Mike & Kennedy Computer Architecture

Total Page:16

File Type:pdf, Size:1020Kb

Mike & Kennedy Computer Architecture Intel Haswell Mike & Kennedy Computer Architecture 122 Outline ● Intel development cycle ● Haswell feature overview ● Transistor technology ● System on Chip (SoC) ● AVX2 ● Active Idle ● Thunderbolt ● µOperations ● Available platforms ● DDR3 & DDR4 Microarchitecture History Ivy Bridge Features From Ivy Bridge New Features ● 22 nm immersion ● "Stacked" System on a lithography Chip ● 3D Tri-Gate Transistor ● Advanced Vector ● 14 stage Pipeline Extension 2 (AVX2) ● Quad-core ● Active Idle ● DDR3 Mainstream ● Thunderbolt ● 64kB L1 cache ● LGA1150 Socket ○ 32 kB Instruction ● Transactional ○ 32 kB Data Synchronization ● 256 kB L2 cache per Extensions (TSX) core ○ Shared memory Multi Threaded Transactional Memory Support 3D Tri-Gate Transistor ● First introduced in Ivy Bridge ● Significant reduction in current leakage ● More current can flow when the transistor is on ● Lower transition delay ● Incredibly small Transistor Operating Voltage "Stacked" System on a Chip (SoC) ● Nehalem brought part of the Northbridge onto the CPU ● Multi-Chip Module (MCM) ○ Memory control module next to the CPU ○ Integrated graphics (Clarkdale) ● Platform Controller Hub (PCH) ○ Rest of Northbridge fused with Southbridge ● Sandy-bridge integrated memory control and graphics into same CPU die. Advanced Vector Extension 2 (AVX2) ● 256 bits integer AVX instructions ○ Larger vector, register files ● 3-operand general-purpose bit manipulation and multiply ● Vector elements can be loaded from non-contiguous memory locations ● 3-operand fused multiply- accumulate support ○ d=a+b*c ○ Destructive, d will replace one of operants (a,b, or c). but only requires 3 registers Active Idle ● CPU appears active to OS ● 20x lower power usage ● Consumes power levels similar to sleep ● Handled by hardware and firmware Thunderbolt ● Multiplexing 6 Channels (Devices) ● 10 Gbits/sec per Channel (20 Gbits/sec total) ● Can Deliver Up To 10 Watts Across Cable ● Direct Memory Access (DMA) More µOperations! µOperations??? ● Execution Unit ● Breaking down ○ 6 µops/cycle -> 8 µops/cycle operations into smaller pieces ● allows more complex cpu systems ● Types: ○ Transfer ○ Arithmetic ○ Logic ○ Shift Haswell Multi-Chip Module ● GT1 - GT3 ● GT1 - GT2 ● GT3 ● Up to C7 ● Up to C6 ● Up to C10 ● 37/47/57W ● 35/45/65/95W ● 15W ● Platform Controller Hub (PCH) onto CPU (Sharkbay) DDR3 (Mainstream) DDR4 (Servers) ● Two Memory ● Four Memory Channels Channels ● 800MHz to 2.1GHz ● Starting frequency 2.1 ● Operates at 1.5Volts GHz, over 4.2GHz possible ● Operates at 1.2Volts Summary ● Uses 22nm die (like Ivy Bridge) ● Reduced power consumption ● Continues trend towards SoC ● Different versions to cover a wide range of platforms Broadwell (2014) ● 14nm Die Shrink ● <10W TDP for Ultrabook Version ● Integrate "Stacked" SoC.
