Mechanisms of Seizure During Pregnancy and Preeclampsia Abbie Chapman Johnson University of Vermont

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Seizure During Pregnancy and Preeclampsia Abbie Chapman Johnson University of Vermont University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 Mechanisms of Seizure during Pregnancy and Preeclampsia Abbie Chapman Johnson University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Neurosciences Commons Recommended Citation Johnson, Abbie Chapman, "Mechanisms of Seizure during Pregnancy and Preeclampsia" (2015). Graduate College Dissertations and Theses. 336. https://scholarworks.uvm.edu/graddis/336 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. MECHANISMS OF SEIZURE DURING PREGNANCY AND PREECLAMPSIA A Dissertation Presented by Abbie Chapman Johnson to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Neuroscience May, 2015 Defense Date: February 23, 2015 Dissertation Examination Committee: Marilyn J. Cipolla, Ph.D., Advisor George C. Wellman, Ph.D., Chairperson Margaret A. Vizzard, Ph.D. Marjorie C. Meyer, M.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Eclampsia is defined as de novo seizure in a woman with the hypertensive complication of pregnancy known as preeclampsia (PE), and is a leading cause of maternal and fetal morbidity and mortality worldwide. The pathogenesis of eclamptic seizure remains unknown, but is considered a form of hypertensive encephalopathy where an acute rise in blood pressure causes loss of cerebral blood flow (CBF) autoregulation and hyperperfusion of the brain that results in vasogenic edema formation and subsequent seizure. However, eclamptic seizure can occur during seemingly uncomplicated pregnancies, in the absence of hypertension and PE, suggesting that normal pregnancy may predispose the brain to hypertensive encephalopathy or seizure, independently of PE. The overall goal of this dissertation was to investigate the effect of pregnancy and PE on the cerebrovasculature and neurophysiological properties that may promote brain injury and eclamptic seizure. For this dissertation project, a rat model of PE was established that combined placental ischemia, induced by restricting blood flow to the uteroplacental unit, and maternal endothelial dysfunction that was induced by a prolonged high cholesterol diet. Rats with PE developed several PE-like symptoms, including elevated blood pressure, fetal growth restriction, placental dysfunction, and were in a state of oxidative stress and endothelial dysfunction. We found that pregnancy had an overall protective effect on the maintenance of CBF that was potentially due to a nitric-oxide dependent enhancement of the vasodilation of cerebral arteries to decreased intravascular pressure. Further, maintenance of CBF during acute hypertension was similar in pregnancy and PE. Thus, it does not appear that pregnancy and PE are states during which CBF autoregulation is compromised in a manner that would promote the development of hypertensive encephalopathy. However, the brain was found to be in a hyperexcitable state during normal pregnancy that was augmented in PE, and could contribute to onset of eclamptic seizure. Under chloral hydrate anesthesia, generalized seizure was induced by timed infusion of the convulsant pentylenetetrazole (PTZ), with simultaneous electroencephalography that was stopped at the first onset of spikewave discharge indicative of electrical seizure. Seizure threshold was determined as the amount of PTZ required to elicit seizure. Compared to the nonpregnant state, seizure threshold was ~44% lower in pregnant rats and ~80% lower in rats with PE. Further, pregnant rats were more susceptible to seizure-induced vasogenic edema formation than the nonpregnant state. Mechanisms by which pregnancy and PE lowered seizure threshold appeared to be through pregnancy-associated decreases in cortical γ-aminobutyric acid type A receptor (GABAAR) subunits and PE-induced disruption of the blood-brain barrier (BBB) and microglial activation, indicative of neuroinflammation. Magnesium sulfate (MgSO4), the leading treatment for seizure prophylaxis in women with PE, restored seizure threshold to control levels by reversing neuroinflammation in PE rats, without affecting BBB permeability. Overall, this dissertation provides evidence that pregnancy increases susceptibility of the brain