<<

Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1985 TROPO: a microcomputer based troposcatter communications system design program.

Siomacco, Edward Michael http://hdl.handle.net/10945/21592

DUDLEY KNOX LIBRARY NAVAL POSTG DUATE SCHOOL MONTEREY, CALIFORNIA 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

TROPO: A MICROCOMPUTER BASED TROPOSCATTER CO^IMUNI CATIONS SYSTEM DESIGN PROGRAM

by

Edward Michael Siomacco

September 19S5

Thesis Advisor: J. B. Knorr

Approved for public release; distribution is unlimited T227031

SECURITY CLASSIFICATION OF THIS PACE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Submit) 5. TYPE OF REPORT & PERIOD COVERED TROPO: A Microcomputer Based Master's Thesis; Troposcatter Communications September 1985 System Design Program 6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf«> 8. CONTRACT OR GRANT NUMBER!"*; Edward Michael Siomacco

9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Postgraduate School Monterey, California 93943-5100

II. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT DATE Naval Postgraduate School September 1985 Monterey, California 93943-5100 13. NUMBER OF PAGES 161 U. MONITORING AGENCY NAME 6 ADDRESS)'// dlllerent Irom Controlling Office) 15. SECURITY CLASS, (ol thia report) UNCLASSIFIED

15«. DECLASSIFICATION/ DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (ol thl» Report) Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (ol the abatract entered In Block 20, II dlllerent from Report)

10. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on ravaraa aide II neceeeary and Identity by block number) Troposcatter; Over-the-Horizon Communications; Height Gain; Tropospheric Ducting

20. ABSTRACT (Continue on ravaraa elda II neceeeary and Identity by block number) This thesis presents a microcomputer based, computer-aided design program for tactical military radio systems. The program has the capability of predicting the system performance and reliability for both analog (FM/FDM) and digital troposcatter radiolinks. Propagation gain generated by elevated tropospheric ducting is called height gain. A height gain computational model for specific elevated tropospheric ducts

FORM 1 65 IS DD ,1 AN 73 1473 EDITION OF NOV OBSOLETE S'N 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Dele Znter* SECURITY CLASSIFICATION OF THIS PAGE (Whan Dmm Bnffd)

is derived from statistical radiosonde data. A terrain profile plot, real-time radiosonde data analysis, and the probability of error for digital radiolinks are provided as program options.

SECURITY CLASSIFICATION OF THIS PAGEflTh»n Dmta Enfrmd) Approved -for public release; distribution is unlimited,

TROF'Q: A Microcomputer Based Troposcatter Communications System Design Program

by

Edward Michael Siomacco Captain, Army B.S., North Carolina State University, 1975

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 19S5 5

ABSTRACT

This thesis presents a microcomputer based, computer-aided design program -for tactical military tropospheric scatter radio systems. The program has the capability of predicting the system performance and reliability -for both analog (FM/FDM) and digital troposcatter radial inks. F'ropagation gain generated by elevated tropospheric ducting is called height gain. A height gain computational model for specific elevated tropospheric ducts is derived from statistical radiosonde data. A terrain profile plot, real-time radiosonde data

=» nalysis, and the probability of error for digital radial inks are provided as program options. .

TABLE OF CONTENTS

I. INTRODUCTION 10

A. PURPOSE 10

B. BACKGROUND 11

C. RELATED WORK 13

II. TROPOSPHERIC PERFORMANCE CONSIDERATIONS IS

A. SCATTER PROPAGATION 18

B. TROPOSPHERIC DUCTING. 22

C. MULT I PATH CONSIDERATIONS 29

III. TROPOSCATTER SYSTEM DESIGN PROGRAM 35

A. GENERAL PROGRAM ALGORITHM 35

B. PREDICTION OF 35

1 General 35

2. Bur-face Refract i vi ty...... 37

3. Effect i ve Earth ' s Radi us...... 39

4. Terrain Profile Plot

5. Calculation of Angular Distance 40

6. Diffraction Loss...... 50

7. Worst—Hour Loss. 51

8. Aperture-to-Medi urn Coupling Loss...... 53

9. Combined Free-Space/Scatter Loss 56

10. Waveguide/Connector Loss 56

11. Absorption Loss..... 56 .

C. DESIGN PARAMETERS 58

1. Carrier-to-Noise Ratio 5S

2. Digital Radio Link Parameters 59

3. Probability o-f Error Calculations 60

4. Fade Margin and System Reliability 67

5. Diversity Requirements 71

6. Analog Radio Link Parameters 75

IV. HEIGHT GAIN MODEL DESIGN SO

A GENERAL BO

B. MATHEMATICAL FORMULATION. S2

C. RADIOSONDE DATA ANALYSIS 85

7. RESULTS. 87

A GENERAL B7

B. HEIGHT GAIN COMPARISON 37

V I . SUMMARY i 02

A. CONCLUSIONS. 102

B. RECOMMENDATIONS. 103

APPEND IX A 1 04

APPEND IX B 115

LIST OF REFERENCES. . 158

INITIAL DISTRIBUTION LI ST ...... 161 .

LIST OF TABLES

I VOICE PERFORMANCE CHARACTERISTICS 32

II. PROPAGATION RELIABILITY 68

III. ELEVATED DUCT HISTORICAL INFORMATION SI

IV. PROPOSED EXAMPLE SYSTEM SPECIFICATION SS .

LIST OF FIGURES

1-1 Distortion Adaptive Receiver Performance 15

2-1 Scatter Volume Geometry 21

2—2 Tropospheric Duct . Descri pti ons 25

2—3 Propagation Effects of Ducts 27

3—1 Program "TROPO" Module Block Diagram 36

3-2 Monthly Surface Re-fr activity (Sea Level ) . 38

3—3 Linear Terrain Profile Plot Example 41

3-4 Terrai n Path Conf i gurat i ons ...... 42

3-5 Typical Path Geometry. . . 46

3-6 Common Scatter Volume Dimension. 43

3-7 Annual and Winter Monthly Standard Deviation... 52

3—8 Aperture—to—Medium Coupling Loss......

3-9 Estimated Atmospheric Absorption......

3-10 Probabi 1 ity of Error (BPSK/QPSK) ...... 62

3-11 Probability of Error (M-ary FSK) ...... 64

3-12 DAP Performance (Dual Diversity) ...... 65

3-13 DAR Performance (Quad Diversity) ...... 66

3-14 Approximate Interference Fading Distribution...

3-15 Short-Term Fading (Dual Diversity) ......

3—16 Short-Term Fading (Quad Diversity) 74

3-17 BNR Improvement from Diversity Techniques 73 3-18 Preemphasis Improvement -for FDM Channels 79

4-1 Height Gain Model Flowchart 84

5-1 Example System Design Specifications 90

5-2 Example System Terrain Profile Plot 91

5-3 Radiosonde Environmental Data Listing 92

5-4 M-Profile Plot (Surface Duct) 93

5-5 System Performance Results 94

5—6 Height Gain Model Comparison (Frequency Vary).. 96

5—7 Height Gain Model Comparison (Range Vary)...... 99

A-l Function F(#d) for N = 250 106 s A-2 Function F(0d) for N = 301 107 s A-3 Function F(0d) for N = 350 108 s A-4 Function F(0d) for N = 401 109 s A-5 Parameter N Ill s A-6 Frequency Gain Function 112

A-7 Correction Term for N = 301 113 s A-8 Adjustment Factor for Correction Term 114 I. INTRODUCTION

A. PURPOSE

The development of digital transmission techniques in military communications systems has generated a renewed interest in tropospheric scatter. Digital troposcatter radio systems have required changes in the present planning and engineering design methods. The military design engineer has the responsibility to predict system performance and reliability within limited planning time. Under certain tactical situations, the urgency to restore vital communications has -forced the engineer to provide several alternative designs for a single communications link. These requirements have justified the need for an efficient, computer-aided design method to accomplish the task. The purpose of this thesis research is to develop a tropospheric scatter communications system design program. The objective is to design a mi crocomputer—based program which will predict the path reliability and system performance for troposcatter radiolinks. This program will introduce several improvements over the manually generated,

nomograph-based design methods. Speci f i cal 1 y , the program will estimate the height gain at the average system antenna height -for specific elevated tropospheric ducts. Other -features include a terrain pro-file plot, radiosonde weather data analysis, and the calculation of the probabilty of error for binary and orthogonal digital signaling techniques.

B. BACKGROUND

Tropospheric scatter communications systems prdpagats

energy beyond 1 i ne-of -si ght (LOS) or "over the horizon" by taking advantage of the refraction and reflection phenomena in a section of the earth's atmosphere called the troposphere. Typical military troposcatter systems use transmitter power outputs from 1 to 10 kW, parabolic type antennas, and sensitive broadband FM receivers with front-end noise figures (IMF) between 2.0 — 4.0 dB. These systems are most often employed in military applications because of the limited available channel capacity [Ref. l:pp. 253-2541. Several system advantages are summarised as follows:

1. Fewer terminal and /or relay stations are required to cover the same transmission path as compared to tactical microwave 1 ine—of —sight radi clinks. 2. Reliable multichannel communications can be installed across long distances of hostile or inaccessible terrain.

3. Standard transmission ranges are suitable for the tactical military -field environmemt -for radiolinks from 30 to 200 miles.

A fundamental design parameter for troposcatter links is the allocation of allowable channel degradation to each link making up the total communications system. In analog scatter systems, the quality parameters ar& system availability and si gnal -to—noi se ratio in the voice channel. However with the deployment of digital troposcatter radio systems the performance of the digitized voice channels under fading conditions is significantly different than the performance of analog voice systems under the same conditions. The primary measure of transmission quality for a digital system is its error performance. There a.r& two main sources of transmission errors: (a) long-term error rate which will occur because of equipment degradation, channel interference, and long-term power fading; and (b) multipath fading CRef. 2: pp. 4-53. C. RELATED WORK

1 . Performance Models for Troposcatter Links

Monsen CRef. 3D has derived performance models for analog FDM/FM and digital quadrature phase shift keying (QPSK) systems on troposcatter communications links. The analysis included the effects of signal level variations and multipath delay dispersion. His performance criterion was the outage probability rather than either average error rate or median signal-to-noise ratio (SNR) values. Outage probability' performance in a digital system was derived for two different modems: the

Deci sion—Feedback Equalizer (DFE) and a transmitter- time—gating technique, the Distortion Adaptive Receiver

(DAR). Analog system performance was determined for the

percentage ' of the time that the voice channel SNR including thermal noise and multipath delay dispersion effects were below a specified threshold.

The performance test results for a Distortion

Adaptive Receiver (DAR) was presented in a paper by

Zawislan CRef . 43. The critical problem with digital troposcatter is inter symbol distortion produced by the multipath dispersion of the fading channel. To resolve this problem, the distortion adaptive receiver was

; 3 implemented. The DAR modem employed DPSK modulation with adaptive matched filter demodulation. A complete functional description was explained in the reference.

The advantage to this approach was that it did not require equalization at the receiver to correct intersymbol interference and it provided near optimum performance using the adaptive matched filter receiver.

Typical bit error rate performance for the DAR on a troposcatter channel is shown in Figure 1—1 for different values of rms multipath delay dispersion. For low multipath spread, the fading on each diversity channel has a Rayleigh distribution and the performance is indicated by the "flat fading" marked curve. Note that the performance improves rapidly with increasing c vj multipath spread and, at a 10 error rate a 10 dB improvement is achieved for multipath curve CBD. However, as the multipath spread increases (with increased path length), a irreducible error rate occurs as shown in curve LCI due to the transmitter time-gate limitation.

To compensate for this problem, the DAR is modified by utilizing a dual frequency pulse waveform. This technique is also used in the modem employed by the

AN/TRC-170 tactical digital troposcatter radio set.

1 4 SINGLE PULSE DAR PERFORMANCE

1« 10 20 EB/NO (V6) (DUAL EXPLICIT DIVERSITY)

Figure 1-1 Distortion Adaptive Receiver Per-farmance

(A-fter Zawislan, Re-f . 4:p. 3) 2. Tropospheric Elevated Duct Models

Several mathematical models have been developed to calculate the ducted signal -field strength based on the refractivity pro-file and by modeling the tropospheric duct as a laterally homogeneous-layer atmospheric waveguide CRef. 5: pp. 223. A detailed mathematical analysis was presented by Marcus and Stuart [Re-f. 63.

These authors have developed an effective modal solution computer program, called "DUCT", which requires a large processing capabilty of a main—frame computer CRef. 73. A version o-f this program, called "PDUCT", is available at

the Naval Postgraduate School Computer Center CRef. S3

and CRef. 5: pp. 23-24 3.

Weston CRef. 5: pp. 58-703 has proposed a

statistical model, based on "PDUCT" predictions -for

selected ducts o-f interest. The height gain data, -t-or

these ducts, was used to derive model coefficients.

These unique coefficients were stored according to their

respective transmitter and receiver heights in a matrix

form. Thus, given a receiver height and range from the

transmitter for a selected duct /-frequency data point, the

coefficients for each receiver height a.re obtained and

used to produce the corresponding height gain curve. This approach required a significant number of main—frame computer "PDUCT" computations to establish height gain data for all the ducts of interest.

In December 1983, a microcomputer-based pro- gram, called "MINI DUCT" Version 1.1, based on Knorr's

mathematical model was developed by Nagel , CRef. 93, at the Naval Postgraduate School to calculate elevated ducted signal levels at various frequencies. This program used either historical radiosonde data or current elevated duct information CRef. 103. The radiosonde data represented the atmospheric temperature, pressure, and humidity at specific altitudes over a five year recording period. This model was valid for the case where the transmitter is at the optimum duct coupling height and the receiver is located either below, within or above the duct. The optimum coupling height is the altitude above the surface where the gradient of the modified refractive index becomes negitive. . ,

II. TRDP05HERIC PERFORMANCE CONSIDERATIONS W^———————^—^1^-^— II ! ! «———li—

A. SCATTER PROPAGATION

1 General

At -frequencies above 30 MHz three propagation mechanisms can carry energy beyond the horizon: (a) variations in the refractive index in the troposphere can scatter radio energy, (b) horizontally-stratified abrupt changes in the refractive index can cause reflection, ana

(c) atmospheric regions of negitive modified refractive index gradients can introduce ducting. Refractive index and tropospheric ducting will be thoroughly discussed in the following section. The forward scattering of radio signals is the most dominant propagation mechanism at the

frequencies of 0.3 to 10 GHz. CRef . lisp. 13

2. Received Scattered Field

The index of refraction depends on pressure humidity, and temperature. Slight variations in these

quani t i t i es ,, caused by atmospheric turbulence, will produce random fluctuations in the refractive index. When an electromagnetic wave propagates through this i nhomogeneous medium, energy will be scattered out -from the original incident direction. The turbulent-scattering theory, CRef. 12:p. 345], has shown to a -first approximation that the index o-f re-fraction

-fluctuations can be replaced by a model of so—called

"blobs", i nhomogenei 1 1 es o-f di-f-ferent dielectric constants randomly distributed. I-f these "blobs" are in the common volume -formed by the transmitter and receiver antenna beams, the complex received -field can be described by CRe-f. 13:p. 1463:

Re j *= Ta. e^i *— x (2-1) 1 = 1

where m is the number of "blobs" in the scattering

volume, A is the amplitude, and is the phase of a J J wave scattered by a single "blob". Assume m to be very

large and the blobs are spherical and uniformly

distributed through the scattering volume. Then the

phase difference of the waves scattered by the

i nhomogenei ti es at the top and bottom of the volume will

be CRef. 13: p. 1473:

4 h sinV = " (2-2) A

19 where y = transmitter, receiver antenna elevation angle

h = mean thickness of the scatter volume (m)

A = transmitter wavelength (m)

The variables in Equation 2-2 are described in Figure 2-i,

By observing the volume geometry, it can be determined that more "blobs" exist in the central volume region than at the top or bottom. This indicates a non-uniform

"blob" distribution.

