Phd Thesis(Final) Beischl 2018

Total Page:16

File Type:pdf, Size:1020Kb

Phd Thesis(Final) Beischl 2018 Towards an Asian Space Agency? - The whence and whither of Asian interstate relations in the space sector in the 21st century by Christoph Beischl, M.A. Institute of Advanced Legal Studies, School of Advanced Study, University of London This dissertation is submitted for the degree of Doctor of Philosophy (PhD) 2018 1 Declaration I, Christoph Beischl, hereby confirm that all parts of this thesis presented for examination are my own work. Date: - -.- -.- - - - 2 Abstract Despite the known benefits offered by intergovernmental organisations (IGOs) to governments, the inception of the intergovernmental Asia-Pacific Space Cooperation Organization in 2006, as well as various academic proposals for the creation of other space-specific IGOs in Asia in the 21 st century, recent years have still not seen a real engagement amongst Asian governments with dedicated space programmes towards establishing a broad regional space-specific IGO. Within this context, this study has decided to ask whether there is a reasonable potential amongst Asian governments to commence negotiations towards establishing an Asian Space Agency (ASA) – perceived within certain stipulations as a broad IGO-based regional space cooperation mechanism – based on the general political and legal status quo of their space programmes as of 2017. In particular, this study focusses on whether the governments with the most ambitious space programmes and domestic access to leading space technology (development) capabilities in Asia, identified as China, India, Iran, Japan, North Korea and South Korea, currently display such a potential. After all, they might be likely at the centre of an ASA. For that, this study develops and employs a methodological approach based on Moravcsik’s well- established International Relations theory ‘Liberalism’ and a plausible determination of basic political and legal ASA characteristics. At the analytical core is a government-by-government assessment and subsequent specialised comparison of the state preferences (somewhat constituting national interests) underlying the current space programmes of the six selected governments, their major domestic and cooperative space-related measures promoted in the pursuit of these state preferences, as well as their respective basic political and legal framework concerning IGO-based regional space cooperation. In contrast to its confident hypothesis, this study concludes in the end that the present space-related state preference situation amongst the six selected governments is such that there is currently no reasonable potential amongst them to commence negotiations towards establishing an ASA. The most problematic factor for the establishment of an ASA is each government’s respective current second space-related autonomy-oriented state preference. Notably, to finish on a more positive and practical note, this study’s final sections further discuss generally the closest IGO-based regional space agency variant to a fully-fledged ASA about which the six selected governments might reasonably negotiate in the context of their current space-related state preferences. Also, the final sections put forward some general policy and regulatory recommendations that might help to broaden these governments’ (IGO-based) intergovernmental space cooperation in the future. 3 Table of Contents Acknowledgements...........................................................................................................10 Abbreviations....................................................................................................................13 List of tables......................................................................................................................17 1 Research context, interest, hypothesis and literature...............................................18 1.1 Research context........................................................................................................18 1.2 Research interest........................................................................................................19 1.3 Hypothesis.................................................................................................................22 1.4 Existing literature......................................................................................................22 2 Methodology.................................................................................................................24 2.1 Theoretical pillar: Liberalism....................................................................................24 2.2 Theoretical pillar: basic political and legal ASA characteristics..............................27 2.3 Methodological approach..........................................................................................32 2.3.1 First step: assessment of the three main explanatory variables............................32 