to seizure and vasogenic edema formation that likely contribute to the onset of eclampsia during seemingly uncomplicated pregnancies. Further, the pathogenesis of eclampsia during PE likely involves breakdown of the BBB and subsequent neuroinflammation, resulting in a state of greater seizure susceptibility that is ameliorated by MgSO4 treatment. CITATIONS Material from this dissertation has been published in the following form: Chapman, A.C., Cipolla, M.J., and Chan, S.L.. (2013) Effect of pregnancy and nitric oxide on the myogenic vasodilation of posterior cerebral arteries and the lower limit of cerebral blood flow autoregulation. Repro Sci, 20(9): 1046-54. Johnson, A.C., Tremble, S.M., Chan, S.L., Moseley, J., LaMarca, B., Nagle, K.J., and Cipolla, M.J.. (2014) Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One, Nov 19;9(11):e113670. doi: 10.1371/journal.pone.0113670. eCollection 2014. Material from this dissertation has been submitted for publication to PLoS One on January 26, 2015 in the following form: Johnson, A.C., Nagle, K.J., Tremble, S.M., and Cipolla, M.J.. (2015) The contribution of normal pregnancy to eclampsia. ii ACKNOWLEDGEMENTS First and foremost, I need to thank my mentor, Dr. Marilyn J. Cipolla for being, in a word, tremendous. You have provided me for the better part of a decade (really? that long?) with continuous guidance, advisement, and patience. You have taught me many things, too many to list, but most importantly to be fearless, to face things head on, and never go backwards, professionally or personally. Your high expectations of me at times felt impossible to meet, and even more impossible to maintain, yet your confidence in me that often far surpassed my own helped me get there. I will keep my eye on the forest through the trees. Thank you. I also thank my wonderful lab family for being constant and understanding, and for all of your technical and emotional support over the years. In particular, Julie Sweet and Kelvin Chan: “We shall not separate!” To my goofy, full-hearted husband, Travis Johnson: You, I do not know how to thank. It’s too much. Embarking on this seemingly endless long distance lifestyle has often felt like a cruel joke, yet both of our careers have benefited from it. Without your unyielding love and support I do not know where we would be, but I doubt it would be here. You have been there to celebrate the best times, albeit sometimes from 3000+ miles away, and more importantly, you have applied coat after coat of glue, sticking me back together during the worst. You haven’t let me lose those silly, carefree parts of myself that you fell in love with, even though at times over the past 5 years there has been no room for them. You are my night sky. For that I will always be thankful, and I cherish you very much. I would like to thank my parents who, in each of their own way, have contributed an enormous amount to my motivation, determination and stubbornness. From a young age you gave me perspective, and taught me the crucial value of perseverance. I sometimes forget that I don’t just get my hard-headed qualities from you, but I get many of my best qualities from you as well (like my laugh-so-hard-my-body-doesn’t-know-if- it’s-still-laughing-or-now-crying cackle that is indistinguishable from yours, Mom). Dad, I thank you for being relentless, in all meanings of the word. Mom, I thank you for being a bottomless well of love and kindness. To my co-inhabitants of Ph.D. Land: What a strange and unique existence. These friendships have been odd, and some have shifted like the tide. Cheers to the shared successes, years of misery, hours of early morning coffee rants and pity parties, and to learning to celebrate the most minute of successes and to capitalize on those times to let loose or lose your mind. Thank you Matt LeComte, Liana Merrill, Eric Gonzalez, Stephanie Spohn, Dave Harris, and Anthony Pappas, for we are, or have been, fortunate to have one another as leaning posts. To all of my other friends and family, particularly from Down East, thank you for giving quieter strength and encouragement from the sidelines. iii TABLE OF CONTENTS CITATIONS ....................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW ......................................... 1 1.1 Preeclampsia and Eclampsia ....................................................................................