Recommended publications
  • How to Hack a Turned-Off Computer Or Running Unsigned
    HOW TO HACK A TURNED-OFF COMPUTER, OR RUNNING UNSIGNED CODE IN INTEL ME Contents Contents ................................................................................................................................ 2 1. Introduction ...................................................................................................................... 3 1.1. Intel Management Engine 11 overview ............................................................................. 4 1.2. Published vulnerabilities in Intel ME .................................................................................. 5 1.2.1. Ring-3 rootkits.......................................................................................................... 5 1.2.2. Zero-Touch Provisioning ........................................................................................... 5 1.2.3. Silent Bob is Silent .................................................................................................... 5 2. Potential attack vectors ...................................................................................................... 6 2.1. HECI ............................................................................................................................... 6 2.2. Network (vPro only)......................................................................................................... 6 2.3. Hardware attack on SPI interface ..................................................................................... 6 2.4. Internal file system .........................................................................................................
    [Show full text]
  • Developing Solutions for the Internet of Things
    Cloud Data Gateways Analytics Things WHITE PAPER Internet of Things Developing Solutions for the Internet of Things Intel® products, solutions, and services are enabling secure and seamless solutions for the Internet of Things (IoT). Introduction The world is undergoing a dramatic transformation, rapidly transitioning from isolated systems to ubiquitous Internet-enabled ‘things’ capable of generating data that can be analyzed to extract valuable information. Commonly referred to as the Internet of Things (IoT), this new reality will enrich everyday life, increase business productivity, improve government efficiency, and the list goes on. Intel is working with a large community of solution providers to develop IoT solutions for a wide range of organizations and businesses, including industrial, retail, automotive, energy, and healthcare industries. The solutions generate actionable information by running analytic Powering software and services on data that moves between devices and the cloud in a manner that is Business always secure, manageable, and user-friendly. Transformation Whether connecting a consumer wearable device, vehicle, or factory controller to the Internet, everyone wants it to be quick and seamless. This paper describes how Intel® products and technologies are helping make this a reality by providing fundamental building blocks for a robust ecosystem that is developing end-to-end IoT solutions. Building Blocks for Thing to Cloud Innovation The IoT vision is to create opportunities to transform businesses, people’s lives, and the world in countless ways by enabling billions of systems across the globe to share and analyze data over the cloud. With these capabilities, IoT solutions can improve medical outcomes, create better products faster, lower development cost, make shopping more enjoyable, or optimize energy generation and consumption.
    [Show full text]
  • ATX-945G Industrial Motherboard in ATX Form Factor with Intel® 945G Chipset
    ATX-945G Industrial Motherboard in ATX form factor with Intel® 945G chipset Supports Intel® Core™2 Duo, Pentium® D CPU on LGA775 socket 1066/800/533MHz Front Side Bus Intel® Graphics Media Accelerator 950 Dual Channel DDR2 DIMM, maximum 4GB Integrated PCI Express LAN, USB 2.0 and SATA 3Gb/s ATX-945G Product Overview The ATX-945G is an ATX form factor single-processor (x8) and SATA round out the package for a powerful industrial motherboard that is based on the Intel® 945G industrial PC. I/O features of the ATX-945G include a chipset with ICH7 I/O Controller Hub. It supports the Intel® 32-bit/33MHz PCI Bus, 16-bit/8MHz ISA bus, 1x PCI Express Core™2 Duo, Pentium® D, Pentium® 4 with Hyper-Threading x16 slot, 2x PCI Express x1 slots, 3x PCI slots, 1x ISA slot Technology, or Celeron® D Processor on the LGA775 socket, (shared w/ PCI), onboard Gigabit Ethernet, LPC, EIDE Ultra 1066/800/533MHz Front Side Bus, Dual Channel DDR2 DIMM ATA/100, 4 channels SATA 3Gb/s, Mini PCI card slot, UART 667/533/400MHz, up to 4 DIMMs and a maximum of 4GB. The compatible serial ports, parallel port, floppy drive port, HD Intel® Graphic Media Accelerator 950 technology with Audio, and PS/2 Keyboard and Mouse ports. 2048x1536x8bit at 75Hz resolution, PCI Express LAN, USB 2.0 Block Diagram CPU Core™2 Duo Pentium® D LGA775 package 533/800/1066MHz FSB Dual-Core Hyper-Threading 533/800/1066 MHz FSB D I M Northbridge DDR Channel A M ® x Intel 945G GMCH 2 DDRII 400/533/667 MHz D I CRT M M DB-15 DDR Channel B x 2 Discrete PCIe x16 Graphics DMI Interface 2 GB/s IDE Device