2.3.2 Second step: identification of current space-related mixed-motive games..........34 2.3.3 Third step: evaluation of ASA potential...............................................................35 3 Determination of preeminent Asian governments in the space sector....................37 4 People’s Republic of China (China)...........................................................................43 4.1 Analytical considerations..........................................................................................43 4.2 Main domestic political and legal documents...........................................................44 4.3 Basic domestic decision-making system...................................................................47 4.4 Space-related state preferences.................................................................................49 4.4.1 Special political terminology................................................................................49 4.4.1.1 National rights and interests............................................................................49 4.4.1.2 Chinese Dream and Space Dream...................................................................50 4.4.1.3 Comprehensive national power.......................................................................51 4.4.2 Socioeconomic state preferences..........................................................................51 4.4.3 Political state preferences.....................................................................................53 4.4.4 National security state preferences.......................................................................53 4.4.5 Science and technology state preferences............................................................55 4.4.6 Autonomy-oriented state preferences...................................................................56 4.5 Basic pol. & leg. framework concerning IGO-based regional space cooperation....57 4.6 Major domestic and cooperative space-related measures.........................................59 4.6.1 APRSAF and APSCO..........................................................................................59 4.6.1.1 APRSAF..........................................................................................................59 4.6.1.2 APSCO............................................................................................................60 4.6.2 Remote Sensing....................................................................................................64 4.6.2.1 Major domestic measures................................................................................64 4.6.2.2 Major cooperative measures............................................................................66 4.6.3 Communications and broadcasting......................................................................69 4.6.3.1 Major domestic measures................................................................................69 4.6.3.2 Tianlian – a special domestic measure............................................................72 4.6.3.3 Major cooperative measures............................................................................72 4.6.4 Navigation............................................................................................................74 4.6.4.1 Major domestic measures................................................................................74 4.6.4.2 Major cooperative measures............................................................................75 4.6.5 Science and technology research..........................................................................77 4 4.6.5.1 Major domestic measures................................................................................77 4.6.5.2 Major cooperative measures............................................................................80 4.6.6 Human spaceflight................................................................................................80 4.6.6.1 Major domestic measures................................................................................80 4.6.6.2 Major cooperative measures............................................................................83 4.6.7 Lunar exploration.................................................................................................85 4.6.7.1 Major domestic measures................................................................................85 4.6.7.2 Major cooperative measures............................................................................87 4.6.8 Exploration of other celestial
Recommended publications
  • Nuclear, Missile Space Digest