Recommended publications
  • Dysmagnesemia in Covid-19 Cohort Patients: Prevalence and Associated Factors
    Magnesium Research 2020; 33 (4): 114-122 ORIGINAL ARTICLE Dysmagnesemia in Covid-19 cohort patients: prevalence and associated factors Didier Quilliot1, Olivier Bonsack1, Roland Jaussaud2, Andre´ Mazur3 1 Transversal Nutrition Unit and; 2 Internal Medicine and Clinical Immunology. Nancy University Hospital, University of Lorraine, France; 3 Universite´ Clermont Auvergne, INRAE, UNH, Unite´ de Nutrition Humaine, Clermont-Ferrand, France Correspondence <[email protected]> Abstract. Hypomagnesemia and hypermagnesemia could have serious implications and possibly lead to progress from a mild form to a severe outcome of Covid-19. Susceptibility of subjects with low magnesium status to develop and enhance this infection is possible. There is little data on the magnesium status of patients with Covid-19 with different degrees of severity. This study was conducted to evaluate prevalence of dysmagnesemia in a prospective Covid-19 cohort study according to the severity of the clinical manifestations and to identify factors associated. Serum magnesium was measured in 300 of 549 patients admitted to the hospital due to severe Covid-19. According to the WHO guidelines, patients were classified as moderate, severe, or critical. 48% patients had a magnesemia below 0.75 mmol/L (defined as magnesium deficiency) including 13% with a marked hypomagnesemia (<0.65 mmol/L). 9.6% had values equal to or higher than 0.95 mmol/L. Serum magnesium concentrations were significantly lower in female than in male (0.73 Æ 0.12 vs 0.80 Æ 0.13 mmol/L), whereas the sex ratio M/F was higher in severe and critical form (p<0.001). In a bivariate analysis, the risk of magnesium deficiency was significantly and negatively associated with infection severity (p<0.001), sex ratio (M/F, p<0.001), oxygenotherapy (p<0.001), stay in critical care unit (p=0.028), and positively with nephropathy (p=0.026).
    [Show full text]
  • Nitric Oxide in Health and Disease of the Nervous System H-Y Yun1,2, VL Dawson1,3,4 and TM Dawson1,3
    Molecular Psychiatry (1997) 2, 300–310 1997 Stockton Press All rights reserved 1359–4184/97 $12.00 PROGRESS Nitric oxide in health and disease of the nervous system H-Y Yun1,2, VL Dawson1,3,4 and TM Dawson1,3 Departments of 1Neurology; 3Neuroscience; 4Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Nitric oxide (NO) is a widespread and multifunctional biological messenger molecule. It mediates vasodilation of blood vessels, host defence against infectious agents and tumors, and neurotransmission of the central and peripheral nervous systems. In the nervous system, NO is generated by three nitric oxide synthase (NOS) isoforms (neuronal, endothelial and immunologic NOS). Endothelial NOS and neuronal NOS are constitutively expressed and acti- vated by elevated intracellular calcium, whereas immunologic NOS is inducible with new RNA and protein synthesis upon immune stimulation. Neuronal NOS can be transcriptionally induced under conditions such as neuronal development and injury. NO may play a role not only in physiologic neuronal functions such as neurotransmitter release, neural development, regeneration, synaptic plasticity and regulation of gene expression but also in a variety of neurological disorders in which excessive production of NO leads to neural injury. Keywords: nitric oxide synthase; endothelium-derived relaxing factor; neurotransmission; neurotoxic- ity; neurological diseases Nitric oxide is probably the smallest and most versatile NO synthases isoforms and regulation of NO bioactive molecule identified. Convergence of multi- generation disciplinary efforts in the field of immunology, cardio- vascular pharmacology, chemistry, toxicology and neu- NO is formed by the enzymatic conversion of the guan- robiology led to the revolutionary novel concept of NO idino nitrogen of l-arginine by NO synthase (NOS).
