Status of the Global Observing System for Climate

Total Page:16

File Type:pdf, Size:1020Kb

Status of the Global Observing System for Climate STATUS OF THE GLOBAL OBSERVING SYSTEM FOR CLIMATE FULL REPORT OCTOBER 2015 Atmosphere Land Ocean GLOBAL CLIMATE OBSERVING SYSTEM GCOS Secretariat | c/o World Meteorological Organization | 7 bis, avenue de la Paix�� P.O. Box 2300 | CH-1211 Geneva 2 | Switzerland Tel.: +41 (0) 22 730 8275/8067 | Fax: +41 (0) 22 730 8052 | E-mail: [email protected]�� http://gcos.wmo.int STATUS OFTHE GLOBAL SYSTEMOBSERVING STATUS FOR CLIMATE JN 152282 GCOS-195 Status of the Global Observing System for Climate October 2015 GCOS-195 © World Meteorological Organization, 2015 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. ii iii TABLE OF CONTENTS Table of contents .................................................................................................................................... iv Foreword ................................................................................................................................................ ix Background and outline ......................................................................................................................... xi Overall conclusions ............................................................................................................................... xiii 1 Introduction and background .......................................................................................................... 1 1.1 Context and purpose of this report ............................................................................................ 1 1.2 Scope and concept of the global observing system for climate................................................. 1 1.3 Cycle of assessment and identification of requirements ........................................................... 2 1.4 Outline, basis and limits of this report ....................................................................................... 3 2 Climate Observation ........................................................................................................................ 5 2.1 Need for systematic observation ............................................................................................... 5 2.2 Nature of climate observation ................................................................................................... 6 2.3 Implementing agencies and international coordination ............................................................ 7 2.3.1 National and regional agents for implementation .............................................................. 7 2.3.2 International arrangements for coordination and assessment ........................................... 8 2.3.3 Principal atmospheric, oceanic and terrestrial observing systems ...................................10 2.4 Tiered observing networks and constellations ........................................................................11 2.5 Essential Climate Variables ......................................................................................................12 2.6 Climate-system cycles ..............................................................................................................14 3 Overarching and cross-cutting elements .......................................................................................15 3.1 Planning and reporting .............................................................................................................15 3.2 Towards sustained networks and systems ...............................................................................16 3.3 International support for critical networks ..............................................................................16 3.4 Space-based observation .........................................................................................................17 3.4.1 Introduction .......................................................................................................................17 3.4.2 Sustained satellite observing systems for weather and climate .......................................17 3.4.3 European Copernicus programme .....................................................................................20 3.4.4 Missions for research and development, and challenges of continuity ............................21 3.4.5 Data monitoring .................................................................................................................24 3.4.6 Fundamental forms of climate data records .....................................................................24 3.4.7 Intercalibration of data records .........................................................................................25 3.4.8 Data archives .....................................................................................................................26 iv 3.5 Generation of data products ....................................................................................................27 3.6 Reanalysis .................................................................................................................................28 3.7 Recovery of instrumental data .................................................................................................30 3.8 Proxy reconstructions of past climates ....................................................................................32 3.9 Data management ....................................................................................................................33 3.10 Climate impacts ........................................................................................................................35 4 Atmospheric observation ..............................................................................................................36 4.1 Introduction..............................................................................................................................36 4.2 Meteorological surface networks ............................................................................................36 4.2.1 Comprehensive surface networks .....................................................................................37 4.2.2 Baseline and reference networks ......................................................................................43 4.2.3 Data archives .....................................................................................................................44 4.3 Surface variables ......................................................................................................................45 4.3.1 Air temperature .................................................................................................................45 4.3.2 Wind speed and direction ..................................................................................................49 4.3.3 Water vapour .....................................................................................................................50 4.3.4 Pressure .............................................................................................................................52 4.3.5 Precipitation .......................................................................................................................54 4.3.6 Surface radiation budget ...................................................................................................58 4.4 Meteorological upper-air networks .........................................................................................61 4.4.1 Comprehensive radiosonde networks ...............................................................................61 4.4.2 Observations from aircraft ................................................................................................63 4.4.3 Baseline upper-air networks ..............................................................................................65 4.4.4 Reference upper-air networks ...........................................................................................66 4.4.5 Data archives .....................................................................................................................67 4.5 Upper-air variables ...................................................................................................................68
Recommended publications
  • The Global Atmosphere Watch Programme 25 Years of Global Coordinated Atmospheric Composition Observations and Analyses
    THE GLOBAL ATMOSPHERE WATCH PROGRAMME 25 YEARS OF GLOBAL COORDINATED ATMOSPHERIC COMPOSITION OBSERVATIONS AND ANALYSES WMO-No. 1143 WMO-No. 1143 © World Meteorological Organization, 2014 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] ISBN 978-92-63-11143-2 Cover illustrations: The two photos show the changes in ozone observations from 1957 (International Geophysical Year) until now. On the left, Dobson instruments are being calibrated at the Tateno station in Japan before they are deployed to their individual stations. On the right, Dobson instruments have been set up for a modern intercomparison study. The spectrophotometers are the same, but the measurement and calibration process are now monitored by computers. NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion what- soever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.
