Final Report SPACE: the Final Frontier for CSR SPACE: the Final Frontier for CSR

Total Page:16

File Type:pdf, Size:1020Kb

Final Report SPACE: the Final Frontier for CSR SPACE: the Final Frontier for CSR Final Report SPACE: the final frontier for CSR SPACE: the final frontier for CSR Cover image: Remote sensing view of the BP Deep Horizon oil spill in April 2010. Image courtesy of NASA. Team logo created by Luca Celiento. The MSS 2017 Program of the International Space University (ISU) was held at the ISU Central Campus in Illkirch-Graffenstaden, France. Electronic copies of the Final Report and Executive Summary can be downloaded from the ISU website at www.isunet.edu. Printed copies of the Executive Summary may be requested, while supplies last, from: International Space University Strasbourg Central Campus Attention: Publication/Library Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel. +33 (0)3 88 65 54 32 Fax. +33 (0)3 88 65 54 47 e-mail. [email protected] Acknowledgments Project TerraSPACE authors wish to thank Muriel Riester for her assistance provided to us during this stage of the team project by assisting us in finding various relevant sources offered to us by ISU’s library. Her continued patience is greatly appreciated and will be valued throughout the continuation of this project. Professor Barnaby Osborne, the project’s supervisor, has provided us with the necessary guidance to operate as a team effectively. His support throughout this project has allowed us to focus on the report’s content in efforts of producing a meaningful effort. Team members wish to express their gratitude to C. Mate for kindly holding an interview with team members to discuss the current working conditions of the oil and gas industry. Finally, we wish to thank the various members of the ISU faculty who have provided feedback on the final report: Walter Peeters, Volker Damann, Hugh Hill, Danijela Stupar, Chris Welch, and Vasilis Zervos. An additional thanks is extended to Professor Zervos for aiding team members in understanding the various aspects of corporate social responsibility and how it is applied in industry. We would also like to acknowledge Veena Shelvankar, Peter Thoreau, and Yadvender Singh Dhillon for their support throughout the various stages of our final report. Team TerraSPACE Illkirch-Graffenstaden, France, 2017 ii Report Authors Hernán Barrio Zhang Physical Sciences Pablo Calla Galleguillos Electronics Engineering Meredith Campbell Mechanical Engineering Luca Celiento Space Engineering Mary Distler Aerospace Engineering Bethany Downer Geography & Earth Sciences Arthur van Eeckhout Business & Business Economics Pierre Evellin Engineering Alyssa Frayling Computer Science Alexander Harding Astrophysics Sergey Sergeevich Ioda Business Management Nicolas Jalbert Mechanical Engineering Joost van Oorschot Entrepreneurship & Economics Joshua Rasera Mechanical Engineering Siddharth Shihora Aerospace Engineering & Technology Juan Tan Aerospace Engineering Jenna Tiwana Aerospace Engineering Jian Wang Engineering Yue Wang Business Management Nicholas Yee Life Sciences Haizhou Zhang Business Management Wenjie Zhang Communications Engineering Editing Coordinator:Bethany Downer Research Coordinator: Pierre Evellin Planning and Organization Coordinator:Joshua Rasera Faculty Interface: Prof. Barnaby Osborne iii Abstract This work presents an impact study of new and upcoming space-based and space-derived systems on the Corporate Social Responsibility (CSR) practices of oil and gas sector companies. These systems include the Internet of Things, space-sector-derived spinoffs, new satellite constellations (O3b, SpaceX, and OneWeb), remote operations, alternative energy sources, and human performance studies in extreme environments. As a result of growing understanding and concern regarding the negative effects of their operations (such as potential oil spills, inevitable emissions, and the contribution to global climate change), companies operating in the oil and gas sector have become particular champions of CSR, and spend billions of dollars on CSR activities annually. As the integration, utilization, and dissemination of such values can positively impact a given company in the oil and gas sector, this study considers how space- based and space-derived systems can impact the CSR practices of various industry corporations. This paper presents an identification of the needs of CSR for