    [Show full text]
  • EPA Listed Wastes Table 1: Maximum Concentration of Contaminants For
    EPA Listed Wastes Table 1: Maximum concentration of contaminants for the toxicity characteristic, as determined by the TCLP (D list) Regulatory HW No. Contaminant CAS No. Level (mg/L) D004 Arsenic 7440-38-2 5.0 D005 Barium 7440-39-3 100.0 D0018 Benzene 71-43-2 0.5 D006 Cadmium 7440-43-9 1.0 D019 Carbon tetrachloride 56-23-5 0.5 D020 Chlordane 57-74-9 0.03 D021 Chlorobenzene 108-90-7 100.0 D022 Chloroform 67-66-3 6.0 D007 Chromium 7440-47-3 5.0 D023 o-Cresol 95-48-7 200.0** D024 m-Cresol 108-39-4 200.0** D025 p-Cresol 106-44-5 200.0** D026 Cresol ------------ 200.0** D016 2,4-D 94-75-7 10.0 D027 1,4-Dichlorobenzene 106-46-7 7.5 D028 1,2-Dichloroethane 107-06-2 0.5 D029 1,1-Dichloroethylene 75-35-4 0.7 D030 2,4-Dinitrotoluene 121-14-2 0.13* D012 Endrin 72-20-8 0.02 D031 Heptachlor 76-44-8 0.008 D032 Hexachlorobenzene 118-74-1 0.13* D033 Hexachlorobutadiene 87-68-3 0.5 D034 Hexachloroethane 67-72-1 3.0 D008 Lead 7439-92-1 5.0 D013 Lindane 58-89-9 0.4 D009 Mercury 7439-97-6 0.2 D014 Methoxychlor 72-43-5 10.0 D035 Methyl ethyl ketone 78-93-3 200.0 D036 Nitrobenzene 98-95-3 2.0 D037 Pentachlorophenol 87-86-5 100.0 D038 Pyridine 110-86-1 5.0* D010 Selenium 7782-49-2 1.0 D011 Silver 7740-22-4 5.0 D039 Tetrachloroethylene 127-18-4 0.7 D015 Toxaphene 8001-35-2 0.5 D040 Trichloroethylene 79-01-6 0.5 D041 2,4,5-Trichlorophenol 95-95-4 400.0 D042 2,4,6-Trichlorophenol 88-06-2 2.0 D017 2,4,5-TP (Silvex) 93-72-1 1.0 D043 Vinyl Chloride 74-01-4 0.2 * Quantitation limit is greater than the calculated regulatory level.
    [Show full text]
  • The Effect of Rosmarinic Acid on Apoptosis and Nnos Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats
    Basic and Clinical January, February 2020, Volume 11, Number 1 Research Paper: The Effect of Rosmarinic Acid on Apoptosis and nNOS Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats Safoura Khamse1* , Seyed Shahabeddin Sadr1,2 , Mehrdad Roghani3* , Mina Rashvand1 , Maryam Mohammadian4 , Narges Mare- fati1 , Elham Harati1 , Fatemeh Ebrahimi1 1. Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. 2. Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran. 3. Neurophysiology Research Center, Shahed University, Tehran, Iran. 4. Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. Use your device to scan and read the article online Citation: Khamse, S., Sadr, Sh., Roghani, M., Rashvand, M., Mohammadian, M., & Marefati, N., et al. The Effect of Ros- marinic Acid on Apoptosis and nNOS Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats Basic and Clinical Neuroscience, 11(1), 41-48. http://dx.doi.org/10.32598/bcn.9.10.340 http://dx.doi.org/10.32598/bcn.9.10.340 A B S T R A C T Introduction: Kainic Acid (KA) is an ionotropic glutamate receptor agonist. KA can induce neuronal overactivity and excitotoxicity. Rosmarinic Acid (RA) is a natural polyphenolic Article info: compound with antioxidant, anti-apoptotic, anti-neurodegenerative, and anti-inflammatory Received: 12 Apr 2018 properties. This study aimed to assess the effect of RA on apoptosis, nNOS-positive neurons First Revision: 10 May 2018 number, as well as Mitogen-Activated Protein Kinase (MAPK) and Cyclooxygenase-2 (COX- Accepted: 27 Oct 2018 2) immunoreactivity, following intrahippocampal Kainic acid injection in rats.
    [Show full text]
  • Increased Mortality Associated with Hypermagnesemia in Severe COVID-19 Illness
    Original Investigation Increased Mortality Associated with Hypermagnesemia in Severe COVID-19 Illness Jacob S. Stevens 1,2, Andrew A. Moses1, Thomas L. Nickolas1,2, Syed Ali Husain1,2, and Sumit Mohan1,2,3 Key Points Hypermagnesemia is common in patients admitted with coronavirus disease 2019. The development of hypermagnesemia in coronavirus disease 2019 is associated with renal failure and markers of high cell turnover. In adjusted models, patients who develop hypermagnesemia have an increased risk of mortality. Abstract Background Although electrolyte abnormalities are common among patients with COVID-19, very little has been reported on magnesium homeostasis in these patients. Here we report the incidence of hypermagnesemia, and its association with outcomes among patients admitted with COVID-19. Methods We retrospectively identified all patients with a positive test result for SARS-CoV-2who were admitted to a large quaternary care center in New York City in spring 2020. Details of the patients’ demographics and hospital course were obtained retrospectively from medical records. Patients were defined as having hypermagnesemia if their median magnesium over the course of their hospitalization was .2.4 mg/dl. Results A total of 1685 patients hospitalized with COVID-19 had their magnesium levels checked during their hospitalization, and were included in the final study cohort, among whom 355 (21%) had hypermagnesemia. Patients who were hypermagnesemic had a higher incidence of shock requiring pressors (35% vs 27%, P,0.01), respiratory failure requiring mechanical ventilation (28% vs 21%, P50.01), AKI (65% vs 50%, P,0.001), and AKI severe enough to require renal replacement therapy (18% vs 5%, P,0.001).
