Microwave Propagation in the Upper Troposphere

Total Page:16

File Type:pdf, Size:1020Kb

Microwave Propagation in the Upper Troposphere Microwave Propagation in the Upper Troposphere Amateur microwave work need not be restricted to operation from hilltop locations. Let’s explore the use of scattering in the upper regions of the troposphere, which offers the possibility of communications over highly obstructed paths. By Bob Larkin, W7PUA; Larry Liljequist, W7SZ, and Ernest P. Manly, W7LHL he selection of propagation ter from raindrops can be effective and This scattering is strongest in the modes for amateur microwave many stations have used this propa- lower portions of the troposphere, Tstations is often progressive. gation mode.2 but can occur throughout the region. Most of us start with simple equip- Better-equipped stations are able to The troposphere starts at the ment and the contacts are usually by work others beyond their horizon by Earth’s surface and includes all por- line-of-sight propagation. Longer dis- use of the propagation mode called tro- tions of the atmosphere where convec- tances are then accomplished by go- pospheric scattering. This mode occurs tion caused by changes in the air ing to high locations. As equipment to some degree at all times. It involves temperature is a major effect. This is reflection in multiple directions (scat- gets better, the use of various objects the region of weather production. The tering) of the microwave signal using for reflections and scattering becomes top of this layer varies between about a possibility. Hills, mountains, water irregularities in the material of the 6 and 15 km (20,000 to 50,000 feet), tanks are attractive, since they are troposphere. Most definitions of generally available at any time. Air- this mode do not make a distinction depending on the region of the world craft are also attractive reflectors of the particular material. This allows and the local weather conditions. The when they are at high altitudes.1 Scat- inclusion of variations in the water best opportunity for tropospheric scat- content, water or ice particles, dust, ter is generally in the lower portion, 1Notes appear on page 11. insects or possibly other materials. where the air density is greatest; how- ever, because of the Earth’s curvature Bob Larkin, W7PUA Ernest P. Manly, W7LHL and local terrain blockage, this region 2982 NW Acacia Pl PO Box 1307 may not be available for propagation. Corvallis, OR 97330 Graham, WA 98338-1307 To extend our range of contacts, we [email protected] [email protected] must use the upper portions of the tro- posphere. In a sense, we are doing the Larry Liljequist, W7SZ reverse of going to the mountaintops 2804 SE 347th Ave to work over the horizon. We stay at Washougal, WA 98671 home and scatter the signals from the [email protected] material high in the troposphere. This Jul/Aug 2003 3 Fig 1—Map of the station locations in Washington and Oregon. Fig 2—Close-in hills at each end obstruct the path between The Cascade Mountains extend north and south through the area W7LHL and W7SZ, setting minimum usable elevation angles of and portions of these are directly north of W7SZ. 9.5° and 4°, as shown. This plot has very different scales for the height above ground and the horizontal distance. This makes the small angles look very large and distorts the scaling between the angles. The commonly viewable volume is at a height of about 8.5 article will discuss our measurements km (28,000 feet). The beamwidths are only about 0.7°, making the of tropospheric scattering from loca- common volume about 1.5 km (5000 feet) in height. The total path tions where the terrain restricts the length is 159 km (99 statute miles). path to the regions above about 4.5 km (15,000 feet). All modes that can scatter or re- flect from high regions are attrac- tive for amateur microwave opera- tion since they can be exploited from home locations. In many parts of the country, this can add six months or more to the microwave season! It also allows many more hours of operation than is practical using portable equipment. This attracted us to this type of operation, as the terrain in the Pacific Northwest is mountainous and thus far from line- of-sight as well as inaccessible for much of the year. We began trying to make contacts between home stations on 10 GHz over some very mountainous paths. This was surprisingly successful, and most often, the propagation mode was de- termined not to be from aircraft or rain scatter. After finding that microwave contacts were possible, we started Fig 