    [Show full text]
  • Global Atmosphere Watch GAW
    AREP GAW Global Atmosphere Watch GAW Liisa Jalkanen Atmospheric Environment Research (AER) Division WMO Secretariat AREP GAW World Meteorological Organization Independent technical UN agency 189 Members manage through WMO Congress and Executive Council Secretariat in Geneva (staff 280) Technical Departments Observing and Information Systems (OBS) Climate and Water (CLW) Weather and Disaster Risk Reduction Services (WDS) Research (RES) Atmospheric Research and Environment Branch (ARE) Atmospheric Environment Research Division (AER) Global Atmosphere Watch (GAW) AREP GAW THE GAW MISSION • Systematic long-term monitoring of atmospheric chemical and physical parameters globally • Analysis and assessment • Development of predictive capability (GURME and Sand and Dust Storm Warning System) AREP GAW Components of the GAW Programme OPAG EPAC Scientifc Advisory Groups Expert Groups Ozone | UV | GHG | RG | PC ET-WDC Chapter 2.3 JSSC Aerosols | GURME Administration WMO/GAW IGACO Offices Management Ozone/UV | GHG | Air Quality | Aerosols Chapter 2.5 Secretariat NMHSs Central QA/SACs WDCs & GAWSIS CCLs WOUDC | WDCGG | WDCA Facilities WCCs | RCCs Chapter 2.4 WRDC | WDCPC | WDC-RSAT Observing Contributing GAW Stations Satellites Systems Networks Global | Regional Aircraft Chapter 3 Contributing Parties to the Systems Programs Operational Research Users & Conventions GEOSS | GCOS IGAC | SOLAS Centers Projects Applications UNFCCC | Vienna C. GMES | … iLEAPS | … AREP GAW Observations • Weather related observations (OBS) • Climate observations (GCOS) • Atmospheric
    [Show full text]
  • An Evaluation of Snow Initializations in NCEP Global and Regional Forecasting Models
    JUNE 2016 D A W S O N E T A L . 1885 An Evaluation of Snow Initializations in NCEP Global and Regional Forecasting Models NICHOLAS DAWSON,PATRICK BROXTON,XUBIN ZENG, AND MICHAEL LEUTHOLD Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona MICHAEL BARLAGE Research Applications Laboratory, Boulder, Colorado PAT HOLBROOK Idaho Power Company, Boise, Idaho (Manuscript received 13 November 2015, in final form 10 April 2016) ABSTRACT Snow plays a major role in land–atmosphere interactions, but strong spatial heterogeneity in snow depth (SD) and snow water equivalent (SWE) makes it challenging to evaluate gridded snow quantities using in situ measurements. First, a new method is developed to upscale point measurements into gridded datasets that is superior to other tested methods. It is then utilized to generate daily SD and SWE datasets for water years 2012–14 using measurements from two networks (COOP and SNOTEL) in the United States. These datasets are used to evaluate daily SD and SWE initializations in NCEP global forecasting models (GFS and CFSv2, both on 0.5830.58 grids) and regional models (NAM on 12 km 3 12 km grids and RAP on 13 km 3 13 km grids) across eight 28328 boxes. Initialized SD from three models (GFS, CFSv2, and NAM) that utilize Air Force Weather Agency (AFWA) SD data for initialization is 77% below the area-averaged values, on av- erage. RAP initializations, which cycle snow instead of using the AFWA SD, underestimate SD to a lesser degree. Compared with SD errors, SWE errors from GFS, CFSv2, and NAM are larger because of the ap- plication of unrealistically low and globally constant snow densities.