    [Show full text]
  • Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines
    388 Current Neuropharmacology, 2011, 9, 388-398 Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines Xing-Mei Zhang1 and Jie Zhu1,2, 1Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden; 2Department of Neurology, The First Hospital of Jilin University, Changchun, China Abstract: Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the -amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro- toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurode- generative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-, interleukin (IL)-1, IL-12 and IL-18.
    [Show full text]
  • Early-Onset Neonatal Hyperkalemia Associated with Maternal
    Tanaka et al. BMC Pediatrics (2018) 18:55 https://doi.org/10.1186/s12887-018-1048-4 CASEREPORT Open Access Early-onset neonatal hyperkalemia associated with maternal hypermagnesemia: a case report Kenichi Tanaka1, Hiroko Mori1, Rieko Sakamoto2, Shirou Matsumoto2, Hiroshi Mitsubuchi1, Kimitoshi Nakamura2 and Masanori Iwai1* Abstract Background: Neonatal nonoliguric hyperkalemia (NOHK) is a metabolic abnormality that occurs in extremely premature neonates at approximately 24 h after birth and is mainly due to the immature functioning of the sodium (Na+)/potassium (K+) pump. Magnesium sulfate is frequently used in obstetrical practice to prevent preterm labor and to treat preeclampsia; this medication can also cause hypermagnesemia and hyperkalemia by a mechanism that is different from that of NOHK. Herein, we report the first case of very early-onset neonatal hyperkalemia induced by maternal hypermagnesemia. Case presentation: A neonate born at 32 weeks of gestation developed hyperkalemia (K+ 6.4 mmol/L) 2 h after birth. The neonate’s blood potassium concentration reached 7.0 mmol/L 4 h after birth, despite good urine output. The neonate and his mother had severe hypermagnesemia caused by intravenous infusion of magnesium sulfate given for tocolysis due to pre-term labor. Conclusion: The early-onset hyperkalemia may have been caused by the accumulation of potassium ions transported through the placenta, the shift of potassium ions from the intracellular to the extracellular space in the infant due to the malfunctioning of the Na+/K+ pump and the inhibition of renal distal tube potassium ion secretion, there is a possibility that these mechanisms were induced by maternal and fetal hypermagnesemia after maternal magnesium sulfate administration.
    [Show full text]
  • Differential Regulation of Endothelium Behavior by Progesterone and Medroxyprogesterone Acetate
    P H CUTINI and others Progestins and vascular function 220:3 179–193 Research Differential regulation of endothelium behavior by progesterone and medroxyprogesterone acetate Pablo H Cutini1,2, Adria´n E Campelo1,2 and Virginia L Massheimer1,2 Correspondence should be addressed 1Ca´ tedra de Bioquı´mica Clı´nica II, Departamento de Biologı´a, Bioquı´mica y Farmacia, Universidad Nacional to V L Massheimer del Sur (UNS), San Juan 670, B8000ICN, Bahı´a Blanca, Argentina Email 2Consejo Nacional de Investigaciones Cientı´ficas y Te´ cnicas (CONICET), Argentina, Buenos Aires, Argentina [email protected] Abstract Medroxyprogesterone acetate (MPA) is a synthetic progestin commonly used in hormone Key Words replacement therapy (HRT). The aim of this research was to study and compare the effect of " cell migration progesterone (Pg) and MPA on the regulation of cellular events associated with vascular " medroxyprogesterone homeostasis and disease. Platelet adhesion to endothelial cells (ECs), nitric oxide (NO) acetate production, and cell migration were studied using murine ECs in vitro exposed to the " nitric oxide progestins. After 7 min of treatment, MPA significantly inhibited NO synthesis with respect " progesterone to control values; meanwhile, Pg markedly increased vasoactive production. In senile ECs, " vascular tissue the stimulatory action of Pg decreases; meanwhile, MPA maintained its ability to inhibit Journal of Endocrinology NO synthesis. The presence of RU486 antagonized the action of each steroid. When ECs were preincubated with PD98059 (MAPK inhibitor) or chelerythrine (protein kinase C (PKC) inhibitor) before Pg or MPA treatment, the former totally suppressed the steroid action, but the PKC antagonist did not affect NO production.