3—Cross section of the terrain between W7LHL and W7SZ. It is far from a direct path. making measurements of the signal The tallest peak, shown at about 100 km from the W7LHL end, is the side of Mt St Helens. strengths and signal spectra, trying to The upper trace shows the effect of the Earth’s curvature, including a 4/3 correction for correlate this to the weather condi- refraction. The “Flat-Earth” trace is about 400 meters lower in the center of the path. (Plot by KB1VC; users.rcn.com/acreilly/los_form.html) tions. We also extended the measure- ments to 1296 MHz. We found almost certain indications that the signals Table 1—Path Summary were being scattered by material in the upper troposphere. The nature of Stations Distance Take-off Take-off Common-Volume the material is still uncertain. Neither 1 - 2 (km) Angle 1 (°) Angle 2 (°) Height (km/kft) do we know how well our results W7LHL-W7SZ 159 9.5 4 8.6/28 would apply to other parts of the KD7TS-W7SZ 198 1 4 4.1/13 world. This report is to let other op- W7SZ-W7PUA 138 4 3 4.5/15 erators know about our observations 4 Jul/Aug 2003 Fig 4—The 10-foot parabolic-dish antenna used for both 1296 Fig 5—This photo shows W7LHL’s 10-GHz equipment that is MHz and 10 GHz by W7LHL. This is a surplus TVRO antenna. The mounted at the feed for the parabolic dish shown in Fig 4. A RF equipment is mounted at the center feedpoint. DB6NT transverter, along with an MKU-101B receive preamplifier (0.8-dB noise figure), a driver amplifier and an MKU-102XL output amplifier (all from Kuhne Electronic) are at the feed. A waveguide Table 2—Equipment Used TR switch minimizes losses at the feed horn. A frequency- reference signal comes from the shack on a coaxial cable to Station Dish (m) Power (W) phase-lock the crystal oscillator in the transverter. KD7TS 1.0 1 W7LHL 3.0 5 W7SZ 3.0 10 W7PUA 1.2 9 Fig 6—W7SZ with his and encourage further exploration of dish antenna used on microwave paths. 10 GHz. The micro- Tropospheric-scatter propagation wave equipment is modes have utility because they may mounted at the focus of the antenna. be available when modes like airplane Equipment for reflections, mountain-bounce and rain 10 GHz is similar to scatter are not. In addition, the asso- that used by W7LHL ciated Doppler shift is considerably except that the less than that from either airplane transmitter power reflections or rain scatter, allowing the amplifier uses a TWT (traveling-wave tube). efficient use of narrow-band modula- tion, such as CW or some computer- ized modes such as JT44 or PUA43. The Propagation Paths The work reported here was be- tween home locations as shown in explored to varying degrees, but the locked to the GPS system using W5OJM Fig 1, a general map of the area. The most intensive data collection was for controllers.3 The IF radios used were geometry of the path between W7LHL the path from W7LHL to W7SZ. This DSP-10s that were again phase-locked and W7SZ is shown in Fig 2. The dis- path is interesting since not only are to the frequency standards.4 This sys- tances and take-off angles are in Table the take-off angles poor but almost in tem allows accuracy and resolution to 1. The take-off angle is the lowest the middle is Mt St Helens, with a a few hertz, even at an operating fre- angle that the station can view clear post-eruption height of over 8500 feet. quency of 10 GHz. In turn, it is possible sky, measured from the local horizon. W7LHL and W7SZ are at 650 and 750 to make accurate spectrum measure- This angle is in all cases determined feet, respectively. ments, which imply the movement of by local obstructions, within a few ki- scattering material.5 lometers of the station. The common Equipment Used The only 1296-MHz measurements volume height (lowest altitude that is Table 2 summarizes the equipment described are for the W7LHL/W7SZ mutually visible between the two sta- used on 10 GHz, portions of which can path. On that band, W7SZ used 20 W tions) is set by the take-off angles and be seen in Figs 4, 5 and 6. and a 3.7-meter (12-foot) parabolic the Earth’s curvature. All contacts and measurements de- dish while W7LHL used 40 W and a The heights shown do not include scribed in this article used equipment 3-meter (10-foot) dish. The 1296-MHz atmospheric refraction; this has only capable of very accurate measurements transverters were again phase-locked a small effect. Fig 3 shows more de- of the frequency spectrum. The conver- to the station frequency references. tail of the mountainous path between sion oscillators in the transverters were All stations had sensitive receivers.