Many phase variations wi 1-1 occur over many

phase cycles of length 2n . The antenna elevation angle will be less than 2 degrees -for most systems and the ratio o-F scatter volume thickness to operating wavelength will be very large. These conditions make the scattered phases uniformly distributed from zero to 2 n

CRef. 13:p. 14S3.

The amplitude distribution will now be deter- mined. The real and imaginary components of the complex received field, Equation 2-1, were resolved into two random variables X and Y. The number of blobs, m, is assumed to be large, so by the Central Limit Theorem, both X and Y will approach a normal "gaussian"

d i st r i but i on . Finally it was shown that these var i ab 1 es Transmitter

g*;^«»^iHM^ifl*^a^ufflMHi*^^

Figure 2-1 Scatter Volume Geometry

(After Beckmann, Re-f . ll:p. 147)

21 are also uncorrel ated and independent. Then their two—dimensional normal distribution can be trans-formed into the Rayleigh distribution.

Turbulence, mixing, and wind continuously change the positions and structure of the i nhomogenei ti es making the random terms o-f Equation 2-1 functions of time. The reality of nature is the i nhomogenei ti es do

not vary i sotropi cal 1 y because the index of refraction changes more rapidly with altitude than with distance.

There can also be a stratification or layering of i nhomogenei ti es near a particular height (or heights) that changes the assumed spherical shape of the so-called

"blobs". Under these conditions the uniform phase distribution may change to an unknown distribution.

B. TROPOSPHERIC DUCTING.

The index of refraction, n, of air is defined as the ratio of the velocity in a vacuum of electromagnetic

(EM) radiation to the velocity in the medium. A convenient parameter is ref r act i vi ty , N, defined as

CRef. U:p.l4D:

6 N = ( n - 1 ) X 10 (2-3) Another parameter called modi-fied re-f ract 1 vi ty , M, is de-fined as [Ref. 10:p.9D:

M = N + 0.157 h (2-4)

where h is the altitude in meters above the surface. The modi-fied re-f racti vi ty accounts -for the curvature of the earth so the presence of ducting can be easily determined by observing the M-gradient on the M versus height plot.

Refraction of incident radio waves across a discontinuity of refractivity is described by the principles of Snel 1 's Law. It is important to remember that the wave "bends" towards the higher value of refractivity, and the more dense a material the higher its n. Since the density of the atmosphere decreases with height, we expect that a wave will bend back downward from a geometric straight path. Whenever the refractive index decreases sharply with height, radiowaves can be trapped and experience low-loss propagation -for long distances. This condition is known as tropospheric ducting CRe-f. ll:p. 29].

The following conditions must be satisfied for a duct to occur: (1) the modified refractive index gradient shall be equal to or more negitive than M-units/km, and (2) this gradient should continue over a height of many wavelengths, The important duct parameters are the duct thickness, D, the intensity, M, and the optimum coupling

height, H . A piecewise linear approximation to the opt madi-fied refractivity (tri-linear) profile -for several types of ducts are shown in Figure 2-2. There are three types o-f ducts: (1) surface or ground-based ducts, also called evaporation ducts when formed over water, Figure

2—2a; (2) surf ace—based ducts from elevated refractive layers, Figure 2-2b; and (3) elevated ducts from elevated refractive layers, Figure (s) 2-2c and d. Note that all positive M-gradients are assumed at 118 M-uni ts/km which corresponds to a standard atmosphere. Once the slopes are identified, the important duct parameters are quickly determined CRef. 9: pp. 8— 123.

Tropospheric ducts more often occur as ground—based ducts because of both. evaporation and advection.

Evaporation of water vapor from the surface of the sea may create a zone of high humidity (i.e. high refractive index) below a region of drier air. Advection, defined as the movement of one air type over another, may cause hot dry air (from the land) to be blown over cold wet air, producing a region of low refractive index above a region of high refractive index. Such a duct may also (a) (b)

i

/ •M / c o o > 1 1 / T Ah D I \ \ \ -)--r (1 '2)D = Ah > S^_ ?- i / —JamU- —-IamL-

(q) Ground- based loyer, (b) Elevated layer, Ground-based duct Ground- based duct

—JAN'U- —J AW' U-

(c) Elevated loyer, ( d ) E levated loyer ond Elevoted duel dud approximated with - on M discontmui t y .

Figure 2-2 Tropospher i c Duct Descriptions

(A-fter Marcus, Re-f . 7: p. 2-5) form when warm dry air is blown over cold ground.

Radiation cooling can produce temperature gradients which cause ground-based ducts. Air next to the ground becomes cooler and the duct becomes thicker as the night conti nues.

When morning solar heating warms the air next to the ground, a region of rapid decrease o-f refractive index with height produces an elevated duct. However these ducts quickly disappear because continued ground heating increases convection mixing and destroys the stable elevated layer. Elevated ducts may -form -for several days by a subsidence inversion. Hot air rises at the center of a high pressure region and spreads out horizontally, cooling as it slowly descends. This produces a boundary with the slightly colder air near the surface. The increasing temperature with height at the boundary forms the subsidence (temperature) inversion. Changes in temperature and/or humidity may cause related changes in the refractive index within the boundary interval

CRef. il:pp. 33-353.

Figures 2—3a thru d illustrate propagating rays within ground-based ducts. Rays leaving the transmitter at elevation angles close to the horizontal will parallel the earth's surface, while other departing ravs 'will Figure 2-3 Propagation Effects of Ducts

(After Hall, Ref . 9:p. 31)

77 either travel upward or downward. If the li— gradient is negitive and assumed uniform within the duct, rays beginning at elevation angles below the critical angle, defined as CRef. ll:p. 31D:

= 10' 6 (2-5) \(2 Am X ) c will strike the surface, and those above the critical angle will leave the duct. If ground reflection is neglected, Figure 2-3a, a shadow region depicts minimum propagated energy. In the case where surface

reflectivity is high, Figure 2-3b , the rays launched within the critical angle range will travel beyond the radio horizon. Figure 2-3c decribes the situation when the M-gradient is not constant within the duct. If a

transmitter is positioned in the height region h , then

= - rays within the + 0, J(2 AM, X 10 ) range will remain in the duct with bounces as depicted in Figure

2-3b. Similarly rays transmitted within

= - the + q^ ti(2 AM X 10 ) range are trapped within the

height range h . Finally a surf ace—based duct from an b elevated layer over rough terrain is illustrated in

Figure 2-3d. In this case the refractive "bending" takes

place at the top of the duct CRe-f. ll:pp. 30-32D.

28 For elevated ducts -formed by advection or subsidence, the position of the transmitter and receiver relative to the optimum coupling height, H will influence the opt propagation effects. The means in which energy enters or leaves an elevated duct can be described by the duct acting as a "leaky" waveguide. Energy is "leaked" or coupled into the duct from the transmitter, and "leaks" out as the energy propagates along the duct

CRef. 11: p. 36 3.

Because of the non-permanent characteristic of elevated ducts, their effects a.r& seldom an influence to troposcatter links, especially if they form above the common scatter volume. But the presence of tropospheric ducts can degrade the overall performance of troposcatter systems by changing the predicted transmission loss. The term that will change the total path loss is the duct's height gain, which is derived in Chapter IV.

C. MULT I PATH CONSIDERATIONS

The multipath fading model for a tropospheric scatter channel produces received signal fading. The received signal consists of the sum of a large number of

time—variant , complex vectors having amplitudes and phases. The fading is caused by randomnly time—variant .

phases variations. At times the received signal vectors add destructively to decrease the mean received signal amplitude. While at other times, the vectors add constructively, so the received signal is large. Thus

the amplitude variations, or signal -Fading, s.re due to

the multipath characteristics of the tropospheric channel. The channel can be modeled as a zero mean, complex-valued gaussian process, with the envelope ot the

instantaneous signal level being Rayl ei gh-di str i buted

This Rayleigh -fading channel describes the short-term

fading. When there ^re fixed constant regions of

refractivity or stratified refractive layers in the

vicinity of the common scatter volume the channel cannot

be modeled as having a zero mean. In this case, the

Rayleigh distribution does not apply and the channel

approaches a Rice distribution CRef. 14:pp. 456-4583. All

performance predictions in this study will assume

Rayleigh "short-term" fading as the channel model.

Channel performance will be degraded during periods

of severe multipath fading. With digital systems, the

voice user is unaware of any increase in background noise

until the PCM (Pulse Code Modulation) outage threshold is

broken. Once this threshold is passed the complete

multichannel circuit will be unusable due to noise. The characteristics of fade outages for a typical digital troposcatter circuit can experience three (3) primary categories of fade outage. The first category occurs when the voice user is subjected to a single fade outage of duration less than 200 milliseconds. This outage will be hardly noticed. The second category of outage will have an outage duration ranging from 1/5 second to 5 seconds. The user will detect this distortion but will continue to communicate following the outage. When a recurrence of short duration outages take place (e.g. 2 to 4 outages per minute) annoyance rather than total disruption will occur. The third category are fade outages that exceed a subjective level of user patience.

The Defense Communications Agency (DCA) CRef. 153 has specified five (5) ranges of fade outage conditions,

refer to Table I . DCA has defined the fade outage in terms of a diversity signal-to-noise ratio threshold -4 corresponding to a 10 bit error probability.

Techniques used to counter multipath propagation are frequency diversity, space diversity, amplitude equalization, and channel equalization. If a modulated signal is simultaneously transmitted over the same troposcatter radiolink on two or more frequencies, the correlation between the individual received signals will

31 TABLE I

VOICE PERFORMANCE CHARACTERISTICS

FOR

DCS TROPOSCATTER LINKS

Outage Range Criteria Outage Probability

I See Note See Note -4 II 0.2 sec.< Outage <5 sec. 7.5X10-5 III 5 sec.< Outage <1 min. 7.5X10-3 IV 2 < Outages/min. < 5 2.5X10-4 V 5 < Outages/min. 1.0X10

NOTE:

Range Voice Performance Description

I Outages with adeguate -fade margin, II Outages with adequate -fade margin and high -frequency o-f occurrence. III Call disruption possible. IV Marginal -fade margin. V Unavailability of circuit. be small. This method of signal diversity is called frequency diversity. The important advantage of

•frequency diversity is that it requires a single antenna at each site. But the need -for additional frequencies can increase the probability of co-channel interference among other operating transmitters.

Uncorrelated short—term fading can also be achieved by separating the receiving antennas in space. This is known as space diversity. Horizontal and vertical can "be used to distinguish between two space—separated signals. However horizontal and vertical polarization do not provide a satisfactory degree of

noncorrel at i on of signal fading for efficient diversity.

The multiplicity of signals provided by these diversity methods must be combined. The diversity—combining techniques ar& classified into: £1) selection or switching; (2) combining a desirable weighted combination of received available signals; and

(3) a combination of selection and combining.

In the selection techniques the diversity channels a.ria scanned until one is found whose level exceeds a selected threshold. This may not necessarily select the best available signal. In the combining techniques, all diversity channels are simultaneously monitored and equally weighted. This is called equal—gain combining.

In max imal -rati o combining, the weighting -factor o-f each channel is automatically adjusted to yeild the maximum signal-to-noise ratio -For the total o-f all the diversity channels CRe-f. 12: pp. 453-454 3.

Amplitude equalizers a.re designed to properly equalize the propagation channel for minimum phase

•fading. Channel equalizers balance the channel -for amplitude and mutlipath delay distrotion. They are typically adaptive transversal equalizers that consist of tapped delay lines (TDD with tap-weight multipliers

(i.e., amplifiers or attenuators); and control circuitry

that adapt ively vary the tap-weights in response to

temporal channel variations CRe-f. 16:p. 11 — 123. III. TRQPQSCATTER SYSTEM DESIGN PROGRAM

A. GENERAL PROGRAM ALGORITHM

The main program, named "TROPQ", is presented as

Appendix B. Figure 3-1 illustrates the program -flow and the primary computational program modules. The program development and mathematical approach -for the Radiosonde

Data Analysis and Height Gain modules are described in

Chapter IV. The remaining modules are formulated in this chapter. A program tutorial and compilation instructions are contained within the program.

B. PREDICTION OF PATH LOSS

1 . General

The basic median transmission loss will be the sum of several additive losses, expressed in decibels,

CRef. 173:

L + L +L + L - G„ - G +HG (3-1) TsdcawtrrT =L +L 3

where L = free-space propagation/scatter loss (dB) s L = knife-edge diffraction loss (dB) d o < e. u u z o - o

X

Figure 3-1 Program "TROPO" Module Block Diagram L = medium-to-aperture coupling loss (dB) c L = atmospheric absorption loss (dB) a L = waveguide/connector loss (dB) M G = transmit antenna gain (dB) t G = receive antenna gain (dB) r HG = height gain (dB)

2. Surface Re-f r act i vi ty

An adjustment to the average surface refrac-

tivity N , refer to Figure 3-2, is made for the elevation o at each terminal site. The adjusted surface

ref racti vi ty, N , is CRef. 18:p. 2-12J:

(3-2) N = N exp(-0 .03222h ) so s

where N = minimum monthly average refractivity o h = average antenna height (kft)

If the surface refractivity at each site is significantly

different, an option to calculate the respective N for s each site can be selected and an average path surface

refractivity can be calculated. The average antenna

height is calculated by averaging the transmit and

receive antenna heights.