    [Show full text]
  • Electrophysiological Mechanisms of Kainic Acid- Induced Epileptiform Activity in the Rat Hippocampal Slice’
    0270-6474/84/0405-1312$02,00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 5, pp. 1312-1323 Printed in U.S.A. May 1984 ELECTROPHYSIOLOGICAL MECHANISMS OF KAINIC ACID- INDUCED EPILEPTIFORM ACTIVITY IN THE RAT HIPPOCAMPAL SLICE’ ROBERT S. FISHER’ AND BRADLEY E. ALGER Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 Received August 29, 1983; Revised December 28, 1983; Accepted January 4, 1984 Abstract Depression of GABA-mediated IPSPs has been proposed to be a crucial factor in the onset of epileptiform activity in most models of epilepsy. To test this idea, we studied epileptiform activity induced by bath application of the excitatory neurotoxin kainic acid (KA) in the rat hippocampal slice. Repetitive field potential firing, spontaneous or evoked, occurred during exposure to KA. Intracellular records from 52 CA1 pyramidal cells during changes from control saline to saline containing i PM KA indicated that KA depolarized cells an average of about 5 mV and caused a 15% decrease in input resistance. Action potentials and current-induced burst afterhyperpolariza- tions did not change significantly. In several cells the tonic effects of KA were preceded by a transient phase of sporadic, spontaneous depolarizations of 2 to 10 mV and 50 to 200 msec duration. These phasic depolarizations were blocked by hyperpolarization. The major effect of 1 PM KA was a depression of synaptic potentials. Initially, KA depressed fast GABA-mediated IPSPs and slow, non-GABA-mediated late hyperpolarizing potentials to 23% and 40% of control values, respectively. IPSP depression correlated closely with onset of burst potential firing in response to synaptic stimulation.
    [Show full text]
  • Progesterone Using ALZET Osmotic Pumps
    ALZET® Bibliography References on the Administration of Progesterone Using ALZET Osmotic Pumps Q8558: V. Joseph, et al. Progesterone decreases apnoea and reduces oxidative stress induced by chronic intermittent hypoxia in ovariectomized female rats. Exp Physiol 2020;105(6):1025-1034 Agents: Progesterone Vehicle: Cyclodextrin, 2-ß-Hydroxypropl-; Route: SC; Species: Rat; Pump: 2ML4; Duration: 28 days; ALZET Comments: Dose (4 mg/kg/day); Controls received mp w/ vehicle; animal info (Sprague-Dawley female rats (220-250g/57-70 days old)); post op. care (buprenorphine); Blood pressure measured via tail cuff method;93.3 mmHg - 105.2 mmHg;Progesterone aka prog; dependence; Q6232: S. F. Rosen, et al. T-Cell Mediation of Pregnancy Analgesia Affecting Chronic Pain in Mice. J Neurosci 2017;37(41):9819-9827 ALZET Comments: Estradiol, 17b-; Progesterone sulfate; SC; Mice; 2002; 14 days; Dose (17b-estradiol : 0.1 mg/kg/d, progesterone sulfate: 0.25 mg/kg/d, 0.1 mg/kg/d estradiol + 0.25 mg/kg/d progesterone); Controls received mp w/ vehicle; animal info (7-12 week old female C57BL/6J mice); replacement therapy (estradiol, ovariectomy); Therapeutic indication. Q6066: D. J. Morris, et al. Glucocorticoids and gut bacteria: "The GALF Hypothesis" in the metagenomic era. Steroids 2017;125(1-13 ALZET Comments: Chenodeoxycholic acid, progesterone, 11b-hydroxy-, corticosterone, deoxy-, corticosterone, 3α,5α-TH-, progesterone, 3α,5α-TH-11β-hydroxy-; SC; Rat; steroidal derivatives of corticosterone; Review presents the role of gut microbial metabolism of endogenous adrenocorticosteroids as a contributing factor in the etiology of essential hypertension. Q6204: S. McIlvride, et al. A progesterone-brown fat axis is involved in regulating fetal growth.