Recommended publications
  • A Microcomputer Based Troposcatter Communications System Design Program
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1985 TROPO: a microcomputer based troposcatter communications system design program. Siomacco, Edward Michael http://hdl.handle.net/10945/21592 DUDLEY KNOX LIBRARY NAVAL POSTG DUATE SCHOOL MONTEREY, CALIFORNIA 93943 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS TROPO: A MICROCOMPUTER BASED TROPOSCATTER CO^IMUNI CATIONS SYSTEM DESIGN PROGRAM by Edward Michael Siomacco September 19S5 Thesis Advisor: J. B. Knorr Approved for public release; distribution is unlimited T227031 SECURITY CLASSIFICATION OF THIS PACE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER 4. TITLE (and Submit) 5. TYPE OF REPORT & PERIOD COVERED TROPO: A Microcomputer Based Master's Thesis; Troposcatter Communications September 1985 System Design Program 6. PERFORMING ORG. REPORT NUMBER 7. AUTHORf«> 8. CONTRACT OR GRANT NUMBER!"*; Edward Michael Siomacco 9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Postgraduate School Monterey, California 93943-5100 II. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT DATE Naval Postgraduate School September 1985 Monterey, California 93943-5100 13. NUMBER OF PAGES 161 U. MONITORING AGENCY NAME 6 ADDRESS)'// dlllerent Irom Controlling Office) 15. SECURITY CLASS, (ol thia report) UNCLASSIFIED 15«. DECLASSIFICATION/ DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (ol thl» Report) Approved for public release; distribution is unlimited. 17. DISTRIBUTION STATEMENT (ol the abatract entered In Block 20, II dlllerent from Report) 10. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on ravaraa aide II neceeeary and Identity by block number) Troposcatter; Over-the-Horizon Communications; Height Gain; Tropospheric Ducting 20.
    [Show full text]
  • Atmospheric Anisotrophy and Its Effect on the Delay Power Spectra of Tropospheric Scatter Radio Signals Hosny Mohammed Ibrahim Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Atmospheric anisotrophy and its effect on the delay power spectra of tropospheric scatter radio signals Hosny Mohammed Ibrahim Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons Recommended Citation Ibrahim, Hosny Mohammed, "Atmospheric anisotrophy and its effect on the delay power spectra of tropospheric scatter radio signals " (1982). Retrospective Theses and Dissertations. 7507. https://lib.dr.iastate.edu/rtd/7507 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • Recommendation ITU-R V.573-4
    Rec. ITU-R V.573-5 1 RECOMMENDATION ITU-R V.573-5* Radiocommunication vocabulary (1978-1982-1986-1990-2000-2007) Scope This Recommendation provides the main vocabulary reference, giving synonymous terms in three languages and the associated definitions. It includes terms given in Article 1 of the Radio Regulations (RR) and extends the list to technical terms defined in texts of the ITU-R. The ITU Radiocommunication Assembly, considering a) that Article 1 of the Radio Regulations (RR) contains the definitions of terms for regulatory purposes; b) that the Radiocommunication Study Groups have a need to establish new and amended definitions for technical terms that do not appear in RR Article 1 or that are so defined as to be unsuitable for Radiocommunication Study Group purposes; c) that it would be desirable for some of these terms and definitions established by the Radiocommunication Study Groups to be more widely used within the ITU-R, recommends that the terms listed in RR Article 1 and in Annex 1 below should be used as far as possible with the meaning ascribed to them in the corresponding definition. NOTE 1 – Study Groups are invited, where there is a difficulty in using any of the terms with the meaning given in the corresponding definition, to forward to the Coordination Committee for Vocabulary (CCV) a proposal for revision or alternative application, accompanied by substantiating argument. NOTE 2 – A number of terms in this Recommendation appear also in RR Article 1 with a different definition. These terms are identified by (RR . ., MOD) or (RR . .(MOD)) if the modifications consist only of editorial changes.