    [Show full text]
  • Correlation of the SAGE III on ISS Thermal Models in Thermal Desktop
    47th International Conference on Environmental Systems ICES-2017-171 16-20 July 2017, Charleston, South Carolina Correlation of the SAGE III on ISS Thermal Models in Thermal Desktop Ruth M. Amundsen1, Warren T. Davis2, and Kaitlin A. K. Liles3 NASA Langley Research Center, Hampton, VA, 23681 and Shawn C. McLeod4 Analytical Mechanics Associates, Inc., Hampton, VA, 23666 The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III was launched on February 19, 2017 and mounted to the International Space Station (ISS) to begin its three-year mission. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Correlation of the thermal model is important since the payload will be expected to survive a three-year mission on ISS under varying thermal environments. Three major thermal vacuum (TVAC) tests were completed during the development of the SAGE III Instrument Payload (IP); two subsystem-level tests and a payload-level test. Additionally, a characterization TVAC test was performed in order to verify performance of a system of heater plates that was designed to allow the IP to achieve the required temperatures during payload-level testing; model correlation was performed for this test configuration as well as those including the SAGE III flight hardware. This document presents the methods that were used to correlate the SAGE III models to TVAC at the subsystem and IP level, including the approach for modeling the parts of the payload in the thermal chamber, generating pre-test predictions, and making adjustments to the model to align predictions with temperatures observed during testing.
    [Show full text]
  • Global Monitoring Division Collaborations/Stakeholders
    Global Monitoring Division Collaborations/Stakeholders Contents: page • Joint Institutes...................................................................2 • NOAA Laboratories and Divisions…………………………………….2 • NOAA Programs…………………………………………………………………4 • Other Federal Agencies……………………………………………………..4 • State and Municipal Agencies……………………………………………9 • National and International Networks……………………………….10 • Observatory Partnerships…………………………………………………11 • International Partnerships………………………………………………..15 • Other Research Collaborations……………………………………….18 2 GLOBAL MONITORING DIVISION COLLABORATIONS 2013- Present JOINT INSTITUTES: • Cooperative Institute for Research in Environmental Sciences (CIRES): NOAA Cooperative Institute at the University of Colorado. Extensive joint research and atmospheric monitoring projects are conducted at the Boulder facilities. • Cooperative Institute for Arctic Research (CIFAR): NOAA Cooperative Institute at the University of Alaska. Cooperative research in Arctic atmospheric science at the Barrow and Boulder facilities. • Cooperative Institute for Mesoscale Meteorological Studies (CIMMS): NOAA Cooperative Institute at the University of Oklahoma. GMD provides large amounts of high quality data for modelers. • Cooperative Institute for Research in the Atmosphere (CIRA): NOAA Cooperative Institute at the Colorado State University. Joint research projects are conducted at the Boulder facility. • Joint Institute for Marine and Atmospheric Research (JIMAR): NOAA Cooperative Institute at the University of Hawaii. Studies of
    [Show full text]
  • Snow Modeling and Observations at NOAA's National Operational
    Snow Modeling and Observations at NOAA’S National Operational Hydrologic Remote Sensing Center Thomas R. Carroll National Operational Hydrologic Remote Sensing Center, National Weather Service, National Oceanic and Atmospheric Administration Chanhassen, Minnesota, USA Abstract The National Oceanic and Atmospheric Administration’s (NOAA) National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous United States. The NWP model forcings are physically downscaled from their native 13 kilometer2 (km) spatial resolution to a 1 km2 resolution for the coterminous United States. The downscaled NWP forcings drive the NOHRSC Snow Model (NSM) that includes an energy-and-mass-balance snow accumulation and ablation model run at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the model state variables simulated by the NSM using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the NSM, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The NSM is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA’s NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the information necessary and available to produce a “best estimate” of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country.
    [Show full text]
  • Assessment of Snowfall Accumulation from Satellite and Reanalysis Products Using SNOTEL Observations in Alaska
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 June 2021 doi:10.20944/preprints202106.0062.v1 Assessment of Snowfall Accumulation from Satellite and Reanalysis Products using SNOTEL Observations in Alaska Yang Song, Patrick D. Broxton, Mohammad Reza Ehsani, Ali Behrangi The University of Arizona, Department of Hydrology and Atmospheric Sciences Corresponding author: Ali Behrangi, [email protected] Abstract The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 Snow Telemetry (SNOTEL) sites in Alaska are used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018-2019) of the high resolution radar/rain gauge data (Stage IV) product was also utilized to add insights into scaling differences between various products. The outcomes were also used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range in which other products can be assessed. Time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tend to overestimate snow accumulation in the study area, while current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that corrections factors applied to rain gauges are effective in improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall.