oil and gas companies, highlights the existing approaches being taking to address these needs, and identifies the gaps that space-based and space-derived systems might fill, assesses the impact of the future space systems, and presents recommendations and conclusions. In particular, three key areas of CSR policies were chosen for analysis: employment and labor practices, environmental management and preservation, and community and social benefits. The impact of space systems is judged based on the Global Reporting Initiative (GRI) and Triple Bottom Line standard methodologies, and has been tailored to the needs of this work. Finally, we present recommendations on which systems should be implemented based on their potential for net impact on CSR practices in the oil and gas sector. Faculty Preface MSS17 has brought together forty-two students from a range of different cultures, backgrounds and experiences. This class has participated in an Intercultural, Interdisciplinary and International MSc in Space Studies made up of lectures, workshops, professional visits, internship, individual project and team project. For the class of 2017, there were two team projects: TP Dragonfly - considering the synergies between drone technology and satellite remote sensing; and TerraSPACE. This team project, TerraSPACE considers the impact of space technologies and practices on the Corporate and Social Responsibilities of Oil and Gas companies. This is a novel topic, in a time where resource companies are coming under increasing scrutiny from the media and public. This project sought potential opportunities and parallels in existing space based monitoring (such as arms regulation monitoring), remote observation, space based communications and space derived technologies. The intent of this project was to consider the impact that these capabilities would have on current CSR activities for Oil and Gas companies. The project was carried out over the past six months by twenty two MSS17 students from thirteen different countries. The team have identified a range of possible intersections between the space sector and CSR activities. They have considered the technical, legal and political requirements and assessed the social and economic impacts, resulting in a number of key recommendations for this important part of the resources sector. In developing the main findings presented in this report, team TerraSPACE have consistently demonstrated a professional and methodical approach. They have engaged with the 3I approach of ISU to prepare a broad scoped impact study. On behalf of the ISU faculty, I am happy to commend both the students and the TP TerraSPACE final report to you. Dr. Barnaby Osborne v Student Preface The oil and gas sector represents a significant portion of the global economy, and drives the livelihoods of millions, if not billions, of people. Whether or not people are directly involved in the sector, the impact of these corporations can be far reaching, and can be felt in seemingly unrelated ways. In recent years, the negative impact had by oil and gas operations has caused backlash from employees, investors and communities, and as such, companies have needed to raise themselves to a higher standard. Now, through the outreach and investment by oil and gas companies, numerous people’s lives have been improved through safer working conditions, better environmental management, and investment in social and physical infrastructure. It is the purpose of our team, and this report, to describe the space-based and space-inspired means by which these processes can be improved. This project began with a wide scope, having analyzed the needs, trends, and gaps in the mining, forestry, and fisheries sectors. Unfortunately, the nature of this project required us to greatly refine our focus, and attempt to address the gaps experienced by a single sector: oil and gas. Through our research, we identified that Corporate Social Responsibility (CSR) was a common trend throughout this sector, and that relatively little space-based and space-inspired technologies were being used. This is where TerraSPACE was established. CSR is an important facet of the contemporary oil and gas sector, and also happens to integrate well with ISU’s International, Intercultural, and Interdisciplinary approach. Clearly, engineering and issues are at the forefront of many space activities, and this is not different. However, there