    [Show full text]
  • Radio Astronomy
    Edition of 2013 HANDBOOK ON RADIO ASTRONOMY International Telecommunication Union Sales and Marketing Division Place des Nations *38650* CH-1211 Geneva 20 Switzerland Fax: +41 22 730 5194 Printed in Switzerland Tel.: +41 22 730 6141 Geneva, 2013 E-mail: [email protected] ISBN: 978-92-61-14481-4 Edition of 2013 Web: www.itu.int/publications Photo credit: ATCA David Smyth HANDBOOK ON RADIO ASTRONOMY Radiocommunication Bureau Handbook on Radio Astronomy Third Edition EDITION OF 2013 RADIOCOMMUNICATION BUREAU Cover photo: Six identical 22-m antennas make up CSIRO's Australia Telescope Compact Array, an earth-rotation synthesis telescope located at the Paul Wild Observatory. Credit: David Smyth. ITU 2013 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. - iii - Introduction to the third edition by the Chairman of ITU-R Working Party 7D (Radio Astronomy) It is an honour and privilege to present the third edition of the Handbook – Radio Astronomy, and I do so with great pleasure. The Handbook is not intended as a source book on radio astronomy, but is concerned principally with those aspects of radio astronomy that are relevant to frequency coordination, that is, the management of radio spectrum usage in order to minimize interference between radiocommunication services. Radio astronomy does not involve the transmission of radiowaves in the frequency bands allocated for its operation, and cannot cause harmful interference to other services. On the other hand, the received cosmic signals are usually extremely weak, and transmissions of other services can interfere with such signals.
    [Show full text]
  • VHF Ionospheric Scatter System Loss Measurements European
    Keierence dook nc ^ecknlcal vjote VHF IONOSPHERIC SCATTER SYSTEM LOSS MEASUREMENTS EUROPEAN-MEDITERRANEAN AREA By V. H. Goerke and 0. D. Remmier U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national stand- ards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particu- larly for government agencies; cooperation in the establishment of standard practices for incorpora- tion in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, tech- nical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Ap- plied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Stand- ards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Ref- erence Data.
    [Show full text]
  • Modem Equipment for the New Generation Compact Troposcatter Stations
    5 UDC 621.396 MODEM EQUIPMENT FOR THE NEW GENERATION COMPACT TROPOSCATTER STATIONS Serhii O. Kravchuk, Mikolay M. Kaydenko National Technical University of Ukraine “KPI”, Kyiv, Ukraine Background. Modem equipment of tropospheric communication lines is an important component of modern means of telecommunication. The theoretical and practical aspects of choosing a preferred embodiment of modem equipment, taking into account the aggregate indicators of quality. Objective. Presentation features the construction of modem equipment of the tropospheric stations of new generation that can provide high data transfer rates with guaranteed quality of service in complex stationary and non-stationary noise inherent in tropospheric channels. Methods. This goal is achieved by using new technical and architectural solutions to build a modem equipment, spectrally efficient modulation types and coding algorithms of effective adaptation to changing operating conditions. Feasibility of the proposed approaches to the construction of the modem hardware is fulfilled on a prototype of the equipment based on the HSMC ARRadio Daughter Card debugging modules. Results. The features of constructing of modem equipment of troposcatter stations with high data transfer rate are provided. To reach the limiting parameters of such stations proposed in the application of modem equipment of new technical and architectural solutions, spectrally efficient modulation types (OFDM plus linear modulation) and error-correcting coding, efficient algorithms of adaptation to changing conditions of work, the SDR technology, frame structures of physical layer. The variants of the configuration of modem equipment in relation to the modes of operation of compact troposcatter station. Conclusions. Ways of improving modem performance to improve the efficiency of modern compact troposcatter radiorelay stations.