    1 Nuclear, MissileNuclear, Missile & Space Digest & Space Digest Volume 11, Number 18 A Fortnightly Newsletter from the Indian Pugwash Society September 30, 2019 Convenor A. India “Imran Khan Hypes Kashmir, Personally Attacks PM Modi”: Ex-US Envoy Amb. Sujan R. Chinoy Chandrayaan 2 Completes Final In-Orbit Manoeuvre Before India’s Maiden Moon Landing On 7 Sept Russia plans to set up above 20 nuclear power units in India in next 20 years “India Will Not Balk At Using Strength To Defend Itself”: Rajnath Singh Explained: Chandrayaan-2, in perspective Lander ‘tilted’ not broken, says ISRO Modi should correct Vajpayee wrong on nuclear ‘no first use’: Diplomat Jaimini Bhagwati Chandrayaan 2: Nobel laureate entrusts Indian scientists, says ‘they will Executive Council soon master the setbacks of lunar mission’ Devices onboard Chandrayaan-2 orbiter gamechangers Cdr. (Dr.) Probal K. Ghosh Chandrayaan 2: Here’s how NASA is helping ISRO in reviving Air Marshal S. G. Inamdar Vikram Lander (Retd.) Dr. Roshan Khanijo B. China Amb. R. Rajagopalan China issues white paper on nuclear safety China Focus: China issues white paper on nuclear safety, stressing int’l Dr. Rajesh Rajagopalan cooperation Shri Dinesh Kumar US ban for nuclear firm harms own interests Yadvendra China to build lab for radioactive waste disposal China’s lunar rover travels over 284 meters on moon’s far side China sends H-6K bombers to Russia for strategic drills Chinese netizens encourage India’s lunar dream despite failure Implementation phase of China-funded Egyptian
    [Show full text]
  • Space Diplomacy in Asian Orbit
    Space Diplomacy in Asian Orbit EDA INSIGHT RESEARCH & ANALYSIS OCTOBER 2018 Space Diplomacy in Asian Orbit Dr N. Janardhan Disclaimer: The views expressed in this publication are solely those of the author and do not necessarily reflect the views of the Emirates Diplomatic Academy, an autonomous federal entity, or the UAE Government. Copyright: Emirates Diplomatic Academy 2018. Cover Photo: Mohammed Bin Rashid Space Centre - http://www.khalifasat-thejourney.com Space Diplomacy in Asian Orbit Dr N. Janardhan Senior Research Fellow, Emirates Diplomatic Academy Dr N. Janardhan is Senior Research Fellow, Gulf-Asia Programme, Emirates Diplomatic Academy. His academic publications include – A New Gulf Security Architecture: Prospects and Challenges for an Asian Role (ed., 2014); India and the Gulf: What Next? (ed., 2013); and Boom amid Gloom: Spirit of Possibility in 21st Century Gulf (2011). Dr Janardhan is also Managing Assistant Editor, Journal of Arabian Studies. Executive Summary ◊ In international relations, expanding institutionalised ◊ As balance of power equations get reconfigured, channels of consultation is seen as enhancing there is evidence that international political- cooperation. Pursuing this, it is estimated that more security competition in space may supersede other than 80 countries (and many more private enterprises) considerations in the future. For now, however, there are are presently using space, either on their own or ample notable space-related developments in Asia that in partnership with others, to further individual or fall within the realm of soft power, which this Insight collective interests. explores. ◊ The West used the Cold War to further diplomatic ◊ It also suggests the following policy options for the influence and create ‘satellite’ states based on UAE to consider: geopolitical ideology.
    [Show full text]
  • Foi-R--5077--Se
    Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman FOI-R--5077--SE Januari 2021 Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet FOI-R--5077--SE Titel Omvärldsanalys Rymd 2020 – Fokus på försvar och säkerhet Title Global Space Trends 2020 for Defence and Security Rapportnr/Report no FOI-R--5077--SE Månad/Month Januari Utgivningsår/Year 2021 Antal sidor/Pages 127 ISSN 1650-1942 Kund/Customer Försvarsmakten Forskningsområde Flygsystem och rymdfrågor FoT-område Sensorer och signaturanpassningsteknik Projektnr/Project no E60966 Godkänd av/Approved by Lars Höstbeck Ansvarig avdelning Försvars- och säkerhetssystem Bild/Cover: Tre gröna lasrar från Starfire Optical Range på Kirtland Air Force Base i New Mexico, USA. Anläggningen används bland annat för inmätning av objekt i låga satellitbanor. Den allmänna uppfattningen (men ej officiell) är att lasern även kan användas som ASAT-vapen. Källa: Directed Energy Directorate, US Air Force. Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk, vilket bl.a. innebär att citering är tillåten i enlighet med vad som anges i 22 § i nämnd lag. För att använda verket på ett sätt som inte medges direkt av svensk lag krävs särskild överenskommelse. This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law, requires the written permission of FOI.
    [Show full text]
  • Drafting Committee for the 'Asia‐Pacific