•7 1

o o o o o o o « Z 03 ^ CD iD T rO (VI O 2

o o ooo o o TT E gg TTuiV JL 1 r L£ ss^ss / /; ME4$H1«« i rT i\

'' ij I i ^QMIIIi^^S 1 -"I i! Jx^^U'l" rsirH -H JSUTrtT

JL '\ ' "S , \ \ M 1 s V"T j_\_

,ifA i /! vV

Figure 3-2 Monthly Surface Re+ractivity (Sea Level)

(After Panter, Re-f . 12:p. 375)

33 3. Effective Earth's Radius

Changes in the surface re-f racti vi ty will effect the radio-ray path curvature as the wave propagates over the earth. To accurately represent the ray-path an effective earth's radius is calculated as

[Re-f. 12:p. 37411:

-1 a = a 1 - 0.04665 exp(0.005577N ) (3-3)

where a = actual earth's radius (6370 km) o

4. Terrain Pro-file Plot

. Several methods are available to plot a « troposcatter system terrain pro-file. The most fundamental method is to plot the successive path terrain elevations along the great circle path. Special 4/3 earth plotting graph paper is required -for this method.

Alternatively, computer graphics technigues which obtain terrain information -from topographical databases, can rapidly plot the profile.

The program provides a dot-matrix printer plot.

The terrain profile is linearly plotted by modifying the terrain elevations, in meters, to include the effect of

39 the average curvature o-f the radio-ray path and the

earth's surfave. Elevations, h , o-f the terrain are i manually obtained -from topographical maps and tabulated

versus distances, x , -from a selected reference i terminal. The terrain data points are keyboard entered

into the program. The modified elevations are computed as CRef. 12: p. 380 3:

x2 y. = h. - (3-4) 2a

where a = effective earth's radius (Equation 3-3)

Figure 3-3 illustrates a typical linear terrain plot.

5. Calculation of the Angular Distance

The terrain profile can now determine various

path geometries. The three (3) path configurations

considered arez

a. Smooth Earth Horizons at Both Terminals

b. Obstacle Horizons at Each Terminal

c. Smooth Earth and Obstacle Horizons

The terrain geometries are depicted in Figure(s) 3-4a,

3-4b , and 3-4c. The respective terminal take— off angles

are calculated -for the predicted path type as

CRef. 12:pp. 385-3373:

40 Figure 3-3 Linear Terrain Profile Plot Example

(After Panter, Ref . 12:p. 382)

41 ^Xj*

"V^-t^ ,0 y^ (J a -v/ ^-**^^d-d -d,"~~~-^ V*. >^\ It lr v ?\y\ \* -a £\ / \^- -J<£ \ d \4 ^*vv dlt \ lr S *

Figure 3-4a Smooth Earth Path

(After Ranter, Re-f . 12:p. 385)

42 Figure 3-4b Near Obstacle Path

(After Panter, Re-f . 12:p. 386) ^-\/ 8

h it Vc^T^ ««\

V // \ / / \ X 4 ^"/x / yv* \ \ / \ \ / \ \ / y \ \ / x \\ 1/

Figure 3-4c Near Obstacle/Smooth Earth Path

(After Ranter, Re-f . 12:p. 385)

44 )

a. Type I Radio Horizon/Radio Horizon

fi*\: = : <3-5a> et

f

where h , h = transmitter, receiver terminal elevation ts rs

b. Type II Obstacle Horizon/Obstacle Horizon

It ts It d 2a (3-5c)

h, - h d, lr rs lr Oer " ~ (3-5d) d, lr 2a

where h ,d = transmitter obstacle el evat 1 on , di stance It It h ,d = receiver obstacle elevation, distance lr lr

c. Type III Obstacle Horizon/Radio Horizon

= (Same as Equation 3-5c et = (Same as Equation 3-5b) er The path type combination may be reversed to satisfy a

Radio Horizon/Obstacle Horizon configuration. Referring

to Figure 3-5, the angles a and R are calculated as: ^ oo h oo S3 B

CM

Figure 3-5 Typical Path Geometry

(After Ref. 18:p.8-6>

46 )

h. - h -±E Ef + 6 (3-5e) oo et 2a

rs ts <3-5f + ; + 6> er P oo 2a

These angles are modified by correction factors, Aa and

A/3 to allow for the effects of a non — linear refractivity gradient CRef. 12:p. 3833. The correction factors can be obtained from Appendix A, Figure A-7, however for most transhorizon, "over the horizon", paths these factors are negligible.

The angular distance (often called scatter angle) is:

(3-5g) w oo a o *oo o

a The ratio OQ and fi co defines the path symmetry factor

CRef. 18:p. 4-7]:

a = oo S (3-5h) oo

The -following equation will calculate the heigth of the

intersection point of the transmit and receive antenna beams. This result will estimate the bottom of the common scatter volume (Refer to Figure 3-6) as

47 Figure 3-6 Common Scatter Volume Dimension

(A-fter Du Castel , Re-f . 19:p. 145)

43 ))

CRe-f. lS:p. 8-8D:

s ad <3-5i (1 + S)

where S = symmetry factor

Du Castel , CRe-f. 19:p 146], approximates

the dimensions of a typical common scatter volume. The volume height is:

h ~ Qo H = 2h = 0.3h <3-5j)

where 6 = 1. 150,

6 = scatter angle

« The maximum longitudinal dimension, L, is:

d H L = = 0.15d <3-5k) 2 h o

where d = great circle path distance (m)

The center of gravity of the scatter volume is

approximated as:

H = h + 2/3H (3-51 eg o

49 )

6. Pi f fract 1 on Loss

Propagation paths having a common obstacle horizon, such as a mountain ridge, can be referred to as an obstacle gain path. It is assumed that the obstacle will introduce additional path attenuation. However, the angular distance may be reduced because of the changed path geometry from the obstacle. The passible reduction in the scatter loss may be offset by the increased loss due to diffraction over the obstacle. In some situations the common obstacle may be visible to both terminals, and the path loss might be less than the smooth earth path loss. The International Radio Consultative Committee

(C.C.I.R.) • has developed the following formula for

diffraction loss relative to free— space CRef . 20:p. 1703:

d + d, ) tan 9 . tan Q a b et er (3->t,di L = 201og d 1( _V^y-

where d = transmitter to obstacle distance (m) a d = receiver to obstacle distance (m) b When the take-off angles ar^ less than 10 degrees and d is greater than 2b then Equation 3-6a can be b a approximated by:

DU L = 201og TTdJ- (3-6b) d 1()

7. Worst-Hour Loss

Seasonal annual -to-worst month path loss

variations can be determined from a knowledge of the

annual changes in surface refractivity of the atmosphere over the path. The C.C.I.R. recommends a loss variation of 0.2 dB (U.S.) and 0.5 dB () per unit change of refractive index.

The worst-hour median loss can be derived by

assuming a log-normal distribution during the month. It

was shown by Panter , CRef. 12: p. 401], that on a

log-normal distribution, the 99.9 percent point can be

approximated by the value 3.1<7 in decibels below the

median, where a is the standard deviation of the

log—normal distribution. The worst—hour median loss can

be determined as:

Worst-Hour Median Loss = Median Annual Path Loss

+ Difference of Annual -to-Worst-Month Median Loss

+3.1 o wm

where a = standard deviation of the worst-month wm STANDARD DEVIATION CURVE 1 o

! LEGEND :. a :. ... ->.V ;.. -•-•• ANNUAL a o WINTER MONTW 2 O 5- g Q Q <•- OS a z •*

" '*."* — * * ;* 6- f:rf44iTtt

< 1 It 38 57 79 M 114 13 ANGULAR DISTANCE (MRAD)

1

Figure 3-7 Annual and Winter Monthly Standard Deviation

(After Ranter, Ref. 12: p. 359) distribution obtained -from Fiqure 3-7.

8. Aperture-to-Medium Coupling Loss

The parabolic reflector microwave antenna gain equation, CRef. 12: p. 103], can be expressed in decibels as:

G = 20log f + 20log D - 52.6 dB (3-7) 1Q 1()

where D = aperture diameter (feet)

An illunimation factor of 0.54 was assumed to derive

Equation 3-7. It would appear that Equation 3-7 depicts an ever increasing power gain as the antenna aperture area increases. However the power received by an antenna does not increase linearly with an increase in antenna diameter, D. This effect is called aperture-to-medi urn coupling loss or loss in antenna gain CRef. 12:p. 362].

Aperture coupling loss in troposcatter systems is caused by a non-planar wave-front due to atmospheric irregularities, and a geometric effect due to the decrease in the scattering properties with height inside the scatter volume. An incoming wavefront consists of many plane waves, each arriving at a different angle from the scatter volume. If the arrival angle range variation .

is much smaller than the antenna beamwidth the wave-front will appear nearly plane. If the common volume is much wider than the receiving antenna's beamwidth a wider angle range will result, and the wavefront will appear non—planar

Basically, coupling loss can be explained as limited antenna pickup, as compared to the effective scatter volume dimensions and the antenna 3 dB beamwidth. Figure 3-8 compares aperture coupling loss results between several authors. A unique constant curve is presented by the C.C.I.R. CRef. 21:p. 1452. This curve is independent of the scatter angle and is written as:

L = 0.07exp 0.055(G + G (3-8) T )|

where G ,G = transmit, receive antenna gain (dB) T R

This empirical formula gives a high coupling loss and will not be used in the program. The proposed empirical curve appears as the average of several different formulas and will be used as a conservative estimate for the aperture coupling loss. Figure 3-3 Aper ture-to-Medi urn Coupling Loss

(After Levin, Ref . 21) 9. Combined Free-Space/Scatter Loss

Yeh, CRef. 221 , has derived the following

-formula to calculate the combined -free-space and scatter loss, in decibels:

L = 30log f + 201og d + 100 + 0.2(N^ - 310) + 57<3-9) s 1Q 1

where -f = operating frequency (MHz)

d = great circle path distance (miles)

6 = scatter angle (degrees)

N = surface refractivity 5

10. Waveguide/Connector Loss

The waveguide attenuation factor was derived

for standard rigid waveguide. At an operating frequency

of 4.5 GHz the waveguide loss will be approximately 1.25

dB per 100 feet CRef. 18:p. 7-14]. Each waveguide

connection will introduce an additional 0.06 dB per joint

CRef. l:p. 2 10 J.

11. Absorption Loss

Rainfall, snowfall, and fog produce atmos-

pheric absorption loss which depends on the amount of

moisture and on the frequency. Figure 3-9 was used to

^j£> 50

20

10 &

,\/f

s&f fc4

0.5 ,*>

•H 0.2 ^ 4 0.02 \S 0.01

0.005

0.002 y

O.OOi 2D 2.6 35 5.0 6.0 7.5 10 12 15

Frequency (GHz)

Figure 3-9 Estimated Atmospheric Absorption

(After Re-F. 18:p. 2-43) estimate the rain-fall attenuation on a particular transmission path at four (4) rainfall rates

CRef. 18:p. 2-433.

C. DESIGN PARAMETERS

1 . Carr i er-to-Noi se Ratio

The performance of troposcatter communica- tions circuits are determined by the minimum acceptable ratio of hourly median carrier signal to thermal noise for a type of modulated signal. This ratio, expressed in decibels, is called the carrier-to-noise ratio (CNR). The following equation is used to determine the received carrier power level:

= (dBw) - L (dB) P (dBW) P T (3-10)

where P = transmitter power output (dBW) t L = total median transmission loss (Equation 3—1) T The receiver noise threshold level is written as:

3 in + NF(dB) + 101og B < p. (dBW) = -20 4 (dBW) 10 Ip

where -204 dBW = thermal noise constant NF = receiver noise -figure (dB)

B = receiver IF bandwidth (Hz) IF Finally the carrier-to-noise ratio, [Re-f. 10:p. 4113,

1 s:

CNR(dB) = P (dBW) - P (dBW) r n (3-12)

where CNR carr l er-to-noi se ratio (dB)

P = received power level (dBW) r P = receiver thermal noise level (dBW) n

2. Digital Radio Link Parameters

In digital systems the modem performance is

usually plotted versus average bit energy, E , to the b receiver noise spectral density, N . The probabilty of o error (often called bit error rate) will be determined from the E /N ratio. The transformation of the b o calculated carrier-to-noise ratio (CNR) to E /N is b o written as CRef . 23:p. 15SD:

E,/N = CNR(dB) + 101og B - 101og R (3-13) b o 101n w 101n

where B = transmission noise bandwidth (Hz) w

19 R = transmission data rate (bit/sec)

3. Propability of Bit Error Calculations

Current military multichannel communications use Pulse Code Modulation/Time Division Multiplexing

(PCM/TDM) techniques to transmit digital in-formation over both -frequency modulated (FM) and phase modulated (PM) troposcatter carrier systems. The quality o-f the multiplexed circuits is determined by the number o-f bit errors that occur because o-f the channel -fading and multipath dispersion. The probability o-f bit errors can be predicted -for different PCM carrier modulation methods. Multiphase signaling and M—ary orthogonal signaling over a Rayleigh -fading channel are derived by

J. G. Proakis CRef. 14:pp. 490-4991.

The bit error rate (BER) -for QPSK (-four-phase phas< shift keying) and DPSK (differential phase shift keying) i expressed as:

L - 1 2k P " 1 - (3-14) b "J k 2 - M' 4-2ji V" k =

where ^ = correlation coefficient

M = (for coherent PSK) 1 +

60 H = — (-for DPSK) 1 + vy c where y = average received E /N per channel b o y^ = average received E /N per bit b o L Tc h = J where L = order of diversity

j = 1 (for BPSK signaling)

j = 2 (for QPSK signaling)

Bit error probabilities are depicted in Figure 3-10 for two-phase and four-phase DPSK signaling with L = 1,2 and 4.

Orthogonal signaling may be viewed as M-ary

FSK (Frequency Shift Keying). The expression for the probability of symbol error (P ), derived by Proakis, M assuming no diversity (L = 1) is:

/m-i\ M- (3-15) PM i J 1 + m + m m=l y cn where M = 2 (for BPSK signaling)

M = 4 (for DPSK signaling)

The equivalent bit error rate (BER) can be computed using

k-1

P = i )p

61 —BBS

RAYLEIGH CHANNEL PERFORMANCE (BPSK'/QPSK) b •. V : LEGEND V'i ! RAYLEIGH FADING (L=l) "DUAL DIVERSITY "(1=2) QUAD DIVERSITY Tt^4

\i \ C-J

1 - l\\! o : v \

X. k

- Ul-V- 5fc x ou. >- \ 1 \ \ » M j ; A \ < 1 ""V" eao -c

: \ as : a. \

1

' ' \ \

i \ «> \ \

i \ \

1 I \ \ \ e \ \

-5.0 10.0 15.0 20.0 25.0 30.0 35 40.0 ED/NO (D3)

. jravy-^jy-rera;^^^^

Figure 3-10 Probability of Error (BPSK/QPSK)

(After Proakis, Re-f. 14:p. 492)

£2 :

where k = log M •-> = The graphs of P versus E /N for M = 2, 4 and L 1 , M bo 2, 4 are shown in Figure 3—11-

The Distortion Adaptive Receiver CDAR] is currently being used in the military troposcatter digital radio set, AN/TRC— 170. Experimental modem performance results are illustrated in the BER versus E /N curves, b o Figure(s) 3-12 and 3-13. The results are determined for three (3) different multipath delay values.