are pivotal considerations for culture, science, policy, law, and human health. Fortunately, our team of 22 people, from 13 different countries, with numerous educational, cultural, and social backgrounds has allowed us to address this topic from a truly 3Is perspective. With a practical and egalitarian approach to team management, and with a strong emphasis placed on mutual respect and understanding, Team TerraSPACE has been able to deliver a high-caliber and impactful report. While our findings will undoubtedly be interesting for oil and gas companies, we also present considerations that would be useful for communities affected by the industry, or even those interested in the ways that space-based and space-inspired technologies can be used outside of their traditional means. Our team has consulted and reviewed numerous journals, agency publications,
Recommended publications
  • Changes to the Database for May 1, 2021 Release This Version of the Database Includes Launches Through April 30, 2021
    Changes to the Database for May 1, 2021 Release This version of the Database includes launches through April 30, 2021. There are currently 4,084 active satellites in the database. The changes to this version of the database include: • The addition of 836 satellites • The deletion of 124 satellites • The addition of and corrections to some satellite data Satellites Deleted from Database for May 1, 2021 Release Quetzal-1 – 1998-057RK ChubuSat 1 – 2014-070C Lacrosse/Onyx 3 (USA 133) – 1997-064A TSUBAME – 2014-070E Diwata-1 – 1998-067HT GRIFEX – 2015-003D HaloSat – 1998-067NX Tianwang 1C – 2015-051B UiTMSAT-1 – 1998-067PD Fox-1A – 2015-058D Maya-1 -- 1998-067PE ChubuSat 2 – 2016-012B Tanyusha No. 3 – 1998-067PJ ChubuSat 3 – 2016-012C Tanyusha No. 4 – 1998-067PK AIST-2D – 2016-026B Catsat-2 -- 1998-067PV ÑuSat-1 – 2016-033B Delphini – 1998-067PW ÑuSat-2 – 2016-033C Catsat-1 – 1998-067PZ Dove 2p-6 – 2016-040H IOD-1 GEMS – 1998-067QK Dove 2p-10 – 2016-040P SWIATOWID – 1998-067QM Dove 2p-12 – 2016-040R NARSSCUBE-1 – 1998-067QX Beesat-4 – 2016-040W TechEdSat-10 – 1998-067RQ Dove 3p-51 – 2017-008E Radsat-U – 1998-067RF Dove 3p-79 – 2017-008AN ABS-7 – 1999-046A Dove 3p-86 – 2017-008AP Nimiq-2 – 2002-062A Dove 3p-35 – 2017-008AT DirecTV-7S – 2004-016A Dove 3p-68 – 2017-008BH Apstar-6 – 2005-012A Dove 3p-14 – 2017-008BS Sinah-1 – 2005-043D Dove 3p-20 – 2017-008C MTSAT-2 – 2006-004A Dove 3p-77 – 2017-008CF INSAT-4CR – 2007-037A Dove 3p-47 – 2017-008CN Yubileiny – 2008-025A Dove 3p-81 – 2017-008CZ AIST-2 – 2013-015D Dove 3p-87 – 2017-008DA Yaogan-18
    [Show full text]
  • A New Tansat XCO2 Global Product Towards Climate Studies
    ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 38, JANUARY 2021, 8–11 • News & Views • A New TanSat XCO2 Global Product towards Climate Studies Dongxu YANG1,2, Yi LIU*1,2, Hartmut BOESCH*3,4, Lu YAO1, Antonio DI NOIA3,4, Zhaonan CAI1, Naimeng LU5, Daren LYU1, Maohua WANG2, Jing WANG1, Zengshan YIN6, and Yuquan ZHENG7 1Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China 3Earth Observation Science, School of Physics and Astronomy, University of Leicester, Leicestershire LE1 7RH, UK 4National Centre for Earth Observation, University of Leicester, Leicestershire LE1 7RH, UK 5National Satellite Meteorological Center, China Meteorological Administration Beijing 100081, China 6Shanghai Engineering Center for Microsatellites, Shanghai 201210, China 7Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China (Received 7 September 2020; revised 11 September 2020; accepted 21 September 2020) ABSTRACT The 1st Chinese carbon dioxide (CO2) monitoring satellite mission, TanSat, was launched in 2016. The 1st TanSat global map of CO2 dry-air mixing ratio (XCO2) measurements over land was released as version 1 data product with an accuracy of 2.11 ppmv (parts per million by volume). In this paper, we introduce a new (version 2) TanSat global XCO2 product that is approached by the Institute of Atmospheric Physics Carbon dioxide retrieval Algorithm for Satellite remote sensing (IAPCAS), and the European Space Agency (ESA) Climate Change Initiative plus (CCI+) TanSat XCO2 product by University of Leicester Full Physics (UoL-FP) retrieval algorithm. The correction of the measurement spectrum improves the accuracy (−0.08 ppmv) and precision (1.47 ppmv) of the new retrieval, which provides opportunity for further application in global carbon flux studies in the future.