    Drafting Committee for the ‘Asia‐Pacific Plan of Action for Space Applications for Sustainable Development (2018‐2030) Dr Rajeev Jaiswal EOS Programme Office Indian Space Research Organisation (ISRO) India Bangkok, Thailand 31 May ‐ 1 June 2018 India’s Current Space Assets Communication Satellites • 15 Operational (INSAT- 4A, 4B, 4CR and GSAT- 6, 7, 8, 9 (SAS), 10, 12, 14, 15, 16, 17, 18 & 19) • >300 Transponders in C, Ext C & Ku bands Remote sensing Satellites • Three in Geostationary orbit (Kalpana-1, INSAT 3D & 3DR) • 14 in Sun-synchronous orbit (RESOURCESAT- 2 & 2A; CARTOSAT-1/ 2 Series (5); RISAT-2; OCEANSAT 2; MEGHA-TROPIQUES; SARAL, SCATSAT-1) Navigation Satellites : 7 (IRNSS 1A - IG) & GAGAN Payloads in GSAT 8, 10 & 15 Space Science: MOM & ASTROSAT 1 Space Applications Mechanism in India Promoting Space Technology Applications & Tools For Governance and Development NATIONAL MEET “There should not be any space between common man and space technology” . 160 Projects across 58 Ministries . Web & Mobile Applications : 200+ . MoUs with stakeholders : 120+ . Capacity Building : 10,000+ . Space Technology Cells : 21 17 STATE MEETS Haryana, Bihar, Uttarakhand, Mizoram, Nagaland, Rajasthan, Punjab, Jharkhand, Meghalaya, Himachal 20 58 Pradesh, Kerala, Chhattisgarh, Assam, Madhya Ministries Ministries Pradesh, Tamil Nadu, Mizoram & Uttar Pradesh Space Applications Verticals SOCIO ECONOMIC SECURITY SUSTAINABLE DEVELOPMENT Food Impact Assessment Water Bio- Resources Conservation Energy Fragile & Coastal Ecosystem Health Climate Change Induced
    [Show full text]
  • ORF Issue Brief 59 Dr. Rajeswari Pillai Rajagopalan
    ORF ISSUE BRIEF OCTOBER 2013 ISSUE BRIEF # 59 Synergies in Space: The Case for an Indian Aerospace Command Dr. Rajeswari Pillai Rajagopalan Introduction he Indian Armed Forces have been mulling over the establishment of an aerospace command for close to a decade now. Over those years, international circumstances and Tgeopolitics relating to outer space have changed, making it imperative for India to make decisions now. Though outer space is part of the global commons, it is increasingly getting appropriated and fenced as powerful States are seen seeking to monopolise space. The growing advanced military space capabilities of some nations, which include the development of their anti-satellite missile capabilities, are also a worrying trend. With much of outer space having been utilised by a small number of great powers and the increasing presence of non-state players in the recent years, even a nominal increase in terms of space activity by some developing countries is leading to issues related to overcrowding and access. In order to protect its interests, India must institutionalise its own strengths in the form of an Aerospace Command. While all the three services are becoming increasingly reliant on outer space assets, the Indian Air Force (IAF) has taken the lead, at least going by open sources. Back in 2003, Indian Air Force Chief Air Marshal S Krishnaswamy had already articulated the need for an aerospace command: “Any country on the fringe of space technology like India has to work towards such a command as advanced countries are already moving towards laser weapon platforms in space and killer satellites.” Some years after that, in 2006, the IAF established a Directorate of Aerospace in Thiruvananthapuram in South India, which can be referred to as the initial avatar of the Indian Observer Research Foundation is a public policy think-tank that aims to influence formulation of policies for building a strong and prosperous India.
    [Show full text]
  • T He Indian Army Is Well Equipped with Modern
    Annual Report 2007-08 Ministry of Defence Government of India CONTENTS 1 The Security Environment 1 2 Organisation and Functions of The Ministry of Defence 7 3 Indian Army 15 4 Indian Navy 27 5 Indian Air Force 37 6 Coast Guard 45 7 Defence Production 51 8 Defence Research and Development 75 9 Inter-Service Organisations 101 10 Recruitment and Training 115 11 Resettlement and Welfare of Ex-Servicemen 139 12 Cooperation Between the Armed Forces and Civil Authorities 153 13 National Cadet Corps 159 14 Defence Cooperaton with Foreign Countries 171 15 Ceremonial and Other Activities 181 16 Activities of Vigilance Units 193 17. Empowerment and Welfare of Women 199 Appendices I Matters Dealt with by the Departments of the Ministry of Defence 205 II Ministers, Chiefs of Staff and Secretaries who were in position from April 1, 2007 onwards 209 III Summary of latest Comptroller & Auditor General (C&AG) Report on the working of Ministry of Defence 210 1 THE SECURITY ENVIRONMENT Troops deployed along the Line of Control 1 s the world continues to shrink and get more and more A interdependent due to globalisation and advent of modern day technologies, peace and development remain the central agenda for India.i 1.1 India’s security environment the deteriorating situation in Pakistan and continued to be infl uenced by developments the continued unrest in Afghanistan and in our immediate neighbourhood where Sri Lanka. Stability and peace in West Asia rising instability remains a matter of deep and the Gulf, which host several million concern. Global attention is shifting to the sub-continent for a variety of reasons, people of Indian origin and which is the ranging from fast track economic growth, primary source of India’s energy supplies, growing population and markets, the is of continuing importance to India.