Sunde, CRef. 24:pp. 144-2143 has derived a general expression for the maximum differential transmission delay. This equation is valid when the

transmitting and receiving antenna beamwidths are di f f erent

e 0_ 8= - f e - + e (3-17a) 2 et er, 4

where d = path distance (meters)

" = scatter angle (mrad)

6 = transmitter take-off anqle (mrad) et 6 = receiver take-off angle (mrad) er The time dispersion (multipath spread) relative to the , —

RAYLEIGH CHANNEL PERFORMANCE (M=2 ORTHOGONAL SIGNALING) b*

¥l 1 !

:#: i CAO OS uOS i — n "

i kvk; O 03 - 3 " >•

EhO > 1 l\N h 5t_- i j \; 1 ;.... < i a 1 ! \\ o \ 0£ 0.

1 o 1

i MM o rH LEGEND V! RAYLEIGH FADING (L=l) K _"TJDaITDIVFRSITY (L=2) 5i;sirDivERsm'ir=4i

O \l l\ n 0.0 1.0 10.0 15 20.0 25.0 30.0 3!i.O EB/NO (X>Q)

Figure 3-11 Probability of Error (M-ary FSK)

(After Proakis, Ref . 14:p. 499)

64 PERFORMANCE OF DUAL PULSE DAR

18.0 20 24.0 28.0 J2.0 EB/NO (DB) (DUAL DIVERSITY L=2)

Figure 3-12 DAR Performance - Dual Diversity

(A-fter Zawislan, Ref . 4: p. 4) on

PERFORMANCE OF DUAL PULSE DAR TT

LEGEND 0.29XE-6 SEC ~T3T3fXE-~B~5EC~~ ~0T019XE^6~5~£~C~

c X

S3 Eh O *i

i >• -

23 < O23

04.0 e.o 12.0 16.0 20.0 ED/NO (DB) (QUAD DIVERSITY L=4)

Figure 3-13 DAR Performance - Quad Diversity

(After Zawislan, Ref . 4:p. 4)

66 average time delay for unequal antenna beamwidths is:

5 5 \= = 5 <3-17b> 2c 2(3X10 m/s)

8 where c = 3X10 m/sec

In the case of equal transmitting and receiving antenna beamwidths, Equation 3— 17b is simplified to:

3d# 2 A = (3-17c) 16c

For a particular order of diversity, the probability of error can be computed for the AN/TRC— 170 troposcatter radiolink by evaluating a -least-squares polynomial equation derived from experimental data curves.

4. Fade Margin and System Reliabilty

The system fade margin, in decibels, is the difference between the "practical threshold" level and the median received signal level. The propagation reliability values for the worst fading condition,

Rayleigh fading, can be compared with their required fade margins in Table II CRef l:p. 2253. The "practical

threshold", or minimum acceptable received signal level,

cannot be below the FM improvement threshold TABLE II

RAYLEIGH FADING PROPAGATION RELIABILITY

Single Hop Propagat 1 on Reliability Fade Margin C/.) (dB) 90.0 8 99.0 18 99.9 28 99.95 33 99.99 38 99.999 48

>S [Ref. 25:p. 71]. The -fade margin can be evaluated by:

Fade (dB) = P (dBm) - N (dBm) (3-18)

where N = "practical noise threshold" P N = P (dBm) + FM improvement P n P = -174 dBm + 10 log B + NF n 10 IF

W. T. Barnett and A. Vigants of Bell Tele- phone Laboratories, [Ref 25: pp. 59-60], have developed an empirical method to determine the nondiversity annual path availabilty. Barnett 's procedure begins by defining

U as the nondiversity annual outage probability and r ndp as the fade occurrence factor:

actual f ade probabi 1 i ty r = Rayleigh fade probabilty

If F is the fade margin in decibels:

actual fade probabi 1 ty r = -F/10 10

For the worst month:

-5 r = a x 10 (3-19) m

where d = path length (statue miles)

L. CD f = -frequency (GHz)

F = -fade margin (dB)

a = 4 (for smooth earth, over water, flat desert)

a = 1 (-for average terrain with some roughness)

a = 0.25 (for mountainous terrain)

Considering the annual fade occurrance:

r = br (3-20) yr m

where b = 0.5 (for hot, humid coastal ar&a

b = 0.25 (for normal, temperate or subarctic)

b = 0.125 (for very dry climate)

Finally the nondiversity annual path outage is:

-F/10 U _„. - r ... 10 _ ncip yr (3 21)

The annual nondiversity availability percentage i

A = 100(1 - U ) (percent) -?-*??! nap r fVo -^-'

The percentage of availability is improved with the use of frequency and space diversity. Figure

3-14 is used to graphically determine the approximate

70 availability improvement -for various percentages of

•frequency separation (F.S.). Figure(s) 3-15 (Dual

Diversity) and 3-16 (Quad Diversity) provide a graphical method to determine the percent o-f path availability

(percent o-f level exceeded) for different diversity combining techniques.

5. Piversity Requirements

The antenna spacing, in meters, required for effective space diversity has been experimentally derived for frequencies greater than 1 GHz, in the horizontal as

CRef. ll:pp. 145-1463:

2 1/2 /V = 0.36(D + 1600) (meters h (3-23a) and in the vertical as:

2 = 0.36(D 1/2 (3-23b) A v + 225) (meters,

where D = diameter (m)

A satisfactory frequency separation, in MHz, for frequency diversity has been dervied as:

2 1/2 1.44f/ d) (D + 225) (MHz (3-23c)

71 ~

I I \ 1 1 !

1.0 99

0.5 —

Rayleigh ^•distribution nondiversity

level level

P "™ IDCO CO above

below

time time o F s = 2% \ of of k~

= F.S. 3%-rXA \ Percent Percent

01 99 99 \^^-Dual diversity F.S. = 4% —X \ \ \ frequency separation = 1% 005 \

F.S = 5% or more—-A \

001 ! 99 999

' 15 20 25 30 35 4 3 IdBI -J

Figuru 3-14 Approximate Interference Fading

Distribution versus Order of Diversity

and Frequency Separation

(After Kef. 18: p. 2-4

I2~

8- maximal-ratio diversity, n = 2 y

6

EQUAL-GAIN DIVERSITY, N = 2 4- u

i 2 z a S •LI:cti )N 01 \ *ERS TY,N = 2 / /' 5 / / / £ -2 > — 6 u

2 -e RAYLEIGH FAOING u / z

ff -e / Ul r u.

r m * / / 28d8 AT 99 9% " -12- (l 1 - 38 d B AT 99 99 %

-20

PERCENT OF TIME BElO* 0RUINA1E

Figure 3-15 Short-Term Fading (Dual Diversity)

(After Ref. lS:p. 4-11) EOBB B9

MAXIMAL- RATIO DIVERSITY, N = 4 — ^

EQUAL -GAIN DIVERSITY N-4_"\ 8 \ \,A 6 j

2

^- SELECTION DIVERSITY N = 4 - - — — — £- - - —

4

— RAY I EIGH FADING

a

-10

-12 — — —

-

010 05 2 Ob 1 2 5 10 20 JO 40 50 W »0 80 90 95 98 99 99 8 99 9 99 99

PERCENT OF TIME Bf I l)W ORDINATE

Diversity) Figure 3-16 Short-Term Fading (Quad

(After Ref. 18:p. 4-13)

74 where f = transmitter frequency (MHz)

6 = scatter angle (mrad)

d = path length (km)

6. Analog Radio Link Parameters

The analog radiolink considered will be a FM transmitter using frequency division multiplexing (FDM)

a. Receiver IF Bandwith

For FM modulation techniques, the re- ceiver IF bandwidth is computed as [Ref. 18:p. 8-163:

BW = 2( &F + F ) (3-24) IF p m

where F = peak frequency deviation (Hz) P F = maximum modulating frequency (Hz) m

The peak frequency deviation is the product of the frequency modulation index and the bandwidth of the modulating signal. The maximum modulating frequency is computed as the sum of the minimum modulating frequency, the voice channel bandwidth, and the frequency spacing between multiplexed supergroups. The calculated IF bandwidth can now be used to compute the receiver noise threshold, Equation 3—11. The carr 1 er—to-noi se ratio is determined by Equation 3-12.

b. Expected Channel Noise

According to DCA System Performance

Specifications CRef. lS:p. 3-113, the channel noise standard -for a troposcatter link is:

L N(pWpO) = (16,000) (3-25a) 2000 and

= 10log (pWp) - 6 dB (3-25b) N(dBa0) 10in

where L = path length (nautical miles)

pWp = picowatts psophometr i cal 1 y weighted measured at, or referred to, a zero transmission level point.

The term dBa refers to decibels of noise power above a reference noise power, with an adjustment factor to compensate for equipment weighting. The referenced noise power that dBa is referred to is —85 dBm. To obtain dBaO, it is required to calculate the number of dB above this reference power the signal is. For flat voice channels, the corrected reference level is -82 dBm and the expression for dBaO is:

76 dBaO = 82 - SNR (3-26)

The signal-to—noi se ratio , SNR, must be calculated to compute Equation 3-26. The channel SNR may be calculated after the carr ier-to-noi se ratio (CNR) has been determined by Equation 3-11. The relationship between channel SNR and system CNR in a FM/FDM system is

CRef. l:p. 2723:

SNR = CNR +D. +FM. -L +P (3-27) ira lm f im

where FM = FN improvement factor (assumed 20 dEO i m D = diversity improvement -factor (Fig. 3-17) im P = preemphasis improvement -factor (Fig. 3—18) im L = -10 + 10 log N (dB) f 10 where N = number of voice channels «

u 1-'"

^ 1

9 " " MQxjmai-ratiO Oiversity —r-*^ i " 0> c c 1 o , .-r r'-r SI e • u 1 t x s j ' s / /• o 2 u / a / s "~Equai-gain diversity -O ' / 1 5 1

1 » / —* _ - » — / / «--*• / 4 1 / / „, '* 3 ''// ^ Selection aiversity

o 1 c 2 /' 1/ ///

y/ 1 a 1 r~ 34567 89 10 Number of cnannets N

Technique^ Figure 3-17 SNR Improvement -from Diversity 207) (After Freemann, Re-f . l:p.

78 "iv. wmw

PREEMPHASIS IMPROVEMENT

o • "

m° a" H 2 U S UJ o > -» O cc 0. s r' a C3 •• •• V

O

M ' ' ' 1 1 1 1 1 1 1 1 1 1 1 'III! s itf 10* 10 10* NUMHER OF VOICE CHANNELS

m[m.imi)iwim.v^ jap—BBB3BW8—BM—BMBW Ji,timw,tiLWM i ff .f

Figure 3-18 Preemphasis Improvement far FDM Channels

(After Freemann, Re-f . l:p.224)

79 IV. HEIGHT_GAIN_CDMPyiATIQN

A. GENERAL

One of the purposes of this research was to develop a tactically practical method of calculating the height gain caused by the presence of an elevated troposhperic duct. The calculation must provide a result that was within 10 dB of the PDUCT computer program prediction.

Several related works were investigated for a possible approach to the problem. Military troposcatter systems have introduced several constraints to the height gain problem. These constraints include:

1. The transmitter and receiver terminals a.rs both located outside and below the elevated duct.

2. The operating frequency range was between 4.5 GHz to 5.0 Ghz.

3.. The geographical area of system deployment was limited to Western Europe (i.e. West ).

A statistical analysis of elevated duct histograms was obtained from several radiosonde recording stations

located throughout West Germany CRef. 26 j. This

information is condensed in Table III. Elevated ducts

that had a percentage of occurrance greater than twenty percent (207.) over the 5 year recording period were prime candidates for further study. Eight (8) elevated ducts were selected as typical for the Area. Their optimum coupling heights ranged from 951 to 1452 meters above the surface. The elevated duct intensities were all less than 6 M-units with 4 M-units being the dominant value.

TABLE III

ELEVATED DUCT HISTORICAL INFORMATION

Station Mean Optimum Mean Duct Mean Duct Location Coupling Height In ten si ty Thi ckness (LAT/LONG) (Meters) (M-Units) (Meters)

Stuttgart, FRG (48-49N/09-11E) 1452 115

Essen , FRG (51-23N/06-5SE) 1412 1 06

Hannover , FRG (52-28N/09-41E) 1376 1 09 Rheine, FRG (52-16N/07-25E) 1257 113 Idar-Oberstei n , FRG (49-41N/07-19E) 1151 88

Emden , FRG (53-22N/07-13E) 1071 124 Goch, FRG 1 ( 5 -40N / 06- 1 0E ) 1 044 172 Greifswald, FRG (54-05N/13-22E) 951 119

(After Or ten burger , Ref . 26, Vol. 12) Height gain values, in decibels, were computed by the

PDUCT program -for each of the eight selected ducts. The following common input parameters were entered into the

PDUCT program for each duct. CRe-f. 71:

1. The transmitter site elevation was -fixed as the reference at 5 meters above the surface.

2. The receiver site elevation was increased from 5 to 280 meters in 25 meter increments.

3. The path distance was increased from 75 to 325 kilometers in 50 meter increments.

4. The antenna polarization was set for both hori- zontal and vertical polarization.

5. The frequency of interest Was increased from 4500 MHz to 5000 MHz in 100 MHz increments. The frequency was changed every PDUCT program run for each selected duct of interest.

6. The relative permittivity (15), conductivity

(0.01 mho/m) , and maximum mode attenuation (1.0 dB/km) were selected for the path character- istics.

B. MATHEMATICAL FORMULATION

The PDUCT height gain results for each duct were investigated, and the following observations were discovered. The height gain values increased

exponent i al 1 y as the receiver elevation approached the bottom of the elevated duct. The other significant observation was that for any fixed receiver elevation, the height gain increased linearly with increased path distance.

Two empirical methods were considered in developing the height gain prediction model. One method was to directly store the individual height gain results for each of the elevated ducts and then to interpolate a height gain result -from a database. This would have required an extensive height gain database. The chosen approach was to approximate height gain curves from the

F'DUCT results using a least-squares curve fitting program. A second order polynomial equation was derived for each frequency of interest at the initial kilometer path length for each selected duct height.

The height gain program module consisted of eight (8) optimum coupling height decision regions which cooresponded to the selected elevated ducts. Each duct height region contained a height gain polynomial equation for each frequency of interest. For a particular operating frequency and optimum coupling height, a baseline height gain was estimated and multiplied by an incremental range correction factor. This range factor was the average differential difference in height gain between the successive 50 kilometer path increments.

