knowledge Test Guide
AC 63-1 FLIGHT ENGINEER KNOWLEDGE TEST GUIDE U.S. Department of Transportation Federal Aviation Administration 1 FLIGHT ENGINEER KNOWLEDGE TEST GUIDE 1995 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Flight Standards Service 2 PREFACE The Flight Standards Service of the Federal Aviation Administration (FAA) has developed this guide to help applicants meet the knowledge requirements for the computer administered tests for flight engineer turbojet, turboprop, and reciprocating class certification. This guide contains information about the knowledge test eligibility requirements, test descriptions, testing and retesting procedures, and sample test questions with answers. As a convenience to the applicant, the eligibility requirements for the oral and flight tests are included. Appendix 1 provides a list of reference materials and subject matter knowledge codes, and computer testing designees. Changes to the subject matter knowledge code list will be published as a separate advisory circular. The sample questions and answers in this guide are predicated on Federal Aviation Regulations (FAR's) and references that were current at the time of publication. Questions and answers in the computer administered knowledge tests are updated when changes are made to these reference materials. The flight engineer test question bank and subject matter knowledge code list for all airmen certificates and ratings, with changes, may be obtained by computer access from FedWorld at (703) 321-3339. This bulletin board service is provided by the U.S. Department of Commerce, 24 hours a day, 7 days per week. For technical assistance regarding computer requirements for this service, contact the FedWorld help desk at (703) 487-4608 from 7:30 a.m. -
The Plight of Pilots and Flight Engineers in the Airline Industry
Hofstra Labor and Employment Law Journal Volume 2 | Issue 2 Article 4 1985 No Place to Go After 60: The liP ght of Pilots and Flight Engineers in the Airline Industry Amy Gibbons Follow this and additional works at: http://scholarlycommons.law.hofstra.edu/hlelj Part of the Law Commons Recommended Citation Gibbons, Amy (1985) "No Place to Go After 60: The lP ight of Pilots and Flight Engineers in the Airline Industry," Hofstra Labor and Employment Law Journal: Vol. 2: Iss. 2, Article 4. Available at: http://scholarlycommons.law.hofstra.edu/hlelj/vol2/iss2/4 This document is brought to you for free and open access by Scholarly Commons at Hofstra Law. It has been accepted for inclusion in Hofstra Labor and Employment Law Journal by an authorized administrator of Scholarly Commons at Hofstra Law. For more information, please contact [email protected]. Gibbons: No Place to Go After 60: The Plight of Pilots and Flight Engineer NOTES NO PLACE TO GO AFTER 60: THE PLIGHT OF PILOTS AND FLIGHT ENGINEERS IN THE AIRLINE INDUSTRY I. INTRODUCTION These are turbulent times for airline pilots and second officers due to the industry's deregulation in 1978.1 "Cut-throat" competi- tion 2 and brutal price wars have forced established airlines to cut costs by reducing their staffs and mandating the retirement of senior members at age sixty. As an alternative to retirement at this age, some pilots have tried to downbid3 to the position of flight engineers (also entitled second officers) .4 When their employers have refused to fulfill their downbid requests, the pilots have brought actions under the Age Discrimination in Employment Act (ADEA) of 1967. -
Guide to Aircraft-Based Observations
Guide to Aircraft-based Observations 2017 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 1200 Guide to Aircraft-based Observations 2017 edition WMO-No. 1200 EDITORIAL NOTE METEOTERM, the WMO terminology database, may be consulted at http://public.wmo.int/en/ resources/meteoterm. Readers who copy hyperlinks by selecting them in the text should be aware that additional spaces may appear immediately following http://, https://, ftp://, mailto:, and after slashes (/), dashes (-), periods (.) and unbroken sequences of characters (letters and numbers). These spaces should be removed from the pasted URL. The correct URL is displayed when hovering over the link or when clicking on the link and then copying it from the browser. WMO-No. 1200 © World Meteorological Organization, 2017 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-11200-2 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
(EU) 2018/336 of 8 March 2018 Amending Regulation
13.3.2018 EN Official Journal of the European Union L 70/1 II (Non-legislative acts) REGULATIONS COMMISSION REGULATION (EU) 2018/336 of 8 March 2018 amending Regulation (EC) No 748/2009 on the list of aircraft operators which performed an aviation activity listed in Annex I to Directive 2003/87/EC on or after 1 January 2006 specifying the administering Member State for each aircraft operator (Text with EEA relevance) THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union, Having regard to Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/ EC (1), and in particular Article 18a(3)(b) thereof, Whereas: (1) Directive 2008/101/EC of the European Parliament and of the Council (2) amended Directive 2003/87/EC to include aviation activities in the scheme for greenhouse gas emission allowance trading within the Union. (2) Commission Regulation (EC) No 748/2009 (3) establishes a list of aircraft operators which performed an aviation activity listed in Annex I to Directive 2003/87/EC on or after 1 January 2006. (3) That list aims to reduce the administrative burden on aircraft operators by providing information on which Member State will be regulating a particular aircraft operator. (4) The inclusion of an aircraft operator in the Union’s emissions trading scheme is dependent upon the performance of an aviation activity listed in Annex I to Directive 2003/87/EC and is not dependent on the inclusion in the list of aircraft operators established by the Commission on the basis of Article 18a(3) of that Directive. -
Looking for a Career Where the Sky Is the Limit?