    [Show full text]
  • Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department of Space
    GSAT-17 Satellites Images icro M sat ries Satellit Se e -2 at s to r a C 0 SAT-1 4 G 9 -C V L S P III-D1 -Mk LV GS INS -1 C Asia Satell uth ite o (G S S A T - 09 9 LV-F ) GS ries Sat Se ellit t-2 e sa to 8 r -C3 a LV C PS Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department Of Space Department Of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) satellite programme for the management of natural resources and various developmental projects across the country using space based imagery • Indigenous capability for the design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT / GSAT, IRS and IRNSS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department Of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications and broadcasting needs of the country • Provide satellite services required for weather forecasting, monitoring, etc.
    [Show full text]
  • INTERNATIONAL Call for Papers & Registration of Interest
    ORGANIZED BY: HOSTED BY: st 71 INTERNATIONAL ASTRONAUTICAL CONGRESS 12–16 October 2020 | Dubai, United Arab Emirates Call for Papers & Registration of Interest Second Announcement SUPPORTED BY: Inspire, Innovate & Discover for the Benefit of Humankind IAC2020.ORG Contents 1. Message from the International Astronautical Federation (IAF) 2 2. Message from the Local Organizing Committee 2 3. Message from the IPC Co-Chairs 3 4. Messages from the Partner Organizations 4 5. International Astronautical Federation (IAF) 5 6. International Academy of Astronautics (IAA) 10 7. International Institute of Space Law (IISL) 11 8. Message from the IAF Vice President for Technical Activities 12 9. IAC 2020 Technical Sessions Deadlines Calendar 49 10. Preliminary IAC 2020 at a Glance 50 11. Instructions to Authors 51 Connecting @ll Space People 12. Space in the United Arab Emirates 52 www.iafastro.org IAF Alliance Programme Partners 2019 1 71st IAC International Astronautical Congress 12–16 October 2020, Dubai 1. Message from the International Astronautical Federation (IAF) 3. Message from the International Programme Committee (IPC) Greetings! Co-Chairs It is our great pleasure to invite you to the 71st International Astronautical Congress (IAC) to take place in Dubai, United Arab Emirates On behalf of the International Programme Committee, it is a great pleasure to invite you to submit an abstract for the 71st International from 12 – 16 October 2020. Astronautical Congress IAC 2020 that will be held in Dubai, United Arab Emirates. The IAC is an initiative to bring scientists, practitioners, engineers and leaders of space industry and agencies together in a single platform to discuss recent research breakthroughs, technical For the very first time, the IAC will open its doors to the global space community in the United Arab Emirates, the first Arab country to advances, existing opportunities and emerging space technologies.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • Corporate Profile
    2013 : Epsilon Launch Vehicle 2009 : International Space Station 1997 : M-V Launch Vehicle 1955 : The First Launched Pencil Rocket Corporate Profile Looking Ahead to Future Progress IHI Aerospace (IA) is carrying out the development, manufacture, and sales of rocket projectiles, and has been contributing in a big way to the indigenous space development in Japan. We started research on rocket projectiles in 1953. Now we have become a leading comprehensive manufacturer carrying out development and manufacture of rocket projectiles in Japan, and are active in a large number of fields such as rockets for scientific observation, rockets for launching practical satellites, and defense-related systems, etc. In the space science field, we cooperate with the Japan Aerospace Exploration Agency (JAXA) to develop and manufacture various types of observational rockets named K (Kappa), L (Lambda), and S (Sounding), and the M (Mu) rockets. With the M rockets, we have contributed to the launch of many scientific satellites. In 2013, efforts resulted in the successful launch of an Epsilon Rocket prototype, a next-generation solid rocket which inherited the 2 technologies of all the aforementioned rockets. In the practical satellite booster rocket field, We cooperates with the JAXA and has responsibilities in the solid propellant field including rocket boosters, upper-stage motors in development of the N, H-I, H-II, and H-IIA H-IIB rockets. We have also achieved excellent results in development of rockets for material experiments and recovery systems, as well as the development of equipment for use in a space environment or experimentation. In the defense field, we have developed and manufactured a variety of rocket systems and rocket motors for guided missiles, playing an important role in Japanese defense.