Figure 4-1 outlines how the height gain estimate was computed. OPTIMUM COUPLING HT

DUCT THICKNESS

DUCT INTENSITY

YES

COMPUTE TRANSMIT HEIGHT GAIN FREQUENCY

EXIT ENTER MODULE HEIGHT GAi:

Figure 4-1 Height Gain Estimation Flowchart

3' )

C. RADIOSONDE DATA ANALYSIS

Elevated ducts are described by their optimum coupling height, duct intensity, and duct thickness.

This information can be determined indirectly -from real—time radiosonde data taken along the system's path length. The atmospheric pressure, vapor pressure, temperature and relative humidity readings are used to calculate the refractive index, N, -for various altitudes using the expression, CRe-f. 27:p.41:

77.6 48.1 H P w (4-1 N = P + s 273 + T 273 + T

where P = atmospheric pressure (millibars)

T = temperature (celsius)

P = saturated vapor pressure (millibars) w H = relative humidity ("/.)

The radiosonde information can be entered into the program. The refractive index values are calculated for available altitude readings and then converted to modified refractive index values. At this point a

M-profile plot can be obtained along with a radiosonde data listing. If an elevated duct does exist, the optimum coupling height, intensity, and thickness can be

85 determined directly -from the M-pro-fi 1 e. These duct descriptors must satis-fy the respective limits

established by the height gain prediction model. I-f the

detected elevated duct exceeds the limits o-f the model,

the height gain prediction will become inaccurate. The

program user will be alerted o-f this condition. At this

point the design engineer must decide to obtain the

height gain -From an alternative computation or neglect

ducting e-f-fects. V. RESULTS

A. GENERAL

For validation purposes, the TROPO Program was used to determine the design predictions for a typical tropospheric scatter communications system. Table IV outlines the proposed system specifications and assumptions. Both the terrain and radiosonde data have been assumed to accommodate the program's capabilities.

The program results a.r& illustrated in A Figure (s) 5-1 through 5—4. The Radiosonde Environmental Data Listing

(Figure 5-3) identifies the occurrence of a tropospheric duct by detecting a "trapped" radio ray path condition.

Other refractive bending conditions identified -are

super-refractive (bending toward the earth's surface),

normal (standard bending), and sub-ret .-act i ve (upward

bending). The M-Profile Plot, Figure 5-4, graphically

verifies the program's computed duct parameters.

B. HEIGHT GAIN COMPARISON

Height gain prediction model results were compared

with the PDUCT program computed values for identical

elevated duct parameters. Height gain curves were TABLE IV

PROPOSED EXAMPLE SYSTEM SPECIFICATIONS

Site: Transmitter Receiver

Latitude: 36 38' 23"N 37 09' 12"N Longitude: 06 22' 02 "W 05 35' 16"W Elevation: 13 meters * 94 meters

Terrain Data Available: Near Obstacle Path Mode

Radio Terminal: Military ( AN/TRC-1 70V3) Diversity: Dual Frequency: 4560.0 MH^

Antenna Diameter: 15 Ft. Parabolic Waveguide Length: 25 Ft. per Antenna

Digital Trunk Data Rate: 2.048 Mb/s

Transmission Bandwidth: 3.5 MHz

Radiosonde Data Available: Bur-face Duct Detected

BR plotted for two test cases: (1) a -fined optimum coupling height and range with a varying -frequency, and (2) a

•fixed optimum coupling height and frequency with a varying range. Figure (s) 5-5a thru 5-5c has shown that a prediction error of approximately 5 dB is possible. The error increases as the frequency approaches the adjacent frequency increment. In this case height gain values al i dated at 4700 MHz have been averaged into .hQSi computed for 4600 MHz to produce a shift of the prediction curve. Figure (s) 5— 6a thru 5-6c illustrate the results of only changing the path distance, In this case the greatest error detected was within 3 dB of

PDUCT , which supports the linearity between height gain and range. )

TRGPCSCATTER SYSTEM DESIGN SPECIFICATIONS

SITE TRANSMITTER RECEIVER

LATITUDE: 36.60 N 37.15 N

LONGITUDE: 6.37 M 5. 53 n

ELEVATION: 13.00 11 94.00 n

TERRAIN PROFILE TYPE: NEAR OBSTACLE PATH NODE

TRANSMITTER TAKE-OFF ANGLE: 4.73 HRAD RECEIVER TAKE-GFF ANGLE: 4.97 HRAD SCATTER (ANGULAR DISTANCE): 10.94 HRAD

TRANSMITTER TAKE-GFF ANGLE: .27 DEGREES RECEIVER TAKE-OFF ANGLE: .23 DEGREES SCATTER (ANGULAR DISTANCE): 1.20 DEGREES

TRANSMIT FREQUENCY: -1560.00 MHZ

MINIMUM RECOMMENDED FREQUENCY SEPARATION FOR 2UAD DIVERSITY: 52.77 MHZ

AZIMUTH AT TRANSMITTER (TO RECVR!: 48.70(DESREE3 N.)

AZIMUTH AT RECEIVER (TO TRANS): 229. [7 (DEGREES N.

GREAT CIRCLE PATH: 57.91 STATUTE MILES / 93.20 KILOMETERS

MINIMUM RECOMMENDED ANTENNA VERTICAL SEPARATION FOR SPACE DIVERSITY: IS. 5 FEET

ESTIMATED SCATTER VOLUME BASE ALTITUDE: 417.09 METERS

Figure 5-1 Example System Design Specifications

90 — jumg 3B >-^-'iir'^»-'' - hubb HBaaMH—aaM MODIFIED TERRAIN ELEVATION (METERS) -.372973E+03 -.230794Ef03 -. 13S61SE*03 -,9643SEE*02 -.CSiUEtOI r -.419063E+03 -.32o8S4£t03 -.234704E+03 -.H:525Et03 -.50:45?E*02 ,418334Et02 .0000OOE+O0

TRANSMITTER SITE

.929911E*04

. 1357B2E+05

t, . 278973E+05

u

h Q .371964E+05 X E-i * a,

^ .464955E+05 u / / 55794iE+o5 / / / / ^O^BE'dS / / /

.743929E+05

.836929E+05

c v RECEIVER SITE . 92 91 IE+

T VER ;CAL AIIS (TOP OF PAGE): TERRAIN ELEVATION METERS)

HORIZONTAL AXIS: PATH EtSTANCE .HE'Ef.S)

"in—nMigwnRaiinr' -, ,*amL tmmmmmmmmmmmmammasmM

Figure 5-2 Example System Terrain Profile Plot 6

tttt ENVIRONMENTAL DATA LIST tttt

PRESS TEMP VAPOR PRESS ALT N UNITS N/KFT H UNITS CONDITION

LEVEL . (.IB) (0 (MB) (FEET)

1 1008.0 15.1 15.2 60.0 339.7 -26.4 342.6 SUPER

2 1000.0 14.2 14.1 281. jjji3 15.7 347.. 3 SUB

3 993.0 13.9 15.1 476.6 33ui 7 -11.3 359.7 NORMAL

4 9B2.0 13.3 14.3 785.3 Ov*V. 4 -176.3 371.1 TRAP

5 972.0 20.4 6.0 1071.3 282.9 26.6 334.4 SUB

7 6 962.0 21.5 1364.9 290.8 -28.9 v J U * W SUPER

7 949.0 21.5 6.9 1751.3 279.6 .0 ^A"f 7 NORMAL

TROFGSFHERIl DUCT DETECTED, TYPE: SU RFACE QPTIHUH CuUFLING .239 KH DUCT TH ICKNESS .326 KM

DUCT IN' 'ENSI7Y (H -UNITS;... 36

Figure 5-3 Radiosonde Environmental Data Listing MODIFIED REFRACTIVITY (M UNITS)

.;:so:7£»03 .345"3E«03 .352719Eh)o .360059E*03 . 2674O0E+-O3 J1370E-J3 .3343i7E»03 .34t70SE»03 .349048E+U3 .3563S9E*03 .343729E+03

.132S41E-01

.698239E-01

. 1213&4E+0Q

.172904E+O0

.22U4:EkO

. 2759B3E+00

S23E+00

.379063EtOO

.4306::e+oo

.482142E»jO

VERTICAL JUS -3P CF FAGEi : 1G3IFIE3 itrr.SCT.VlTK CK-UNITS: rCRUCMiL AI,i: nLFI TUlE ,"£"f\S

Figur e Lj -4 M-Frofile Plot (Surface Duct) ,

BASIC MEDIAN TRANSMISSION LOSS FACTORS ~ — — — — — — — — ——— — — T — — — — — — — — — —— — — — — — — — — — — — — — — — — — — — • — — — —— — — — — — ——— — —

SYSTEM LOSS FACTORS

FREE-SPACE/SCATTER LOSS 209.4 DB

WAVEGUIDE LOSS 7.4 DB

CONNECTOR LOSS .. 4 DB

APERTURE-TD-MEDIAN COUPLING LOSS 1.5 DB

DIFFRACTION LOSS (IF APPLICABLE) NA DB

RAINFFALL ABSORPTION LOSS 3 DB

BYSTEPi GAIN FACTORS

ANTENNA SYSTEM GAIN S8.2 DB

HEIGHT GAIN (IF APPLICABLE) -4.5 DB

TOTAL SYSTEM GAIN B3.7 DB

NET PATH LOSS 135.3 DB

TRANSMITTER POWER 60.0 DBP1

MEDIAN RECEIVED SIGNAL -75.3 DBM

RECEIVED NOISE THRESHOLD -91.5 DBM

FM IMPROVEMENT THRESHOLD -81. 5 DB

THEORETICAL RF CNR 16.3 DB

SYSTEM FADE MARGIN 6.3 DB

Figure 5-5 System Performance Results SYSTEM PERFORMANCE

SYSTEP! PATH RELIABILITY 87.01 PERCENT EB/NO (BIT ENERGY/NOISE DENSITY) 21.63 DB PROBABILITY OF BIT ERROR 13S3E-02

Figure 5-5 System Performance Results (Continued)

95 HEIGHT GAIN MODEL COMPARISON

2

— «r» o UJ X 9 6

LIGEND TR OPQ

o o d 1 i i ' - ' — r -25.0 -20.0 -13.0 -tO.O -5.0 o.o HEIGHT GAIN (DB) H:1.352KM F-.4625MHZ R:75KM 2K3Z2£^£

Figure 5-6a Height Gain Model Comparison

(Frequency: 4625.0 MHz) BESEEEBSZEEl HEIGHT GAIN MODEL COMPARISON

P r i i i

9 \

« ', / o f ..Pi....

* 4 f : © » _ ....'...... :/"• O UJ

:

: ... /

y ; y ' , $ LEG END o 1 $-; - d TFtOPO 6 o \ DlJCT

o X; o d a ( ' r— r -20.0 -15.0 -10.0 -5.0 0.C HEIGHT GAIN (DB) H.-1.352KM F:4650MHZ R:75KM —i m —^M———CS »

Figure 5-6b Height Gain Model Comparison

(Frequency: 4650.0 MHz)

97 i

mt .*^««!i..v^.!> .?.».> j i - -^* flgagaBaaB aan a acae amaaaaca HEIGHT GAIN o MODEL COMPARISON $ o

§ > M d"" P

/

: / o • / d~ •••:•

c i i

O t UJ \*\ x e : t : d" T

1 LEGEND o a TROPO o DUCT i o d. i — —1 1 -25.0 -20.0 -13.0 -10.0 -5.0 HEIGHT GAJN (DB) H:1.352KM R4675MHZ R:75KM

Figure 5-6c Height Gain Model Comparison

(Frequency: 4675.0 MHz) •'• '.' : ..*»Xi!«7i":«H: K"S? "W»li Wi*» ; aBaaaaaagEaas HEIGHT GAIN MODEL COMPARISON

-20.0 -15.0 -10.0 HEIGHT GAIN (DB) H:1.257KM R4990MHZ R:75KM —BB

Figure 5-7a Height Gain Model Comparison

(Range: 75 Kilometers)

OQ :

aaaaHBBBB m« aaaa ESSSEEEST HEIGHT GAIN o MODEL COMPARISON

s "' ©~ -} ! 1 :- • i i : ~! i ij/\ : : : : : j

: : : : : : •/ :::::::::• ::::::. */: ::::::::::: o r o • JT' • • ... I 2 *~'«n : : : :// ;::::::::::::: X 6 UJ I i py I ; ' ' / ' O

- \ JP - / ] ::::: —

«1 LEGEND q a TR0P0 d : : 7 Qi ::::::::! _?__P_UCT___.

o : : : N :::::::;: : q v ; ; -a o ; ; ; ; • ; ; ;

r r -43.0 -40.0 -33.0 -30.0 -25.0 B HEIGHT GAIN (DB) H:1.257KM F:4990MHZ R:T75KM 1

: f « : -.- -.-™" » . ^-TTtf KUE1- ». J.a3T^J mfcit'****t*>£?

Figure 5-7b Height Gain Model Comparison

(Range: 175 Kilometers)

•< < I 1 — —

nmtmuumium r>« '< Wli 3

HEIGHT GAIN o MODEL COMPARISON

0. 9 i

/ '•

: "'(b"':' 0.25 V i

t '. ',

* /

0.20

(KM)

0.15

HEIGHT

0.10 r. ...

• /

: & LEGEND o TROPO o DUCT o

( D d ; ' r — i -75.0 -70.0 -65.0 -60.0 -55.0 HEIGHT GAIN (DB) H:1.257KM F:4990MHZ R:275KM WBmnaBBBmsaMamttti*

Figure 5-7c Height Gain Model Comparison

(Range: 275 Kilometers)

M VI. SUMMARY

A. CONCLUSIONS

An interactive, computer-aided design program -for military tropospheric scatter communications systems was developed. The program provides the communications- engineer with an efficient and acccurate system performance algorithm that can be used in a tactical environment on a microcomputer. The following thesis objectives were accomplished:

1. Both analog and digital troposcatter radio terminals are included as design options.

2. The influence of elevated tropospheric ducting on systems installed throughout West Germany was considered. A height gain estimation model was derived using numerical results obtained from the PDUCT ma in -frame computer program.

3. System performance predictions can be calculated for the newly deployed digital troposcatter radio, AN/TRC-170.

4. Real—time radiosonde information can be analyzed to determine the presence of both surface and elevated tropospheric ducts.

The accuracy of the height gain model was bounded by

the range of selected duct parameters. However height

gain results of elevated ducts which satisfied the limits

of the model were within 5 dB of the PDUCT computer

102 model. The model did not compute the height gain -for sur -face-based ducts.

B. RECOMMENDATIONS

Addtional research is required and should -focus on the -following areas.