LOOKING FOR A CAREER WHERE THE SKY IS THE LIMIT? Airline Pilot Career Information Air Line Pilots Association, Int’l 1 FOREWORD The Air Line Pilots Association, International (ALPA) has prepared this booklet for young men and women interested in aviation careers. We hope this information will be helpful to you as you plan for your future. The commercial airline pilot is a member of a proud and demanding profession. The amount of training needed, and the expense of that training, is comparable to the training for a physician. This is understand- able because pilots are responsible for many human lives—sometimes more than 400 passengers on one flight. ALPA pilots are intensely aware of their responsibility. Although they consider the comfort and convenience of their passengers important, they uphold safety as their paramount concern. If you are looking for a career where the sky is the limit, this information can provide you with many of the facts necessary to decide whether becoming an airline pilot is in your future. CONTENTS 4 ............................................. The Piloting Profession 4 ........................................................ Some Statistics 5 ................................................... Pre-Flight Checklist 8 ...................... Flying the Line/Personal Requirements 10 ....................Flying the Line/Licensing Requirements 13 ................................... Where Can I Get More Info? 13 ........................................... Government Resources 14 ........................................... -
Careers in Aviation & Aerospace
CAREERS IN AVIATION & AEROSPACE T ABLE OF CONTENTS INTRODUCTION 2 WHAT IS CCAA 7 CERTIFICATION 8 LICENSING 9 CAREERS IN AVIATION AND AEROSPACE 10 OTHER OCCUPATIONS 81 EDUCATION/TRAINING 84 INDEX 92 INTRODUCTION WHAT WOULD LIFE BE WITHOUT AIRPLANES? Today, aviation touches nearly every aspect of our daily lives. It‘s not just about business and vacation travel; it’s about international mail delivery, overnight couriers, food and supply delivery to remote communities. It enables business and world trade to exist. It’s about national defence, and global security and peacekeeping. It’s about saving lives through medevacs, air ambulance services, search and rescue missions, and international organ donation programs. Aviation is an integral part of our society, and there is a growing need for qualified people in the industry. CAREERS IN AVIATION & 2 AEROSPACE DID YOU KNOW? ... Aviation Facts ❚❚ On average, an aircraft leaves the surface of the earth every three seconds. ❚❚ Statistically speaking, air transport is the safest mode of transportation. ❚❚ The helicopter was actually originally conceived by Leonardo da Vinci in 1483. ❚❚ A Boeing 747 has 18 wheels, a spiral staircase, and room to park 45 cars on its wing. ❚❚ The air flowing through one Boeing 767-400ER engine at take-off power could inflate the Goodyear Blimp in seven seconds. ❚❚ It takes about 227 liters of fuel per passenger to get from New York to London (about 5,580 km) on board a Boeing 767-400ER. The same volume of gasoline would propel an economy car only about half of that distance. ❚❚ A Boeing 747-400 has six million parts, half of which are fasteners.