    [Show full text]
  • Articles Upon the Hox Family by Comparing Averages of Days Impacted by These Events with Averages of Non-Impacted 3945–3977, Doi:10.5194/Acp-13-3945-2013, 2013
    Atmos. Chem. Phys., 15, 2889–2902, 2015 www.atmos-chem-phys.net/15/2889/2015/ doi:10.5194/acp-15-2889-2015 © Author(s) 2015. CC Attribution 3.0 License. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder L. Millán1,2, S. Wang2, N. Livesey2, D. Kinnison3, H. Sagawa4, and Y. Kasai4 1Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California, USA 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA 3National Center for Atmospheric Research, Boulder, Colorado, USA 4National Institute of Information and Communications Technology, Koganei, Tokyo, Japan Correspondence to: L. Millán ([email protected]) Received: 18 June 2014 – Published in Atmos. Chem. Phys. Discuss.: 8 September 2014 Revised: 17 February 2015 – Accepted: 24 February 2015 – Published: 13 March 2015 Abstract. This study introduces stratospheric and meso- sphere where O3 chemistry is controlled by catalytic cycles spheric hydroperoxyl radical (HO2) estimates from the Aura involving the HOx (HO2, OH and H) family (Brasseur and Microwave Limb Sounder (MLS) using an offline retrieval Solomon, 2005): (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during X C O3 ! XO C O2 (R1) daytime from 10 to 0.0032 hPa (using day-minus-night dif- O C XO ! O2 C X; (R2) ferences between 10 and 1 hPa to ameliorate systematic bi- ases) and one during nighttime from 1 to 0.0032 hPa. The where the net effect of these two reactions is simply vertical resolution of this new data set varies from about 4 km O C O ! 2O (R3) at 10 hPa to around 14 km at 0.0032 hPa.
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • GAW Report No. 207
    GAW Report No. 207 Recommendations for a Composite Surface-Based Aerosol Network (Emmetten, Switzerland, 28-29 April 2009) For more information, please contact: World Meteorological Organization Research Department Atmospheric Research and Environment Branch 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland Tel.: +41 (0) 22 730 81 11 – Fax: +41 (0) 22 730 81 81 E-mail: [email protected] Website: http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html © World Meteorological Organization, 2012 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Opinions expressed in WMO publications are those of the authors and do not necessarily reflect those of WMO. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.
    [Show full text]
  • Download Gate.Html (Accessed on 20 April 2021)
    remote sensing Article Assessment of Snowfall Accumulation from Satellite and Reanalysis Products Using SNOTEL Observations in Alaska Yang Song 1, Patrick D. Broxton 2, Mohammad Reza Ehsani 1 and Ali Behrangi 1,* 1 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, AZ 85721, USA; [email protected] (Y.S.); [email protected] (M.R.E.) 2 School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA; [email protected] * Correspondence: [email protected] Abstract: The combination of snowfall, snow water equivalent (SWE), and precipitation rate mea- surements from 39 snow telemetry (SNOTEL) sites in Alaska were used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipita- tion from two water years (2018–2019) of a high-resolution radar/rain gauge data (Stage IV) product was also utilized to give insights into the scaling differences between various products. The outcomes were used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range within which other products can be assessed. The time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tended to overestimate snow accumulation in the study area, while the current combined passive microwave Citation: Song, Y.; Broxton, P.D.; remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation.
    [Show full text]
  • Final Report SPACE: the Final Frontier for CSR SPACE: the Final Frontier for CSR
    Final Report SPACE: the final frontier for CSR SPACE: the final frontier for CSR Cover image: Remote sensing view of the BP Deep Horizon oil spill in April 2010. Image courtesy of NASA. Team logo created by Luca Celiento. The MSS 2017 Program of the International Space University (ISU) was held at the ISU Central Campus in Illkirch-Graffenstaden, France. Electronic copies of the Final Report and Executive Summary can be downloaded from the ISU website at www.isunet.edu. Printed copies of the Executive Summary may be requested, while supplies last, from: International Space University Strasbourg Central Campus Attention: Publication/Library Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel. +33 (0)3 88 65 54 32 Fax. +33 (0)3 88 65 54 47 e-mail. [email protected] Acknowledgments Project TerraSPACE authors wish to thank Muriel Riester for her assistance provided to us during this stage of the team project by assisting us in finding various relevant sources offered to us by ISU’s library. Her continued patience is greatly appreciated and will be valued throughout the continuation of this project. Professor Barnaby Osborne, the project’s supervisor, has provided us with the necessary guidance to operate as a team effectively. His support throughout this project has allowed us to focus on the report’s content in efforts of producing a meaningful effort. Team members wish to express their gratitude to C. Mate for kindly holding an interview with team members to discuss the current working conditions of the oil and gas industry.
    [Show full text]