1. The validation o-f the computer-derived system perfomance results can be conducted during standard operational testing. Real-time radiosonde data should be obtained from available tactical weather -facilities and tropospheric ducting phenomena determined. Received signal strength data can be recorded and statistically analyzed.

2. The height gain model should be expanded to included unlimited duct parameters, e.g. surface- based ducts and elevated surface ducts.

3. The effects of tropospheric ducting can be studied further within the laboratory. Radiated energy, produced by laser light, can be transmitted through a fluid medium containing light-scattering particles. A common scatter volume can be formed by mirror-like apertures at the laser sources. The refractivity index of the medium could be controlled to simulate ducting conditions. The received energy could be detected and experimental results studied. : 1

APPENDIX A

The -following prediction formulas were developed by the National Bureau of Standards (NBS) -for calculating

the long-term median basic transmi sssi on loss, L , bsr CRef. 12:p. 38911 and CRef. 18:pp. 8-8 thru 8-14].

1. Long-term Median Basic Transmission Loss

L, = 301og,„f - 201og D + F(0d) - F + H (A-l) bsr 3 10 10lA o o

where f = frequency (MHz)

d = mean sea level arc distance (km)

F (. Q d) = attenuation function (dB)

= scatter i ng—eff i ci ency' term (dB) o H = frequency-gain function (dB)

2. Attenuation Function

For a particular symmetry factor, S, and

l , approximate surface ref r act vi t y N , the following s figures are used to determine the attenuation factor,

F ( d) :

For a surface ref ract i vi ty

N = 250 Refer to Figure A— 5 (

N = 301 Refer to Figure A-2

N 350 Re-fer to Figure A-3

N = 401 Re-fer to Figure A-4 s

Scatteri ng-Ef -f icency Term

The -following equation can be used:

(A-2) F = 1.086 (h h " h " h o TT^' o " l lt lr>

where h = height o-f transmi tter /recei ver antenna beam o intersection (km)

h = height -from obstacle elevation baseline to 1 the antenna beam intersection (km)

h = transmitter obstacle elevation (m) It h = receiver obstacle elevation (m) ir

4. Frequency— Gai n Function

The frequency-gain function is expressed by as:

H (r,) + H (r_) o 1 o 2 H = + H (dB) o o

and r = 41.92 Q -f h 1 te r - 41.92 f h 2 re —

I5U — 1 — - rHE PATH DISTANCE d. IS E'PRESSEO 'N KILOMETERS

- -- 1NO THE ANGUl AH DISTANCE. 8. IN RADIANS

160 ' - - - ...... - -'

. . ,..__..

iro — - — — —

. no __. :

190 - — m ,v: — "J" V -- - ?I0 T? Ml) - - - — -

• — — m s=ooi| 1 v\\ %0 - - ' - • - - — 5-0 51 : ?50 ^. -- — v \ \ \ E \ k ?40 ^ — — - \ 1 T _. » 1 — - 4 \-V \_ 750 Til - |s4M t — — . .. . E T ?60 IsO'iO ._. - __. - ' 4 V — IJsmoo \r M \ \]_ v\j T

- i _ - V

1 1 \ \

— — — l\ , \ ~ \ J90 »\ \ — - \

...... _ iUA-_l!i1

.'00 1000 I ? 5 10 2Q 50 100 500

A 14 A 100

Figure A-l Function F( 6 d ) -For N = 250 s (After Re-f. lB:p. 8-9)

106 2533

Figure A-2 Function F ( 6 d ) for N = 301 s (After Ref. 18: p. 8-10)

0" 1 Figure A-3 Function F ( d ) for N = 350 s (After Ref. 18:p. 8-11)

108 —V

1X1 — - - \ I I ! I I I III II I I I II J ThC PATH DISTANCE, d. IS EXPBESSEO IN KIUOKTEBS - \ J ANO THf ANGULAR DISTANCE. 9. IN RAOIANS. ICO — -

\ . ITO | — - -

- - . _ .

180 \V — -

, — — 4 . — - . .. ^ 190 — — — — — — w>. 1 \ \ 200 s ill i .\ — — v M V v x™ r sooi - S'002 210 p-V-Y _ C L -SO OS -1« O 10 a - — -. \ t: L. 10 V* <\ * V. "V \ \ UJ 1 ^ — Q \ — — r- J - r- - ?30 .. — — " t" '"" ' CD A U. — — .__._ —A \ WO u t— S<20 \ 250 SO SO - ^ - \ soao ^ \ 1 SO 70 V'-A S'i oo I- 260 V" ~* IT 1 - 1 — — ' V Y — \ \ \ \ \ 2/0 1 \

. \

' •v -- 280 — k_. _ - -=-

290 \f'v X 1I

\ - --- __ inn

I 2 5 K> 20 100 200 500 1000

Figure A-4 Function F ( d ) -for N = 401 s (After Ref. 18:p. 8-12)

109 and H = <£>C0.6log r\ 1 log S log q o 10 s 10 10 where Q = scatter angle (angular distance) (mrad)

f = frequency (MHz)

h = transmitter elevation (km) te h = receiver elevation (km) re S = a / R (symmetry -factor) o o

q = r / (s) (r ) 2 1

H (r ) and H (r ) are graphically derived using o 1 o 2

Figure A-6, with 77 obtained -from Figure A-5

1 10 r

aaEaaaanBaasfflagg^ag^ -i

—— — - _

5 5Jh»"° n,'0 5696h. ((0.031- 2 32N,ild » 3 67NjilO'*)«" 1—1—1—1—1— - h » Sd»/(l*S) km

=0 5696h ']*,, (- — ._. — — —

4 — -- - — -

< V ^ # /^ z I */ /z1

- 400 A 3 - 530 ,/ — — - / c ; 301 230

- — l

I I \ < 5 I I I 9 10 II I? 13 H

MIMiaiffiaBMMaB

Figure A-5 Parameter N Ch 3 Used to s o Compute Ho (After Ref. 18:p.6-32)

1 1 1 Figure A-6 Frequency Gain Function

(After Ref. 18:p. 8-13)

1 12 —

\

fa—— affiffiBMIIgrsnaBliBBT^^

Figure A-7 Correction Terms -for N = 301

(After Re-f . 18:p. 6-28)

1 1 iFBMBBww«Bmw»miwft^ )' aaa MawaE

Figure A-8 Adjustment Factor -for Figure A-7

(After Re-f. 18:p. 6-29)

1 1 4 APPENDIX B

2 ***** C3 ***** 25 25 ***** * * H * * H •=»! * * * * to * * o«u * * * * W * * 25« * * * * * * H^ 04 * * * * S * *fH>-30 * * * * w m * * HMau * * * * EH ^J- * * Ojt—IH * * * * tO O * *32:«J!W * * * *>tf^n* * rtSMEn * * * * rrj T> * * rO 03 03 IH O * * * * * to * oje-hcjw ors * * * * tn *« * a * ;a ca ^ ss m * * * * 25 H*O*O<0t0CMa3 * * * *0 25*H*»m<^MU3'-q * * * CO * H 03 * EH * ^ CxO OJ * * * X * IH O * U * rO H ^25 * * * 03 * «J Ch * O * UChS * H * * 03 * O >• >• * W * r- S fiq OUB * b-i * * O * O S3 M * .-} *'-' ~»Eh ZHU ^ * z * * H * was * m * oo)3 ^osco^un * H * * O * as .< cq * C* * = 3HO< Eh HC7n * !^ * * £3 * W E-t * 3"! *03HEHS XU^2(N * W * * Q * fcH CO 25 * 0*0'J1>", WMHD5\ * Q * * O * H =3 O * U * CkOCQU tShJ^OCN * * r * 03 * *a» S3 * \ * • U3 -i3W3&Hro * uq * * Eh * CJ » * « * OQ ^ Cu 3HO * hj * * a # w O i-l * U *aiWon»* fri tn «$ r-i cn * pq * * H * O U O *25 * Oi-^»co * <: * * « # H O fl * SB * OS W OWOW * > * * O * H * w * fcOWOi aistuwz * * * o * 03 to w * * s: X tOH 033 * * * as * O H in* s: * <=ccnuq^.t r qcc^w> # * * oi * tt, i ,<: co* ««: »«'=': toa t^«:<3jHO •» * * * sa cn* CCS #030r^M 0,>3EH * * * * S Q *-* O * O difNXl 03M«: t h * * * * a. eh* *=»s s<«: a* * * * 00 -^ CU* * O^ .CQH <3* * * * H 0< ^ uq* #tO«H/ HCQ 03* * * *co ,-'«*:co* * ehco o o* * «• * W Eh > * # rz}u;\W O* * * # S Si 4 r»* #EQ(NIW J3* * *•*#** (H CJ 25 rsj* # * »• -M- HIJ-iOEHtQ Hi*****

UDUrjUCJUUUUUUUOUUUOUUUUUUJUUjUU'jUUUU'JUU UCJU'JU

115 . o'. h

— * * *

t- *rvj » «. % * * O"— — %*3c/)*:ai *- w * * =ra-3—.Q »ZWE'-WSWS«ajaci(N * * co rqo •• CQ CO Q H h * * H 03 oco =r HZOQSSSSUHXtLDCUScO - * * 1*3 03 =rw — CQCOW %HCJ>Oi %35 MH » \ * * S <1 >t *-ni3CJ « H •Q33 »«< * »CJ »OI %PH x * # w *S r -Oi 3 E-t 'JOS *6HfiXlQ3^SEH J «OX * * H 03 EH »0 U3 %«r-z:t-t wsaszucucjs » * * a s 33 n^u CO «=C »CJ «5 W 3 6-tQ«3 BO»a3 \ * * Q H «* HO •. » -JJ3UHXC3QOI %fc**C0 - * * HO Qcr -^ H (j »j*3 *t-fa5 yascooiss % Oi * * —nCO h cu i O * CO* O CO rao3 «: Oi a, a EH Q'-dtH « * % *QX - Oi * H* "-" SB**" -3 M H i30 » U3 Oi>r>3>t>2SS03 % « *Q3C0 Q 2! CO * >* EhH n H UEh Q 'JH s^- -, Q ..2; el! W W *JJ » %fifiZT-Z Ch &3 • » * * QONEH-aJS 20 % ••-^ OO sjr3EH33^0Wymz Oi II N * >* Haas^H^zHJ -i-NS > 3U«IPaw *0533 »CJ * *Oi m » N CO- * &** 3 O 03 CO S H En Oi o>^-,--sW O »NSS3IQW(J «^3Ct,OQj Eh t- 3 * H* -.OHEh O303«:o3 <-WZOh) h)H^ % »03 » >h)«!WQi-10 * 03 H » Eh* MZWUWO>kOW **M 33^-* CQCH •t-fN^SEH* »Q03^C0Eh CNCO * «« * 3* OS'aJZUSCO O03C0U >W O—3(t, •CQWEHCuHaE"123 * » NQ U33»- H3 * W-tfr ^-CQ3 25H3 03Ci3 3 ud S —»W O U4 H Z CO H CO wa;Ui-JrtjaC£3CN * (ii«a:»- CO- * Q* <: 3 CJ H Ui tH t-t «S i-3 «.O^f^H> »H3 »N * H* BSXOZ^S 23H W^^-WIOQ^H * kQH' *W&H » »« »0 Hfti * - 3 * * EHOUU I 03H--3MCO •CS^-EHW *03Q«CEH »KQ6H'4:'<«iS3'-a3 *0(N «t * * QH O03 3C^sC5 «-Eht- t- «• - * * MCOQ WE-iW^E-tOiQ « » -« « O^*-^ v-^OMCJH>EH0303HW % « XU3C0<: H\ StOWQ | HH3 r- :nj %OTM» » ^Qcqi-^O »&3O3>iOc0Z: W[HO< * » CLisO # * QHE-HH03 H rt3Z3 ^E-t -^s» ^&-.O r-Dcq »hJ5Z3Q »>HfiijQ««} S « S *P» 33 03303 ."53 Hlrl X< lir>tH^ tO* * 04 25 fc-3 1*3 03 5!3 UA 03 OS 03 HQ^Hft » *qj3 w-HO3fcu,ci:a(03 »r:>t ino u3m<<;» r-o* * fiC^s^assxj^u; Q fctrfU » *tHSI k m— Q »*HE-!,-3 fc3tH » ^-^OrnCN^l"^ hJ t >CM ^-TO* * U4 0313 3C0'=cQU'~s» ^-"j *#a«uj(-Xi* * Eh HHH 3-«- S i-3 Oi i-3 Eh <: «!Z^ J3<HCt3-aJ>i«a:«tlM SSSSSS Oi «J >t &H Q M O «• * H3Ui3ZWHHHH QS JsQHCti03QnEHQu33ai0dH'iSlJMH>* CJUCJCJUU O Q H EH H a. U * »• * fflXUUUQQQQQ ##* •« **•»**«•»• *****

U L) ucjcjuoucjucjuucjcjcj

116 . '

w 25 > O cq » H H" < H 03 «Ji w m^ Q ^« W en 2: Q >i a w O H o "—H 05 tv, CQ HQQCQ 33 CQ 03 ^Q — | qisiazwoo en^»-^ O HQ | 0303 Q QQQZ CO ^5^3 HW OH mcj3H i^SOOSHH mcu enn uq^<30WHH h>»WWHH H CJ 32 32DH CQWwrsos^^ EW>>>HR ^j!HHfe>-)S> coh33<:ho ctjcjwcq ^Hjtqoasa-ciacn ej^HHS>Q3CQ CQcatj>rqwWH'=ccacqcjjSQOOW 3HCO OJ-flCOZ 3325.-j,Ha3w&333WDH>H033Q<3QWHHHHH>Q5CJC)HCn<:H | 2}^ H^H3BJ3 O HWWWW 33HQ3 H*JJ ra P., h °Q en Q5 "-"H "^H WW wh h ^-Tii z; ca h rt; ^ «fl QWCJQ3HH 3 HHHrtJCHaCMOHC3 03 H 0| < W33UHH HWW 33***—t*5 OjWtqWWWaH Ha^Mhzzziowiiia'jJHtn^wtj^^awtBQas w-aj-^HCjenss; 03 W«UUU W23 | QQ!OZ03H(H Haz

HosJ'ajWNHCUWZ^Iiiisfl^enenaSHHO «i!\«J:Hwe0OOOUQZOHHHtnZQOzge)« I H Sm «S3 25 EH H CQ JHW HH Z>Z-a!HWOWH H W HHH25 Q^H WHencn3W | U3HZidMS