    [Show full text]
  • Motherboards, Processors, and Memory
    220-1001 COPYRIGHTED MATERIAL c01.indd 03/23/2019 Page 1 Chapter Motherboards, Processors, and Memory THE FOLLOWING COMPTIA A+ 220-1001 OBJECTIVES ARE COVERED IN THIS CHAPTER: ✓ 3.3 Given a scenario, install RAM types. ■ RAM types ■ SODIMM ■ DDR2 ■ DDR3 ■ DDR4 ■ Single channel ■ Dual channel ■ Triple channel ■ Error correcting ■ Parity vs. non-parity ✓ 3.5 Given a scenario, install and configure motherboards, CPUs, and add-on cards. ■ Motherboard form factor ■ ATX ■ mATX ■ ITX ■ mITX ■ Motherboard connectors types ■ PCI ■ PCIe ■ Riser card ■ Socket types c01.indd 03/23/2019 Page 3 ■ SATA ■ IDE ■ Front panel connector ■ Internal USB connector ■ BIOS/UEFI settings ■ Boot options ■ Firmware upgrades ■ Security settings ■ Interface configurations ■ Security ■ Passwords ■ Drive encryption ■ TPM ■ LoJack ■ Secure boot ■ CMOS battery ■ CPU features ■ Single-core ■ Multicore ■ Virtual technology ■ Hyperthreading ■ Speeds ■ Overclocking ■ Integrated GPU ■ Compatibility ■ AMD ■ Intel ■ Cooling mechanism ■ Fans ■ Heat sink ■ Liquid ■ Thermal paste c01.indd 03/23/2019 Page 4 A personal computer (PC) is a computing device made up of many distinct electronic components that all function together in order to accomplish some useful task, such as adding up the numbers in a spreadsheet or helping you to write a letter. Note that this defi nition describes a computer as having many distinct parts that work together. Most PCs today are modular. That is, they have components that can be removed and replaced with another component of the same function but with different specifi cations in order to improve performance. Each component has a specifi c function. Much of the computing industry today is focused on smaller devices, such as laptops, tablets, and smartphones.
    [Show full text]
  • ECS P4M890T-M2 Manual.Pdf
    Preface Copyright This publication, including all photographs, illustrations and software, is protected under international copyright laws, with all rights reserved. Neither this manual, nor any of the material contained herein, may be reproduced without written consent of the author. Version 1.0B Disclaimer The information in this document is subject to change without notice. The manufacturer makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. The manufacturer reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of the manufacturer to notify any person of such revision or changes. Trademark Recognition Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corp. MMX, Pentium, Pentium-II, Pentium-III, Pentium-4, Celeron are registered trademarks of Intel Corporation. Other product names used in this manual are the properties of their respective owners and are acknowledged. Federal Communications Commission (FCC) This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reason- able protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference
    [Show full text]
  • BRKINI-2390.Pdf
    BRKINI-2390 Data Center security within modern compute and attached fabrics - servers, IO, management Dan Hanson Director UCS Architectures and Technical Marketing Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space cs.co/ciscolivebot#BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Recent Press Items © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public Agenda • x86 Architecture Review • BIOS and Kernel Manipulation • Device Firmware Manipulation • On Server Data Storage Manipulation • Segmentation and Device access • Root of Trust Flow • Policy Control vs. Component Configuration (Cisco UCS and ACI) • Example of Security Offloading: Skyport Systems • Conclusion x86 Architecture Review Many Points of possible attack X86 Reference Legacy Elements • You may see many terms in various articles shown here • Over time, items moving on the CPU itself • Memory • PCIe • Processors/Servers differentiation in some areas • Front Side Bus speeds • Direct Media Interface • Southbridge Configurations BRKINI-2390 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 X86 Reference Fundamental Architecture • Not shown: Quick Path Interconnect/UltraPath Interconnect for CPU to CPU communications • Varied counts and speeds for multi-socket systems • Current Designs have On-Die PCIe and Memory controllers • Varied numbers and DIMMs in memory channels by CPU • Platform Controller Hub varies and can even offer server acceleration and security functions BRKINI-2390 © 2018 Cisco and/or its affiliates.