    [Show full text]
  • Meteor-Burst Communications: Is This What the Navy Needs?
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1987 Meteor-burst communications: is this what the Navy needs?. Helweg, Gretchen Ann. http://hdl.handle.net/10945/22354 BDDISY K'«»"^*tTE SCHOOL NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS METEOR-BURST COMMUNICATIONS: IS THIS WHAT THE NAVY NEEDS? by Gretchen Ann Helweg JUNE 1987 Thesis Advisor: Leon B. Garden Approved for public release; distribution is unlimited T 233192 SECL« '>' ClAS^ifiCATlOM Of Thi5 PAGf REPORT DOCUMENTATION PAGE 'a SEPORT SECURITY CLASSif iCATlON 'b RESTRICTIVE MARKINGS UNCLASSIFIED 2a SECljR'TY Classification AuThQRiTy 3 DISTRIBUTION/ AVAILABILITY OF REPORT Approved for public release; 20 OEC^ASS fiCATiON . OOWNGRADiNG SCHEDULE distribution is unlimited. i PERfORMiNG ORGANIZATION REPORT NUMBERIS) 5 MONITORING ORGANIZATION REPORT NUV8£R(Sj 64 NAME Of PERFORMING ORGANIZATION 6d OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION (If 4ppli(*ble) Naval Postgraduate School 54 Naval Postgraduate School 6c ADDRESS >Gry Stitt snd £if> Code) 7b ADDRESS {C/fy. Stttr *nd ZIP Code) Monterey, California 93943-5000 Monterey, California 93943-5000 3a NAME OF Funding ' SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT lOEN'iFiCATlON NUMBER ORGANIZATION {If ipplicible) 8c AOORESS(C/ry Slate ind ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK ^Nl^ ELEMENT NO NO NO ACCESS:ON NO '' ' >£ {iniiuOe Security Clmificttion) METEOR-BURST COMMUNICATIONS IS THIS WHAT THE NAVY NEEDS? Helweg, Gretchen A. 35 "'ME COVERED 4 DATE OF REPORT (Yetr Month Day) S PAGE CO^NT Master's Thesis cooM ^O 1987 June 115 •6 S^'-.-;V£','APr NO'A'ON coSA' co:>cS '8 SuBjECT 'ERMS (Continue on reverie if neceuary arid identify by block number) GROUP SuB-GROUP Telecommunications, Communications A.
    [Show full text]
  • Tropospheric Refraction Modeling Using Ray-Tracing and Parabolic Equation
    98 P. VALTR, P. PECHAČ, TROPOSPHERIC REFRACTION MODELING USING RAY-TRACING AND PARABOLIC EQUATION Tropospheric Refraction Modeling Using Ray-Tracing and Parabolic Equation Pavel VALTR, Pavel PECHAČ Dept. of Electromagnetic Field, Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic [email protected], [email protected] Abstract. Refraction phenomena that occur in the lower proper method and its implementation for a specific appli- atmosphere significantly influence the performance of cation. At the end a method for angle-of-arrival spectra wireless communication systems. This paper provides an calculation is presented for precise multipath propagation overview of corresponding computational methods. Basic simulations. properties of the lower atmosphere are mentioned. Practi- cal guidelines for radiowave propagation modeling in the lower atmosphere using ray-tracing and parabolic equa- 2. Radio Refractive Index tion methods are given. In addition, a calculation of angle- of-arrival spectra is introduced for multipath propagation The troposphere forms the lowest part of the atmo- simulations. sphere from the surface of the earth up to several km. From the propagation point of view, the troposphere is charac- terized by a refractive index, whereas the rate of the change of the refractive index with height is of crucial importance. Keywords The refractive index itself depends on absolute tempera- ture, atmospheric pressure and partial pressure due to water Radiowave propagation, Tropospheric refraction, vapor [1]. The predominant dependence of these quantities Ray-tracing, Parabolic equation. on elevation makes the troposphere a mostly horizontally stratified media. The refractive properties of air can be expressed in terms of the refractive index n or refractivity 1.