>»cncn c5H25wo>oenenQ«flu««: i ej_acjQwcn aaHMiri cnHHH caaaOtHHH <*:h^03 «CQ33W0325O 03 O 25 cq CQ W 03 W HWQ CJ CU> "*3S 25 > > U 25 Cq s OQ3tn«awwZH<'?>HWW>*ZZZZHtH>i>Z SUrtCOHUWuiQ W(J«!HHEHWHtqHrt!WU)>ZUffiOOWUrt!«!UUULOUUU«;!)«!'a!'«:eo«:a!U«:!! MW«HMZ^y«!3a(W«eOOO>^ftZXS

II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II l| II II II II rn *-(N 33 S3 33 «JJ>>Wc» O W3QH03 CVzJHHtr-lH :no3,H 2JWW&3QHW03H mv^ Cm «j 23 H03Z Q33 032sei)25 oaaq^H HHHen03^^vq^H«^HOH«en^u>3OenH3CQCMcncQSH25H

UUUUUUUUUUU'JUJUUUUUUUUUUUUUUUUUUUUeJUUUUJUUUU^UUUUU

117 , ^ . » > 1 — .

s \ N NX CO v m m m m m m mm \ w m z n 1 Q 1 j- Z03 CO 0( \ON z-a: M ON WW WH «M • z» oa H rn wo ww ua\ \zo oo«:a!\cuwu WC0<1H HH >— * * ZW _« #WH(JWOU - WW www< t^^ »— COCO <5 «Wt-tH \ * * * w«: * WW www 1 ^ CQ W * * U *— * W CUQHWH \ w w WH Q H * * 33 CO *3* * 3w q wan ZHWO WH aa o* OZ CO O W ft(j3U3QHO< « WHHO w w ti3Qj.tt.T--* O z HWWH WOW CUW • 3=WX • •z — W. * #QS HO 3WO( HWQO 1 HOWW COH <"m. w* w«*\ H Z W * Z3S3WQO|Z H z WWH3QQZ hlhl = CO* >* W3- z O w z * aozwcowwHawcjjz o<:a 2 < * * QlD U z *<3H WZQW «a:OZO wwcowwwo ww a, * * W<3C0 u w *WHW OH QQ5WHO WUSZW QiQ WW * * O WO> z— 3ZC0 *oow »w>lWW a:W wwwT3Oas3WHO»0> H H CO » WW #3W W OH WOO co en «=«<«S3 UHQQ W4J WOW ^kW OW— tomw wco i-tz-^w • w w H >> —> S3 aww »— WW Q«o — UJ CO<«W WHHt- WW ^. .flWWCOWWW dj(qqwxu —'WS ^J* WQHQWZ-=< T- \ >rtSli H » l| II W %XO W>W WiDOW *lO-*H oiiosk 3

WW, nJHOJXXX^IKXXXX *

55

S H t HW QhKB WOU C05SM

tqiO>cq COSSSHtH H<»OWSS CN UP3HUW * 3«t!EHW *

CN UHHBmwuh a 03WQ(J5 o z HhIO-^ShW H 55 55 EH tqSWHCq tri « Q H^ 55 55 OI LO WQZXQ O 550 CO ^OCN hwh-ssseh u OCU r~<"0 uu^w ,—3 — H 53 H 55 >>> «-ao ^5 55 cqcq cnH^-aicn <: O < O >-q.q^q^q Wca 55535353 «TMH • • > r- nq ^q hJ >q caJCQrfJCQ as ^-, . OOOQ Oi^Qj <" 53 cqcqcc W cq < 4 n n —ca —.UCJUU^. U^q* «=a53* » o —-=<—-«U. COOtn J3« • P» **»«• > # * ( N t-} '.o r- co =flOtf>hqC^\—»(^ • • O CQ«< 53Cq53' xsu 2scr> t cjqqqququqo t-a:oo cqa^q^q ». <: » «cn hd ho *tn * % % % »o 1 «^«j:cqcQ-» co'-^-'OCNccj'sO.o Q53CJCJ O cq -) co . »o cq* # *» ** %* %« *«.« # o a, w>^w^o, •* * -—roN-jf * # ^co* «• QCOQl >** ww»^wwf- "-"»«$ H^^G^O »# Oi q*-^-# ^-St ^-fr 25 >-»u3 co 53 co 25\0|Oi Eh H E-i > s x ~—to CJ W W — >^ >*Q ssHOHOcoH-lKq-cssaj-acqcq 03^303. . • - . . r- cq cqcq cq W W cqcqcqcq .q HCOCJCOCJO^CJHxS-^QQQ CO CO CO CO II II II •» ^-~- % «i » % *QCC LO II II II II II II II II II II II II «C«j:cq *~ qHHQHQHQtHQEHfneHHQO-aJ U <• txj XI 4 x qHH'')H

( h-( «aj i-q 55 en mmmm ^ w ^ q nq Oi CX( Oi m: < s S 25 55 53 cqcqcqi U3:2«jt«3C«3:CB3C£ ,-*CBu5CJ?ai COCOUCOUCJhq^qQCCJQQCOSi CO CO CO CO QqQi t/T '-O VT Ur^** vt o o o o IN U

119 » W « '

CN CN * * * *

H H , 04 « Ol CN CO to *«* >w*N X —. — Z z Z «a cq z W w w 10 CO w as EC 33 U U 3= ZH «U ». H w Z CJ ZC5 O W ze> O z O w >»rf a:-^ W W WW ~J *m* a: ,_» WW W W W 3«-*Z<-Z-» HO 33 Q 33Q Q zo H 33Q a 33 a 1 I «30«i}QWO 1 ZH 1 H 1 + W ZEH | + EH 1 HOt-tODS » -^O W _ ,*, A 330 ^-» W -^ _ ^^ tUPq^WEH-'S OCT»U 33^ • —» t 1 H«- en Q 33^. . • ^«. • —n—Q f- 1 iO HO«J* O OO O .CQ • t- <3 « njW 1 t II W OCJQ "-"fa O"— *— t ,a • • II O'-D*— *—fcm CJQ *—u« . t t HrNHCNW »Q W<«sJH || W || M • II W II H wua 11 Cu W nQCQH t II W II H f II W II H Q\Q\(J< II ^ OOOQ tq«5«ajCO3Wi>-i3W iwyqtn » W -Qz W C3 CO CO W CO Z CONJWtSJZ 'j CdOiOSC^-aJSJCJCKi.rt'QQWH »CJ«*W«a'WWCJ«3JW'=5:WHCQr:VW:3WCQ a. q w h • cj CJ ""-"H W*-' *-* >-* cqWWWW W W U* W w QQQQH H H H H H

120 s O .

X W- X \M H« WX x<; co 03 N a*-. CO . Wi_4Wt M M scj QWQ ssaaM << 0 13- W , WWW M « M "SJWeewas ^, 3 OMCD tOaiT) Z030«< Q3 0"SW(N o * * w OiW WWCOCjro www WMOMU3 WCOWOM — MCNCNW H aQW«a:QWW OXQ03 Q uqM WWO Qrt! «a;cq «*S t iH H H30 r=Q I MMM a HXQHS3 acooo**: to EH tWW CO CO CO MWHOSH Ena^>- CJWWa ZHHWi^icl):/) u 03 «5 W 03 H » *H CO oowwon C0G5M aWpt)p303 W 1 zo COXXQ 3 H33« •• a>> 0>hWW EhWMWO MOS3CJ ii-iwcrj ^UJ MMW6HM awxcjM^. Q » *0 03 «3W ca w «< q «s « WW tnHCIZa WMMaM»- • - O M U\tOQ"i«D 6H«'J- O4U WW a wen CCU OWW ogosHoa OW t O aM>to w WQEH^QS hw 03 03 03 MrtJHCOWw 33 H«aJUX W ^a WMM WWW wens M^MWXaM COOSWa Eh MEHH raw — 33<«03QW O • M03*aj as HMMOmWW Zaa C0QC3 M > « 1x4 HHS3 MM U-IHJuJ a M W •• •« CO»~ X » » » " WH EH asw o 33a t#aa \C\|CN\'-<-\ 03r- a3W CN QQ3QS3S3 o • NWSHNN WCQCJ S3 \\\ «> WM EH1C«W. MW *\ HSWW 'HO a3a5«03X W* ^OWJr-(N# O •»• —O X QHEHMMEHEHM WaW^xUWM a pb| «3j tet, 7zJ MEhEhEh O"^M=H03W ———1- —'II T-" 33 03 —Mowacju * CO z < «s «u «sj «c «=c <] ...... «»: «$ «t« «j ii] 00^ W O 03 W W O M , Ci*[tiWWWWW'~T"*'""»*"" '-"*--r-r-;i^[A

en 03 ^ ~* &3 63 Ml ,»» - HJ. hh* H .-» tn • u O 63 • 03 3 < H 3 6J H 3 23 3 33 W H 63 o o H 3 63 hO !S3 O oa O H 33 ca M H H M 3 ^ 03 Q 03 Q O 03 «* a O < O ««! 03J 03 z M 33 03 aa Q3 H 63 3 <=* 03 H 63 03 H O O o Q O Eh J3 ** r H H H H 33 UJ 3 «3 > Q Q 63 < EH rq < —. -a: _»^ O H -3 03 S3 03 S3 H 6-t EH 03 63 « !*J Q H H 63 03 ** < 53 S > — 3 U3 V in en H H H o-l w fcH w 3 3 W '*' 3 Se CJEh H— — EH H 03 H Eh hi H — > 1 ^ -^ — ~» + 1 «^ r— CN (Nb3|| 3 . r- ^ 1- i-r^H*- <-XI t- o •—»*- »-»£HO<"^ »-n "-n-H—'O 3 3 r- fnz<- r-r-cqr— *• ' »-rr)2;f aiOMXOtTiXOSOJiXO Q Q33 H O rOi" «-\o*- OS.'<-'-QT-r- <^r045'"OHO>C'-0 *\til'- <—»-<"> 25T--UHO EH OjO O >\H'" J »\H w »\r- »\r«- ii M »NP- HLn63EHOi a tOfH EH > »• JB 3CntiJQ0-,rilO »• EH <«» ^-TH «fl «" 1 "-tH ^-tH r- t- *• Q3 O0-.U^-£h63'—^H —feH » —H * 1 U * ^-1H «aj — cq >-' 63Q 063Cr)OH03063eJM U3-—U3«3^:^-' l| W E» ' -=C ^-W =< *-^->-b3 HHaQ uJ U4H W rt^03O^03O6^63hqo«OW63^5QuHU3hJ03O63'tJO^'

«— o a- o <— =r too o <— cn "Mm— m cno'~ t"' ^- * old en cr> cj> uuuuuuuuuuuuu 122 » ^, »— ,

* CN # *-* * -»• O * as * * * \ •* — * H * »- ^-* -* * W •M- * W * CO — * Pn # pq CO * »• cd tt Pn - cq tt O 0- Eh «*• • f •a} 3 rq -* co SoZ H cq cn a * q oO *<«< 2;z * H Q *

* << hH 11II . . ^s H •>* CO **S * * ^0 * H H *-" .* "— \ Z X tH Q W w > Z CD «aj cq pq-»>* *-* 1- a O pq *p* rtj ZQH H *l •• cq «—» t U <-«CZH HH^hl CO pq 33 II U ^» r- qi- cq cq cn s> w com aOitHco*3tt(bHCO- <"N II WHHnOB5HZOH(N r^OQP>0 cqpq H^MEOI M/1IO »HH•CHH >^«-* Pen* .. HZZPqcj5Pqcc«sJ<— EH I •f- II V-« pqin Cm» cq«-2HQ^W'«^2HQ. .O»C0PmOKOPm II W I — T-ft, z-s-flo isi * »-*# » car- f-(ii 11II ojoirsjOi »* • Qpqocq *» »«. WPqpqpq h^mh > N —'» mo5« 1—w=«333 • —> — * "»* M <» «CHWU4(/1(N?«»'—VI <«— <-*—£?>*m^m0> .(NINHH3•CN'NMfcHa W ^. 33CNPJ03O*w mz^"- H3 no »—sOC* • z>oo •ll'-W «-cq pq cq r-om O—o—.« • i« • %•> *o*OWw OcBHca h <-»||>tq ^-0 cnxoHSa t»* *-o -^n*~sn | -^o*—k 0* * aicozmPsHCliCOZinPSH r-nwa ipti w> '^ ^T-ooa^cw h hh-«coh^z z i^-m » r*o* * 1 *-# tq* ^'coocq s >^z *^^-* »Nr^ II II 1* + Ho-> . 11 «cqMas«H H * ^oomo^ »f^* » .w "q^qcuo Ofc<> pqH »-* *—^-sO* HOS* CDoOt-1 ia)Q30!H H * * '-0 10 «0* *#ps^\|s.tjjtHQcciUOQ uMid^SH > , > «—H* (SIOQ^J* Xri|(0<: 35 25 >-^-r* - Qi-q » N cq-C^-^-^-^q* H>BHO O Ou*pq ^-TO r- pq -* cq x <« W .q a; uq Pt, ztqo O H?3Q>HCt.* *-'Z v-*ttiQ CJWUHHQQCNO^OHQ* HPqQ3HPn3caM WSQ U •=>: tq ~~* —• h J3 co 11 o 11 co qh^h ii h ii hh«i# h ii ii h^* CCO W^hcm* cocjcocti .-l zaswo^O^OcHPq* Q3COC£5PhCm »Pt,a5PqQM* 33 PCH Pq W»CCiCD«C5CXiC)3CM* 3?,!^3H * * ro *'-•«• ro o «- cm *m =T a>*in* in in cn *o o vo •jt'T-* p» p* p* * uj m