    [Show full text]
  • SPACE SECURITY INDEX 2017 Featuring a Global Assessment of Space Security by Laura Grego
    SPACE SECURITY INDEX 2017 Featuring a global assessment of space security by Laura Grego www.spacesecurityindex.org 14th Edition SPACE SECURITY INDEX 2017 WWW.SPACESECURITYINDEX.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security Index 2017 ISBN: 978-1-927802-19-9 © 2017 SPACESECURITYINDEX.ORG Edited by Jessica West Design and layout by Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: NASA Astronaut Scott Kelly took this majestic image of the Earth at night, highlighting the green and red hues of the Aurora, 20 January 2016. Credit: NASA Printed in Canada Printer: Pandora Print Shop, Kitchener, Ontario First published September 2017 Please direct enquiries to: Project Ploughshares 140 Westmount Road North Waterloo, Ontario N2L 3G6 Canada Telephone: 519-888-6541 Email: [email protected] Governance Group Melissa de Zwart Research Unit for Military Law and Ethics The University of Adelaide Peter Hays Space Policy Institute, The George Washington University Ram Jakhu Institute of Air and Space Law, McGill University Cesar Jaramillo Project Ploughshares Paul Meyer The Simons Foundation Dale Stephens Research Unit for Military Law and Ethics The University of Adelaide Jinyuan Su School of Law, Xi’an Jiaotong University Project Manager Jessica West Project Ploughshares Table of Contents TABLE OF CONTENTS TABLE PAGE 1 Acronyms and Abbreviations PAGE 5 Introduction PAGE 9 Acknowledgements PAGE 11 Executive Summary PAGE 19 Theme 1: Condition and knowledge of the space environment: This theme examines the security and sustainability of the space environment, with an emphasis on space debris; the allocation of scarce space resources; the potential threats posed by near-Earth objects and space weather; and the ability to detect, track, identify, and catalog objects in outer space.
    [Show full text]
  • Satellite Observations to Support Monitoring of Greenhouse Gas Emissions
    Grantham Institute Briefing paper No 16 March 2016 Satellite observations to support monitoring of greenhouse gas emissions DR STEPHEN HARDWICK AND DR HEATHER GRAVEN Headlines Contents • Satellites produce high-resolution global observations of Earth’s surface and Headlines ............................... 1 atmosphere that provide information about greenhouse gas emissions. Aim ...................................... 1 • Satellites are used to measure atmospheric concentrations of carbon dioxide Introduction ............................. 2 and methane. This information is incorporated into atmospheric and statistical Atmospheric CO2, CH4 and the models to estimate global and regional sources and sinks of these gases. global carbon cycle ..................... 2 • Satellite observations of Earth’s surface provide data on land cover, fires, Satellite measurements of atmospheric human population and infrastructure, and the biomass and biological activity CO2 and CH4 concentrations ........... 4 of vegetation. These data are used to quantify greenhouse gas emissions Satellite imaging and spectral from land use change and biomass burning, to estimate the spatial analysis of Earth’s surface.............. 8 distribution of fossil fuel combustion, and to determine flows of greenhouse Satellite data products and gases from terrestrial and marine ecosystems. access portals.......................... 11 • National and international initiatives are being coordinated to sustain, Strategies and planning for advance and share satellite observations. satellite
    [Show full text]
  • Orbital Debris Quarterly News
    National Aeronautics and Space Administration OrbitalQuarterly Debris News Volume 21, Issue 1 February 2017 Indian RISAT-1 Spacecraft Fragments in Inside... Late September – Update Twentieth The Indian Radar Imaging Satellite (RISAT)-1 a 97.6° inclination, 543 by 539 km orbit at the time of Anniversary Earth observation satellite experienced a fragmentation the event. of the ODQN 2 event on 30 September 2016 between 2:00 and Over 12 fragments were observed initially by 6:00 GMT due to an unknown cause. The spacecraft the SSN. However, as of 8 November, only one piece (International Designator 2012-017A, U.S. Strategic (SSN 41797) had entered the catalog, having decayed John Africano NASA/ Command [USSTRATCOM] Space Surveillance from orbit on 12 October 2016; the remainder have AFRL Orbital Debris Network [SSN] catalog number 38248), operated decayed as well. At the current time, this event is Observatory Status by the Indian Space Research Organization (ISRO), categorized as an anomalous separation of multiple high and Recognition 3 carries a C-band microwave synthetic aperture radar. area-to-mass ratio debris. Events like this are sometimes The spacecraft had been on-orbit 4.4 years and was in referred to as a shedding event. ♦ New Version of DAS Now Available 4 Reaction of Space Debris Sensor Waiting for Launch Spacecraft Batteries The Space Debris Sensor (SDS) has completed 1 mm near ISS altitudes. With lessons learned from to Hypervelocity functional testing and been delivered to the Kennedy the SDS experience, a follow-on mission to place Impact 7 Space Center for final integration checkout with the a second-generation sensor at higher altitudes will International Space Station (ISS).