    [Show full text]
  • Dell EMC Poweredge C4140 Technical Guide
    Dell EMC PowerEdge C4140 Technical Guide Regulatory Model: E53S Series Regulatory Type: E53S001 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2017 - 2019 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2019 - 09 Rev. A00 Contents 1 System overview ......................................................................................................................... 5 Introduction............................................................................................................................................................................ 5 New technologies.................................................................................................................................................................. 5 2 System features...........................................................................................................................7 Specifications......................................................................................................................................................................... 7 Product comparison.............................................................................................................................................................
    [Show full text]
  • Comparison of High Performance Northbridge Architectures in Multiprocessor Servers
    Comparison of High Performance Northbridge Architectures in Multiprocessor Servers Michael Koontz MS CpE Scholarly Paper Advisor: Dr. Jens-Peter Kaps Co-Advisor: Dr. Daniel Tabak - 1 - Table of Contents 1. Introduction ...............................................................................................................3 2. The x86-64 Instruction Set Architecture (ISA) ...................................................... 3 3. Memory Coherency ...................................................................................................4 4. The MOESI and MESI Cache Coherency Models.................................................8 5. Scalable Coherent Interface (SCI) and HyperTransport ....................................14 6. Fully-Buffered DIMMS ..........................................................................................16 7. The AMD Opteron Northbridge ............................................................................19 8. The Intel Blackford Northbridge Architecture .................................................... 27 9. Performance and Power Consumption .................................................................32 10. Additional Considerations ..................................................................................34 11. Conclusion ............................................................................................................ 36 - 2 - 1. Introduction With the continuing growth of today’s multi-media, Internet based culture, businesses are becoming more dependent
    [Show full text]
  • AMD Opteron™ 4200 Series Processor
    AMD Opteron™ 4200 Series Processor AMD Opteron™ 4200 Series Processor What’s new in the AMD Opteron™ 4200 Series Processor (Codenamed “Valencia”) and the new “Bulldozer” Microarchitecture? Platform Processor Socket Chipset Opteron 4000 Opteron 4200 C32 56x0 / 5100 (codenamed “San Marino” or “Adelaide”) (codenamed “Valencia") (with BIOS update) In their first microarchitecture rebuild since Opteron, AMD introduces the Bulldozer module, implemented in both the Opteron 4200 and 6200 Series. The modules are engineered to emphasize throughput, core count, and parallel server workloads. A module consists of two tightly coupled cores, in which some core resources are shared. The effect is between a core with two threads and a dual-core processor, in which each core is fully independent. Performance, scalability, and efficiency for today’s applications. Processor Features Platform Features . 32nm process technology . 2 DDR3 memory channels, LRDIMM, RDIMM, UDIMM . Up to 8 Bulldozer cores up to 1600 GT/s . Evolved integrated northbridge o 1.25 and 1.35V Low-voltage DRAM o 8M L3 cache o 1.5V also available o Bandwidth improvements . 2 HyperTransport™ technology 3.0 links up to 6.4 GT/s o Memory capacity improvements . Advanced Platform Management Link (APML) for o Power efficiency improvements system management . Up to16MB combined L2 + L3 cache . Compatible with existing C32 socket with BIOS update Product Specifications Clock Frequency / Turbo L3 Max Memory System Bus Process TDP1 / ACP2 Model Cores L2 Cache Core Frequency (GHz) Cache Speed Speed 4284 3.0 / 3.7 8 4 x 2MB 4280 2.8 / 3.5 95 W / 75W 4238 3.3 / 3.7 8MB DDR3-1600 MHz 6.4 GT/s 4234 3.1 / 3.5 6 3 x 2MB 32nm 4226 2.7 / 3.1 4274 HE 2.5 / 3.5 8 4 x 2MB 65 W / 50W 8MB DDR3-1600 MHz 6.4 GT/s 4228 HE 2.8 / 3.6 6 3 x 2MB 35W / 32W 4256 EE 1.6 / 2.8 8 4 x 2MB 8MB DDR3-1600 MHz 6.4 GT/s 1 TDP stands for Thermal Design Power.