    [Show full text]
  • Amsat Italia, Pompei 2012
    Volume 20, Numero 1 Gennaio / Febbraio 2012 Amsat Italia, Pompei 2012 In questo numero: HAMTV: cronache dal laboratorio… p3 “Bridge of the Stars”, Pompei 2012 p7 La mia esperienza p10 ISS, utilizziamo il PBBS di bordo p11 ARISS Page p14 Notizie Associative P16 “Space News” p16 Notiziario Aerospaziale p17 HMATV all’infrarosso Volume 20, Numero 1 AMSAT-I news pagina 2 AMSAT Italia ... editoriale di Francesco De Paolis, IKØWGF Anche in questo nuovo numero di AMSAT Italia News Il progetto HAMTV prosegue nel suo sviluppo non solo risulta evidente la crescente partecipazione dei soci ad presso la Kayser Italia, ovvero l’azienda incaricata da eventi e manifestazione dove il nostro Gruppo è ESA per la “spazializzazione” del “payload”, ma anche il chiamato a mostrare i suoi progetti e le sue iniziative. nostro team sta lavorando con impegno e senza sosta Questa volta siamo a Pompei, ospiti della locale Sezione sul progetto. In questo bollettino troverete le “cronache ARI, per la 10° mostra mercato del radioamatore, dal laboratorio”, ovvero un breve ma efficace rapporto dell'elettronica e dell'informatica "Città di Pompei", che sulle prove che il nostro team sta conducendo sui si è svolta il 25 e il 26 Febbraio di quest’anno. componenti di HAMTV. Qui i soci del luogo sono stati i primi a prestare la loro Si avvicina un appuntamento importante per il nostro opera nell’organizzazione e nell’allestimento dello stand Gruppo, ovvero l’Assemblea dei Soci di AMSAT Italia. AMSAT Italia, e sono stati anche quelli che attivamente Quest’anno, la sede prescelta per questo evento si è ed interrottamente hanno accolto ed informato i spostata a nord, a Livorno, presso la sede della Kaiser visitatori e gli ospiti del nostro stand.
    [Show full text]
  • Only Six Chinese Human Spaceflight Missions
    Fact Sheet Updated April 29, 2021 CHINA’S HUMAN SPACEFLIGHT PROGRAM: BACKGROUND AND LIST OF CREWED AND AUTOMATED LAUNCHES China's human spaceflight program, Project 921, officially began in 1992. The program is proceeding at a measured pace. The most recent crewed launch, Shenzhou-11 in October 2016, was the 11th flight in the series, but only the sixth to carry a crew. Shenzhou Spacecraft: Shenzhou 1-4 were automated tests of the spacecraft. Shenzhou-8 was an automated test of rendezvous and docking procedures with the Tiangong-1 space station. The others (5, 6, 7, 9, 10, 11) carried crews of one, two or three people and were launched in 2003, 2005, 2008, 2012, 2013 and 2016 respectively (see list below) Space Stations: Tiangong-1, China's first space station, was launched in September 2011. It hosted the automated Shenzhou-8 in 2011 and two three-person crews: Shenzhou-9 in 2012 and Shenzhou-10 in 2013. It made an uncontrolled reentry at 8:16 pm April 1, 2018 EDT (00:16 April 2 UTC; 8:16 am April 2 Beijing Time) over the southern Pacific Ocean. Tiangong-1 was a small 8.5 metric ton (MT) module. As first space stations go, it was rather modest -- just less than half the mass of the world's first space station, the Soviet Union’s Salyut 1. Launched in 1971, Salyut 1 had a mass of about 18.6 MT. The first U.S. space station, Skylab, launched in 1973, had a mass of about 77 MT. Today's International Space Station (ISS), a partnership among the United States, Russia, Japan, Europe, and Canada, has a mass of about 400 MT and has been permanently occupied by 2-6 person crews rotating on 4-6 month missions since November 2000.
    [Show full text]