    [Show full text]
  • Monitoring Greenhouse Gases from Space
    remote sensing Project Report Monitoring Greenhouse Gases from Space Hartmut Boesch 1,2,*, Yi Liu 3, Johanna Tamminen 4 , Dongxu Yang 3, Paul I. Palmer 5,6, Hannakaisa Lindqvist 4 , Zhaonan Cai 3, Ke Che 3, Antonio Di Noia 1, Liang Feng 5,6, Janne Hakkarainen 4 , Iolanda Ialongo 4 , Nikoleta Kalaitzi 1, Tomi Karppinen 7, Rigel Kivi 7 , Ella Kivimäki 4 , Robert J. Parker 1,2, Simon Preval 1, Jing Wang 3, Alex J. Webb 1,2, Lu Yao 3 and Huilin Chen 8 1 School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK; [email protected] (A.D.N.); [email protected] (N.K.); [email protected] (R.J.P.); [email protected] (S.P.); [email protected] (A.J.W.) 2 National Centre for Earth Observation NCEO, University of Leicester, Leicester LE1 7RH, UK 3 Key Laboratory of the Middle Atmosphere and Global Environmental Observation (LAGEO), & Carbon Neutrality Research Center (CNRC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; [email protected] (Y.L.); [email protected] (D.Y.); [email protected] (Z.C.); [email protected] (K.C.); [email protected] (J.W.); [email protected] (L.Y.) 4 Finnish Meteorological Institute, 00560 Helsinki, Finland; Johanna.Tamminen@fmi.fi (J.T.); Hannakaisa.Lindqvist@fmi.fi (H.L.); Janne.Hakkarainen@fmi.fi (J.H.); iolanda.ialongo@fmi.fi (I.I.); Ella.Kivimaki@fmi.fi (E.K.) 5 Finnish Meteorological Institute, 99600 Sodankylä, Finland; [email protected] (P.I.P.); [email protected] (L.F.) 6 School of GeoSciences, University of Edinburgh, Edinburgh
    [Show full text]
  • Űrtan Évkönyv 2016
    ŰRTAN ÉVKÖNYV 2016 Az Asztronautikai Tájékoztató 68. száma Kiadja a Magyar Asztronautikai Társaság Az Űrkutatás Napja rendezvény (2016. október 21.) közönsége az Óbudai Egyem Tavaszmező utcai épületének előadótermében. Ezen a napon ünnepélyesen megemlékeztünk a MANT megalakulásának 30 éves évfor- dulójáról is. (Fotó: Trupka Zoltán) A címlapon a NASA Juno űrszondája 2016 júliusában érkezett meg a Jupiterhez és állt pályára az óriásbolygó körül. A kép a Jupiter déli pólusvidékén a légköri örvényeket mutatja. A megfigyelés a JunoCam műszerrel mintegy 100 ezer km-es magasságból, 2017. február 2-án készült. (Kép: NASA / JPL-Caltech / SwRI / MSSS, feldolgozás: John Landino) Űrtan Évkönyv 2016 Az Asztronautikai Tájékoztató 68. száma Kiadja a Magyar Asztronautikai Társaság Űrtan Évkönyv 2016 Az Asztronautikai Tájékoztató 68. száma Szerkesztette: Dr. Frey Sándor Készült a Nemzeti Fejlesztési Minisztérium támogatásával Kiadja: a Magyar Asztronautikai Társaság 1044 Budapest, Ipari park u. 10. www.mant.hu Budapest, 2017 Felelős kiadó: Dr. Bacsárdi László főtitkár Kézirat gyanánt HU ISSN 1788-7771 Készült 300 példányban Előszó Ismét eltelt egy év, megjelent a Magyar Asztronautikai Társa- ság (MANT) Űrtan Évkönyvének 2016-os kötete. A kiadvány egyúttal az egykor Asztronautikai Tájékoztató címmel indult sorozatnak a 68. száma. A könyv megjelentetését idén is a Nemzeti Fejlesztési Mi- nisztériumtól (NFM) kapott támogatás tette lehetővé. A 2016-ban történt – most a legfontosabbnak, legérdekesebb- nek tűnő – eseményeket szokás szerint a kötet első részében foglal- tuk össze. Tekintettel a kínai űrkutatás „nagy évére”, ezúttal külön cikket szenteltünk az ázsiai országban történteknek. Izgalmas lesz öt, tíz, vagy még több év múlva újraolvasni és megítélni, valóban hosszabb távon is maradandónak bizonyulnak-e az itt felsorolt eredmények és emlékezetesnek-e az események.