    [Show full text]
  • Spectrophotometric and Colorimetric Study of Diseased and Rust
    NATIONAL BUREAU OF STANDARDS REPORT U5sa SPECIROPHOTOMETRIC AND CWLCEXMEIRIC STUD! OF DISEASED AND RUST RESISTING CEREAL CROPS By Harry J« Keegan John C* Schleter Wiley A. Hall, Jr., and QLadys M* Haas To U* S. Department of die Air Force Aerial Recocmaissance laboratory Wright Air De'velopment Center Wright-Patterscn Air Force Base, Ohio U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS . V. S. DEPARTMENT OF COMMERCE Sinclair Weeks, Secretary NATIONAL HLREAU OF STANDARDS A. V. Aslin, Director THE NATIONAL BUREAU OF STANDARDS The scope of activities of the National Bureau of Standards at its headquarters in Washington, D. C., and its major field laboratories in Boulder, Colorado, is suggested in the following listing of the di\ isions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside back cover of this re[)ort. WASHINGTON, D. C. Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instru- ments. Magnetic Measurements. Process Technology. Engineering Electronics. Electronic Instrumentation. Elect roeheniis try. Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Teehnolog\. Length. Engineering Metrology. H eat and Power. Temp<‘ratur<‘ Measurements. ThermodMiamies. Cryogenic Phvsies. Engines and Lubrication. Engine Fuels. Atomic and Radiation Physics. Speetroseop\ . Kadiometrv . Mass Spectrometry. Solid State Phvsies. Eh^etron Ph\si(‘s. Atomic Phvsies. Nuclear Phvsies. Radioaetivitv. X-rays. B(*tatron. Nuch'onic Instruimmlation. Radiological f.quipment. AEC Radiation Instruments. (dicniistrv. Organic (boatings. Surface ClKunistrv . Organic Clnmiistrv .
    [Show full text]
  • The Wireless Toolbox
    The Wireless Toolbox A Guide To Using Low-Cost Radio Communication Systems for Telecommunication in Developing Countries - An African Perspective International Research Development Centre (IDRC) January 1999 PREFACE/SUMMARY VI 1. INTRODUCTION I 2. A RADIO COMMUNICATIONS PRIMER 3 2.1 SIGNAL FREQUENCY 3 2.2 LINK CAPACITY 5 2.3 ANTENNAE AND CABLING 6 2.4 MOBILITY FACTORS 7 2.5 SHARED ACCESS HUBS 7 2.6 BANDWIDTH REQUIREMENTS 8 2.7 REGULATIONS ON THE USE OF RADIO FREQUENCIES 8 2.8 WIRELESS TECHNOLOGY STANDARDISATION 11 2.9 WIRELESS DATA NETWORK DESIGN AND DATA TERMINAL EQUIPMENT (DTE) INTERFACES ... 11 2.10 COSTS 12 3. WIRELESS COMMUNICATION SYSTEMS 13 3.1 MOBILE VOICE RADIOS/WALKIE TALKIES 13 3.2 HF RADIO 13 3.3 VHF AND UHF NARROWBAND PACKET RADIO 15 3.4 SATELLITE SERVICES 16 3.5 STRATOSPHERIC TELECOMMUNICATION SERVICES 23 3.6 WIDEBAND, SPREAD SPECTRUM AND WIRELESS LAN/MANs 23 3.7 OPTIC SYSTEMS 25 3.8 ELECTRIC POWER GRID TRANSMISSION 25 3.9 DATA BROADCASTING 25 3.10 GATEWAYS AND HYBRID SYSTEMS 26 3.11 WLL AND CELLULAR TELEPHONY SYSTEMS 26 4. IMPLEMENTATION ISSUES 30 4.1 SOURCING AND TRAINING 30 4.2 POWER SUPPLY 30 4.3 OPERATING TEMPERATURES, HUMIDITY AND OTHER ENVIRONMENTAL FACTORS 30 4.4 INSTALLATIONS AND SITE SURVEYS 31 4.5 HEALTH ISSUES 31 4.6 GENERAL CHECKLIST 31 5. PRODUCT & SERVICE DETAILS 33 5.1 MOBILE VOICE RADIOS / WALKIE TALKIES 33 5.1.1 Motorola P110 handheld portable radio (2 channel, 5 W) 33 5.1.2 Kenwood TK 260 mobile portable radio 33 5.1.3 Kenwood TKR 720NM fixed repeater 150-174 MHz.