    [Show full text]
  • Electrolyte Disorders and Arrhythmogenesis
    Cardiology Journal 2011, Vol. 18, No. 3, pp. 233–245 Copyright © 2011 Via Medica REVIEW ARTICLE ISSN 1897–5593 Electrolyte disorders and arrhythmogenesis Nabil El-Sherif1, Gioia Turitto2 1State University of NY, Downstate Medical Center and NY Harbor VA Healthcare System, Brooklyn, NY, USA 2Methodist University Hospital, Brooklyn, NY, USA Abstract Electrolyte disorders can alter cardiac ionic currents kinetics and depending on the changes can promote proarrhythmic or antiarrhythmic effects. The present report reviews the mecha- nisms, electrophysiolgical (EP), electrocardiographic (ECG), and clinical consequences of elec- trolyte disorders. Potassium (K+) is the most abundent intracellular cation and hypokalemia is the most commont electrolyte abnormality encountered in clinical practice. The most signifcant ECG manifestation of hypokalemia is a prominent U wave. Several cardiac and + non cardiac drugs are known to suppress the HERG K channel and hence the IK, and especially in the presence of hypokalemia, can result in prolonged action potential duration and QT interval, QTU alternans, early afterdepolarizations, and torsade de pointes ventricu- lar tachyarrythmia (TdP VT). Hyperkalemia affects up to 8% of hospitalized patients mainly in the setting of compromised renal function. The ECG manifestation of hyperkalemia de- pends on serum K+ level. At 5.5–7.0 mmol/L K+, tall peaked, narrow-based T waves are seen. At > 10.0 mmol/L K+, sinus arrest, marked intraventricular conduction delay, ventricular techycardia, and ventricular fibrillation can develop. Isolated abnormalities of extracellular calcium (Ca++) produce clinically significant EP effects only when they are extreme in either direction. Hypocalcemia, frequently seen in the setting of chronic renal insufficiency, results in prolonged ST segment and QT interval while hypercalcemia, usually seen with hyperparathy- roidism, results in shortening of both intervals.
    [Show full text]
  • Nitric Oxide Production, Inhibitory, Antioxidant and Antimycobacterial Activities of the Fruits Extract and Flavonoid Content of Schinus Terebinthifolius
    Rev Bras Farmacogn 24(2014): 644-650 Original article Nitric oxide production, inhibitory, antioxidant and antimycobacterial activities of the fruits extract and flavonoid content of Schinus terebinthifolius Natalia R. Bernardesa, Marlon Heggdorne-Araújoa,b, Isabela F. J. C. Borgesb,c, Fabricio M. Almeidab, Eduardo P. Amaralb, Elena B. Lasunskaiab, Michelle F. Muzitanob,c,*, Daniela B. Oliveiraa,* aLaboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil bLaboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil cLaboratório de Produtos Naturais, Curso de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Polo Novo Cavaleiro, Instituto Macaé de Metrologia e Tecnologia, Macaé, RJ, Brazil ARTICLE INFO ABSTRACT Article history: The extract of the fruits from Schinus terebinthifolius Raddi, Anacardiaceae, was obtained by Received 28 May 2014 exhaustive extraction with methanol. Its fractions and isolated compounds were collected Accepted 16 October 2014 by fractionation with RP-2 column chromatography. The crude extract, the flavonoid frac- tion and the isolated compound identified as apigenin (1), were investigated regarding its Keywords: inhibitory action of nitric oxide production by LPS-stimulated macrophages, antioxidant Anacardiaceae activity by DPPH and the antimycobacterial activity against Mycobacterium bovis BCG. The Apigenin samples exhibited a significant inhibitory effect on the nitric oxide production (e.g., 1, IC50 Inflammation 19.23 ± 1.64 μg/ml) and also showed antioxidant activity. In addition, S. terebinthifolius sam- Mycobacterium ples inhibited the mycobacterial growth (e.g., 1, IC50 14.53 ± 1.25 μg/ml).
    [Show full text]