    [Show full text]
  • Space Research Today No. 198 COSPAR’S Information Bulletin April 2017
    Space Research Today No. 198 COSPAR’s Information Bulletin April 2017 Contents Message from the Editor 2 A Forum for Discussion 3 COSPAR News 4 In Memoriam 4 Neil Gehrels (1952-2017) 4 Research Highlights 5 News in Brief 19 Catching Cassini’s call (see page 23) Space News 19 Space Snapshots 22 Awards 25 Meetings 25 Meetings of Interest to COSPAR 25 Meeting Announcements 28 Meeting Reports 28 Letters to the Editor 34 Publications 35 Advances in Space Research (ASR): Top Reviewers of 2016 35 Submissions to Space Research Today 40 COSPAR Visting Fellow Saat Mubarrok with his advisor at Scripps, Dr Janet Sprintall (see page 29) Launch list 41 1 but also relevant space news and images. The Message from the Editor human side was catered for, ultimately, by the COSPAR Community section. We have come a long way since 1991, and SRT has been a great witness to the numerous advances in our field—many of which we could only have dreamed of. Our modern world with its rapid communication and thirst for bite-sized news items and updates, combined with the fast-moving developments of space business these days, means that SRT has had to change, to meet our current needs. This has influenced the introduction of the Snapshots, the Forum sections and the news sections, for example. However, we are always I was invited to take on the role of General open to new suggestions and ideas for Editor for SRT (though it was known as the improving SRT, to cater for the needs of the COSPAR Information Bulletin at the time), by wider community.
    [Show full text]
  • Space Activities in 2016 Preface Orbital Launch Attempts
    Space Activities in 2016 Jonathan McDowell [email protected] Revision 2: 2017 Jan 6 Preface In this paper I present some statistics characterizing astronautical activity in calendar year 2016. In the 2014 edition of this review, I described my methodological approach and some issues of definitional ambguity; that discussion is not repeated here, and it is assumed that the reader has consulted the earlier document, available at http://planet4589.org/space/papers/space14.pdf (This paper may be found as space16.pdf at the same location). An earlier version of this paper incorrectly included some satellites launched in 2015 and de- ployed in 2016 in tables 4,5 and 6. Orbital Launch Attempts During 2016 there were 85 orbital launch attempts. Table 1 categorizes them by launching state (the state owning the launch vehicle: therefore, Arianespace flights count as French). Table 1: Orbital Launch Attempts 2009-2013 2014 2015 2016 Average USA 19.0 24 20 22 Russia 30.2 32 26 17 China 14.8 16 19 22 France 11 12 11 Japan 4 4 4 India 4 5 7 Israel 1 0 1 N Korea 0 0 1 S Korea 0 0 0 Iran 0 1 0 Other 15.0 20 22 24 Total 79.0 92 87 85 There were two Arianespace-managed Soyuz launches from French Guiana which are counted as French. Two launches failed to reach orbit (one Chinese, one Russian). 2016 saw the first flight of China's heavy CZ-5 rocket, which, with its YZ-2 upper stage, placed the SJ-17 satellite in geostationary orbit.
    [Show full text]
  • Status of the Global Observing System for Climate
    STATUS OF THE GLOBAL OBSERVING SYSTEM FOR CLIMATE FULL REPORT OCTOBER 2015 Atmosphere Land Ocean GLOBAL CLIMATE OBSERVING SYSTEM GCOS Secretariat | c/o World Meteorological Organization | 7 bis, avenue de la Paix�� P.O. Box 2300 | CH-1211 Geneva 2 | Switzerland Tel.: +41 (0) 22 730 8275/8067 | Fax: +41 (0) 22 730 8052 | E-mail: [email protected]�� http://gcos.wmo.int STATUS OFTHE GLOBAL SYSTEMOBSERVING STATUS FOR CLIMATE JN 152282 GCOS-195 Status of the Global Observing System for Climate October 2015 GCOS-195 © World Meteorological Organization, 2015 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.