    [Show full text]
  • RADIOECTRONICS in ALL ITS PHASES for Better Curves
    1 "FLYING SPOT" TELEVISION TUBE SFi- TfIfVISInN SlrtlON RADIOECTRONICS IN ALL ITS PHASES For Better Curves Where They Count Most! Accurate taper curves prove correct resistance ments - and adds manufacturing skill and values. When you install a Mallory carbon repeated quality checks that assure you com- control, you know that your customer will get plete customer satisfaction when Mallory the fine, smooth tone gradations that result products are used. from tapers that are mathematically accurate. Mallory offers the most complete line of Mallory uses an exclusive method of applying volume controls- standardized to make them the talcum -fine carbon so that the fields of easy to stock. resistance are perfectly feathered for core rect attenuation. Mallory makes the three replacement parts that The Mallory 1485 Control Deal This attractive metal cabinet contains the are used on the majority 15 Controls and 9 Switches that will take of your jobs: volume care of 90% of your service calls. Its arrange- ment makes inventory control almost auto- controls, capacitors and matic-saves you frequent trips to the distrib- utor's e ter. It contains a rack for your vibrators. Into them, Radio Service Ency- Mallory builds design clopedia. You pay only for the Volume Con- experience that has been trols and Switches; the cabinet is included in acquired by constantly the deal at no extra keeping a step ahead cost to you. Check your Mallory distributor on Mallory controls are carefully tested J taper The esrlutire method of applying of commercial radio - this special offer. carbon Aires a Inure gradual taper curve than is produced by n elertronir develop.
    [Show full text]
  • Scattering of Electromagnetic Waves in the Troposphere and the Use of This Technique for Communications
    Proceedings of the Iowa Academy of Science Volume 67 Annual Issue Article 52 1960 Scattering of Electromagnetic Waves in the Troposphere and the Use of This Technique For Communications Irvin H. Gerks Collins Radio Company Let us know how access to this document benefits ouy Copyright ©1960 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Gerks, Irvin H. (1960) "Scattering of Electromagnetic Waves in the Troposphere and the Use of This Technique For Communications," Proceedings of the Iowa Academy of Science, 67(1), 399-430. Available at: https://scholarworks.uni.edu/pias/vol67/iss1/52 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Gerks: Scattering of Electromagnetic Waves in the Troposphere and the Us Scattering of Electromagnetic Waves in the Troposphere and the Use of This Technique For Communications IRVIN H. GERKs1 Abstract. This article is an introduction to the subject of · tropospheric scatter propagation for the non-specialist. It opens with a review of various modes of propagation which may exist in a non-turbulent atmosphere, such as diffraction and ionospheric reflection. The scattering of energy in a turbulent medium is then examined, and statistical methods are introduced to describe the resultant field. Special characteristics of the signal are dis­ cussed, such as variation with distance, climatic effects, frequency dependence, fading, bandwidth, and noise level.
    [Show full text]