    [Show full text]
  • C610 Series Chipset and Intel® X99 Chipset Platform Controller Hub (PCH) External Design Specification (EDS) Specification Update
    Intel® C610 Series Chipset and Intel® X99 Chipset Platform Controller Hub (PCH) External Design Specification (EDS) Specification Update June 2016 Reference Number: 330789-004 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.
    [Show full text]
  • ESPRIMO Mobile V5505
    Issue February 2008 ESPRIMO Mobile V5505 Pages 3 The ESPRIMO Mobile V5505 is a versatile all-round notebook, equally suitable for occasional or professional users, and heavy-duty operation by mobile field sales people. This professional notebook features a superb 15.4-inch WXGA display, an ergonomic keyboard and a built-in super multi DVD writer drive. LAN are integrated for easier connection, courtesy of the latest Intel® Centrino® Duo Mobile Technology based on Intel® 965GM chipset. It has great connections; four USB ports and an integrated 3in1 Card Reader. Connect to printers, scanners, cameras or any other accessory. Elegance Designed for the most demanding mobile users, ESPRIMO Mobile is the perfect synthesis of form, function and style. Power-saving Intel® Centrino® Duo Mobile for long independent working Increased productivity due to latest Intel® 965GM chipset which supports latest technology standards: DDR2 memory, PCI Express and S-ATA Ergonomics Enjoy the viewing quality of brilliant 15.4-inch WXGA TFT display Convenient working with full sized keyboard Connectivity Ideal connectivity through WLAN. Antennas are integrated for best signal reception. Variety of interfaces for best connection to the peripherals Reliability Germany‘s quality standard Award-winning best-in-class manufacturing Mechanical and function stability through extensive quality tests Data Sheet ⏐ Issue: February 2008⏐ ESPRIMO Mobile V5505 Page 2 / 3 System ESPRIMO Mobile V5505 Processor Intel® Core™2 Duo Processor Up to T7500 (2.2 GHz) Second level
    [Show full text]
  • Blackford:Blackford: AA Dualdual Processorprocessor Chipsetchipset Forfor Serversservers Andand Workstationsworkstations
    Blackford:Blackford: AA DualDual ProcessorProcessor ChipsetChipset forfor ServersServers andand WorkstationsWorkstations Kai Cheng, Sundaram Chinthamani, Sivakumar Radhakrishnan, Fayé Briggs and Kathy Debnath IntelIntel CorporationCorporation 8/22/20068/22/2006 © Copyright 2006, Intel Corporation. All rights reserved. Hot Chips 2006 *Third party marks and brands are the property of their respective owners. Digital Enterprise Group 1 LegalLegal DisclaimeDisclaimerr • Intel, the Intel logo, Centrino, the Centrino logo, Intel Core, Core Inside, Pentium, Pentium Inside, Itanium, Itanium Inside, Xeon, Xeon Inside, Pentium III Xeon, Celeron, Celeron Inside, and Intel SpeedStep are trademarks or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. • This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample • Information in this document is provided in connection with Intel products. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. • Intel does not control or audit the design or implementation of 3rd party benchmarks or websites referenced in this document.
    [Show full text]