    [Show full text]
  • Abstract Collection
    Abstract Collection The 15th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-15) June 3rd – 5th, 2019 Hokkaido University, Sapporo, Japan Japan Aerospace Exploration Agency (JAXA) National Institute for Environmental Studies (NIES) Ministry of the Environment (MOE) Contents Session 1 “Ongoing and Near-term Satellite Missions and Calibration” 1. Sentinel-5 Precursor Mission: Status and Results about the Methane, Nitrogen Dioxide, Cloud & Aerosol Information Products (C. Zehner, ESA) 2. TROPOMI Methane, Water Vapor Isotopologue and Carbon Monoxide Total Column Measurements at Unprecedented Temporal and Spatial Resolution: Validation Results and Applications (J. Landgraf, SRON, Netherland) 3. Monitoring Global Carbon Dioxide from Space: the TanSat Mission and Carbon Flux Investigation Study in China (Y. Liu, IAP, CAS, China) 4. In-Flight Performance of the TanSat Atmospheric Carbon Dioxide Grating Spectrometer (Z. D. Yang, NSMC, CMA, China) 5. High-Resolution CH4 Observations with GHGSat: Plume Detections with GHGSat-D and Next-Generation Satellite Characterization Results (D. Jervis, GHGSat, Canada) 6. Toward 20-year GHG Monitoring from Space by GOSAT: Operation, Calibration, Level 1 Dataset, Research Product, and Analytical Tools (A. Kuze, JAXA, Japan) 7. The Status and the Future Plan of GOSAT / GOSAT-2 Level 2 and 4 Products (T. Matsunaga, NIES, Japan) 8. The OCO-3 Mission: Measuring Carbon Dioxide from the International Space Station - Mission Goals and Instrument Status (A. Eldering, JPL, US) Session 2 “Retrieval Algorithms and Uncertainty Quantification” 1. Accelerated MCMC for OCO-2’s CO2 retrieval (O. Lamminpää, FMI, Finland) 2. Recent Progress of GOSAT and GOSAT-2 SWIR L2 Products (Y. Yoshida, NIES, Japan) 3. PPDF-based Method to Account for Atmospheric Light Scattering in Spectroscopic Observations of Greenhouse Gases from Space: Basic Principles, Validation, and Comparison with Other Algorithms (S.
    [Show full text]
  • Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space
    A CONSTELLATION ARCHITECTURE FOR MONITORING CARBON DIOXIDE AND METHANE FROM SPACE Prepared by the CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team Draft Version September 9, 2018 The JPL author’s copyright for this publication is held by the California Institute of Technology. Government sponsorship acknowledged. Contributors: David Crisp1, Yasjka Meijer2, Rosemary Munro3, Kevin Bowman1, Abhishek Chatterjee4,5, David Baker6, Frederic Chevallier7, Ray Nassar8, Paul I. Palmer9, Anna Agusti-Panareda10, Jay Al-Saadi11, Yotam Ariel12. Sourish Basu13,14, Peter Bergamaschi15, Hartmut Boesch16, Philippe Bousquet7, Heinrich Bovensmann17, François-Marie Bréon7, Dominik Brunner18, Michael Buchwitz17, Francois Buisson19, John P. Burrows17, Andre Butz20, Philippe Ciais7, Cathy Clerbaux21, Paul Counet3, Cyril Crevoisier22, Sean Crowell23, Carol Deniel24, Mark Dowell25, Richard Eckman11, David Edwards13, Gerhard Ehret26, Annmarie Eldering1, Richard Engelen10, Brendan Fisher1, Stephane Germain27, Janne Hakkarainen28, Ernest Hilsenrath29, Kenneth Holmlund3, Sander Houweling30,31, Haili Hu30, Daniel Jacob32, Greet Janssens-Maenhout15, Dylan Jones33, Denis Jouglet19, Fumie Kataoka34, Matthäus Kiel35, Susan S. Kulawik36, Akihiko Kuze37, Richard L. Lachance12, Ruediger Lang3, Junjie Liu1, Yi Liu38,39, Shamil Maksyutov40, Jason McKeever27, Berrien Moore23, Masakatsu Nakajima37, Vijay Natraj1, Robert R. Nelson41, Yosuke Niwa40, Tomohiro Oda4,5, Christopher W. O’Dell6, Leslie Ott5, Prabir Patra42, Steven Pawson5, Vivienne Payne1, Bernard
    [Show full text]