123 ' » » ' > Q » ^,

* ^» ^ * -J0 CM

* ^^ 00 -M 1 * \ - • cq # tS * • NCO OH * *"* * S- 03 r-^j »• »— * OCqpq 44 S > * 2333 EH k^-* 33 cq * Cm cq —X CJ q * \ HS • rqe-t 33 cq * \cqcoo «» »33 < S h «_» k - cors-q "\3o-| CJ jJ k m ^m. » « ^c . ocq « ^'Ocq II « T— > -*• PH ^U35H r-33 tq > ^ > pq t-l—%z UhS- WCK hH U3 "q ,-^ cq H cjq«: ZZtrl » U »z^vJ M 0^ H pq cquss «:hz«- 3XM- «a:^ W o z ^^ w ^, S3 i-q-aJK t: cq • cCro «"' CQ CM <: CN C0 2JCJ -WHl ton 03 H 33 r«fl * « > » > EH ^-'«C COM^J » H icq>ocj S « u3 cq ^«, pq CO H • co-iz- QOBH m iC W -q H H H 3HCODB cq H p- EHQ3EH » ""* -^ '****** EH cq cq Q E-t _)cqtt,Lt, *~i*-t —»CJ "^ 33 ^-» ^ ** \ » S3 r- S3 H *-U O • *» rtti^q H CN "* -^..i> % •. cq — > »— >cnco Z • HHtH r.«ajxcq CMCNCNCt, Z T— ->3 «• r- T— "^ en -} >fl«- «J CHH . coEhHcj H »hW3H«^ > *"* ^^-* •»• — m cq * U33 Hco z *» ».Q3H03CN Uj r" • * . • j. -^a< WS > 5>« 03 <33^ zh •<< — i ") EH oo-=a cq - ^-w "—'Cqa3 w ^^ rq<3 ^ « 1 1 H 3cqca :J q CO wm U q H h~33 u^-z^cc O Eh TH »£HCJ^3Z » s H HU z w ^^ cqu «S cq cq c^EHHa: 2JCN2!< - H-~» H ^«, H .—... L «< H COr- EH 3M Q- H Q CO % i- r-pq is) Pt| . t 333'— CO 1 « CO 03 Z | MZHX WZ WU3 H .— WSJ »uj H H" H«»J H— H^q -^>- 03 • • i WHHH EHM£Hcqcjco> H Q tqx X»q Q ^-, Q33 EHT-> coiq ISJ> 3 I • t EH««flS ZOZH cq Q ^^-»^. » > HON o Nl OHHCN Q || rHtq—*» . >ia3z«j: m w WEHEHCq —» ^J | «c r Lq*^, r«» q«i:3: » »j» -i c/jcqro m-cni^) » 1 -. »Q 1 ,_ II SCN* SS3 -^ ^ Hcocq | — z H^r-nO- tq v£>c>3 * » -<3^» ^or»» =r—PjHStS3 -^q MS .x*--^^— -CEH03H xxx »cocq'-• | - <» *" „t—p-)«— "« ^. WOUlr-H O r» o»-^u)- a ii % M « II 0"1" - - SJ fcH - XtH^'^INIP^ — ,* ~ — , r •. ••*-' •->« II crit-^» u* r-*- r*'J>*r» --uj ii —» TSJ II «t-t- » » 33 coiNNWi-aot-i J- »• »||«-MW » k « «• H — II r-CN>W «1.-iinLr«Ln^-,r><;i:cq'-^w^-»-'>-»s^Jo n macoqr* «" "*EHO HMS"^*- '^'M cq >^n H CO *q 3 *-TN H e-» t- t- r- HXMHqHlHHHHESICOHHZHW^ >rqpq«;s cq m m w «J!rn || HCqHCN><:

«» * » * * ' D tfllfl f i i CJ CJ no v£> 3-* rn C3t— no zrinvor^o* 3 CO 33 in uO* oo O OOOOr--* PQ CQ r* r** r«»r* r* t^(^»r^r»r** «j tf-4 cq Q U UU UUD U 124 . «

I eg * * * * * *o* # * •* *o# tt > * *o* * 03 05 #T-tt « s> iq * * # u H w * * o* * uq H s * * H* •«• 05 H * o* •»• s • * * C3# * H "to * # * < S3 X ~*# * -=S — * I! CC Q Wiaj M H W QHtO J5

tq SWhIOOOWO<1 (H*l aCJ*-Hi OHH U H H b£!Q5 Hnl r^O«!000« cq H«CQHii5HOtH<3

^Z <*U4 CJ) U- CJ tO C3 !J)H C&H"Q3 rH 03 X £n •<: —X_Q —JH H W Et, 03 X .-» -^S3 —.O COCJ H^ZXKKBO X QQ CfiHOS 053S W«< '-'EH |0S t Q3 »t0 XQ5 tq • «*J H * -^| ^h >E-t > —» tOS> »W » fr-tW OX ^WWirlWa CN W 00—»M WtO X H HW - H~ —. H XXtO • iH iZ *_» w »— I x xh t-qw x qx n x h coo w^hosxoshm-i: r- r- ^-»0 s ^-> —. cn «->co — ^ co | ^ HCN tn XW tn ^3 ih -^x > t- H #XH oa>—jr- H —JSJ XH to XX _^HHSI .X .«: .CJ X «-. *"* CO Sh^a "-Wr<- Q tS3>w _JX)C0 M WU tOWZhJWQ^QCBQW H" t>Q fcH H :*5X HH"*""^ «-^WMXH Q 03-a: 05H^WW3 2s H 23 w *-»|| -aj pq tO*-Q ^ COW>tOCN-* >tOaH I II CN II —.* HSWH l# WHIN'S- * WCO HX* X + i—3 «. « 03 k^^r-«— *q tq>tqX*CN E-* II i++4*3QOHOHWhW

>tq II II *l| mtq»-'->cqcq *«— »liWfq,-.»E-icq»*i|pqcq pq H oxX-* HPqu3Mtq >Wr-u3H>WQXcq W^asH H Q «c=ccco3 • t .iH »H Cn qQ»:-HT-QH<^Qg3HHHlWB<-3H^iH II ||H&-"t-acH H IIHQ50IOI H C-HtOHco HMWKJM 3 ZHhI^H ZJt-lHCCiQ5HH Z 3 » CO to * >q * -q * .-) X h-1 X «flQ^^Q3Q OO Oo3*UW030 O cq OS H H tci as O O Oiti «

<^, * CN * ^* * o * m M z * 0m, — \ * EH H -«t * W w f— •»• W w «* * Kit kl-l CO # >•* ••^ w * — X 33 03 ro CO .«_," W W W 0" CO i>q- EH M o 0m, H o •I:^q W W no Q i-q S3 S3 S3 S3 '— *« w si z *£* >aj < * o CM -ao H H o si • OH xo ^ Q »"• o tt w HH o • as tf . , .njn. ^«. .-JES"- * ^ C0< zo 33 33 r- ,_ -. —m—* „^ Eh -*EH\ S3 H COW wo CO CO . ,,_,—, ,-H. -t. A >^ ^-~-S! WW W *—OC0 H t 25 03 z z ^N\ WW X «* X^CEH 33 o H HQ o w w t— •=J1 ^H(K2 EHQ3Q W E-t W OSH33 1 3 ZtSl H H WWWO WWO Q W Wco^-- CO fe 03 0«3 H33 z . Z 35QQH qqs: O Q 33 am « 0m, » Q3 H EHS 5> 03WWW wwen *A N9 co ^W« 03 | CO i«- zw oo CO H MOQIK ua Ol Q X az* X + OWOQ W4 — «X'<-z OiSl w<; H EH 03 QtnajH C-HQ3»3 03 EH

to | ro «< •p0EhOQhO3Eh -n3U5 33 »— • » T~ Cnm 0-. «( H^*~**"u*a> '•^—*K 33Q '—O* IWOH'-W'r-a O s 1 H — — • •—»->«!; •— «* »• i (NCN 00 *"^'>*>H %EH O - • «.tu »»~ »»- • II II •

i || cq w ,»*# (H Wco ao co oc uq || CuX;/)^— o* *o-] W-* * * * » » eh —•»• Q-^W— H"t-CN || i-l' ^-^-eh <: r* cu * •En"—* H^* Q-sS^HHffifeO(HHXOHHIOHHKOHHI!E < II WWHQO-J WHEhWSHQSHW "-WWHOHCqi^HHlilWHHWWHBWrt^^ + bn + W II 0303' Ha3033W'

in + Q NX N H WNNN N * * * * W % # # * * 33 m * * * # H # * * * # # * -.\ # * * * o * « EH » * # * * T— » 3 cq- &KC * * * * + •* H WQ3 • • * * ^^, * # ^» # _» * 1 # OiQQ 30 -.,— . * w -i CO ,-» CO >t(HH WCJ3C0 «Q •» w \ CO CN 3 3tHOO~» eg - --J i4 =5 3 # M Eh O * *-* O HHM1S CO >H «C --*cr; tit t X >OH HH CO CO "••* 13 *— cq CO (H< —»- . 03 • EH 3Ha3 OO O W Q u • EH o ^Njco^r • 3 HW -**^ ^* j->?^ H S3 U o QEHQ5053: » WO ^o.—» H • UMCD00U3 S3* W Q u o Wft • > t • ^3 C0QU4C5 .-,_—. U *— Qinunin WH s o# -8 rN >0 III! O jS

»• | C7»cr>cr> 32 «S.J5 > i • OJO < Oi 1 • LO a* f • tH HJhltH^ WW M OWCNCNCM H* o C3if> CO ^, 3SQ4 • • t • u -^CJ-flO w:*s • t Oi , . . . MM3 Em t CN EH LOVO 1 O) w EH3 IT) s Eh Em — «. «C | • t iB5 03 (9 W M^r^r^r* ^» 1 N» w w OH'O^t »»«»w,^j H PnHLOiritn c^o W —* « w ce # . t t ,o 03 H rtjr- >-' riq • OOQj Q *** Cir- M OO ca Cm * t i , cu O Q2 II ' ^"* •"^ I > NH»-cn«c • Cfl 3 t tn *» 1 • »C0 u WH3Q3 UU + coco «qrt:t-t CJKJ tH o o » tH • • • |(£) 3 XOWU5 «oo MHHtnU Wh^ 03 J")(X> T— ^. •« . • » tP3 M.-, hOHW - CNW*J3 o>wwb • * O^ w ^J o O »H • • • •— » T^ a:3 * «#* o •«• iSEXH wo Q O* + 0> o MO #U i • i iO -WO 03C0«CCN •« «a3^-\*i*4 r»oO"3j P")OHtH H<~s) II i-l <3 CO -i CTmT>«^\!aJ O « i« ik WMOJCNHO * O U II OH s: , # M »\*hl^^,^r)J1 VDnlct •w>^«^ k o # t II II II • W II Em II ^o # o ^#>-*Hi-^(ri^ *j#*-aoJ rr, v-" "-"»-*»-»»-»* ^-«^— II II II * O # Cm * r- H QOO i * 00 CJ >-tH CO HCia>f=5* < *

2Z3UO * || Q# WWEH l| CUWWO.HH * II II * II HHS <» * * « » »QOHHs: » <« »Q mooshh # s# :*s;*:w -» CO Q * # H'HWXXXXXX^tHiHHtf^X^i! o*^*j:350 * OO*

127 » ' wi

«"•» * \ \\\\\\^ » * • m m * CO m * m z # 1 * • O * * Z * Z H # * H ^*, •» H EH * * *SJ CQ # «fl U * * ,11. _-.—! CJ Q * tfl W * * Muaaiaa A ij - w o O jJ o CO ^ r— h3 ^ ii Z cq h Oi a, 5*—. O rtj cozzz-q Q5 z <- M .i£BHHHh| • w O i 34 EH cj w a «jj <: o <$ 3 SH 0« H X W a* HEHiUce-aajUj o « EH cc HtQ 23 Q31 Z a< H CO CJ H 022 O Ct)>J30>^EHH CO 3 3 to tx.1 z O CO 33 O^Hrc^S w o w o 3 w ^5 Z 03 tiit-Ji-aw^o^ as cu H-q 3 w =0 COt-3CJ33«H % to (J &J E-t CO in CO <5Eh it,. -, % « i to^ • «. sq CCCJ Z— _^.<:ua '4J Cj O • • • • • hM <• wocr m^~ tH3—»Q HO HQW^O H — CJ WCN CN#0 » [-* WNCJ - ^C O t i-l o * • • • • • -^N .Q^r wo OScO i3 — -f •^3ca»— io "Sj ai"-i #« i i i i i o^- locj *3- o co* ?\wo^* H- r*»#«- ujtijcrifTl* U, ->0^t-?'- •*-=»•«.•«• --z »^—o * ^- * * —-^— ^^ »rr) too n">0 r— > H ^T ^ =r^^r-^->«* tHW-tt- fcHK * ^"^f(WW# HCJ «fl U^-lrH* W * ^QH/Q^O^

II -—«aj "~*«rf«— <: || ^|| || ww-t. * ww^. • J3 s: * II O o o oobhs *^s ii OhHS * *QZ! II HEHS *»»**»*QO II O O II o -3 Q b-t :-} H k-I Eh _} EH H H H OJ X ^! m3 * HHHui^XKiai i-jHMXXXX^XX^h H fc-> H o, OUOOOOOUOOflMOilWQS * QJSuCOfnmMO^ >yo * CNr*o <" * o r" (N rr) o o o o ommo o<- tt inm^o cn •* CN CN CN CN •31 3" ^ 3" ^•^T^-^ :3"-=T ^•^r=r =r * ^ ^T ^ -3"

CJCJCJ UCJC-)

128 ' •

\ m * ^ * * m \ * * N * * m V N-» # # • * « » * * 3 * lOO # * H • t « i • * * -a» ^^ * M- \ uisr * » O CO t # \ \ * «3 IH 3 # m • • \ >• * tH H * • t •tHH m N\-* fcrt * >H -X 3 MCG33 03 H EH 33 sss W3 03 Cm" 03 X a m Has S3 >W w CO W 03 CM H ^mJ •^^ OOCN MS 3 -al 3 EH •z U H r»r*> QC4 o eg o H w w 33 Q3 cm <-* Cm W Q coo EH WH cm co 03 ••^ MH Q 33 03X U=> Q3 EH <: W oa H HEHtH •< «sj 05 fcH En EH 03 03 CO WM Cm Cm Cm 003 •< 1 H EHfcH W w H 03Q «\HHH 3*fi 2 Q M-S > ON »*4 WN CM CM el *• n3 Sm M a\=r 25 >• 3 C3W ,«, + * t-t co^ 03 W • ^- ^* H »3 OCO > »«" l*» •^ * u 3ro «-» H U Q3 if ^ eg w rn ^ * W k^LO EH 3 w W • \ un U «\ 03 f™ + * 03 05 h; EHO W Q3 > tfOO^ w • no'- Cm CN hh # « EH«- a3cc\W-o •* h-1 O O <<- N.# ^0* ^ \CMoop»hH'CM I u~>* <=<^\* \\w—# „ »>-» »ea cos-i* ^> # * >-o it h^/* hJ# . ^pq * — *«•» Eh

ft ft ft ft ft ft »• II O II l| II II -4Eh3 % II CQ || OEH-1EHS3 » * » » »as&na ftCJS H MH^^-^HHHWX^^ Q EHH'-lHaiXXX>!XXX^«H>J3XXXXX 3 3 Cmt- 03 CM CM Cm 03 O 3 CJ 3 CMr-r-.r™*""r- r- r- Q3 Cm 3 fn *- r» r" »— «— 11 144 CQ »• h***» * <*»<#»****<»«*W«» ***-»» cr tno O oo^o<- N ^irt ni 3- LD ^ cn cNn oo minoo cn iDiD m 00 00 on ^r ^^ ^ =T=TZT ^ ^•^ 3- •3- 3- iT o cjcjcjcj 129 . w

* * \ S * NiNX WX-. * « * • m • • * H •» 05 * W * 10 25 * WH * iQ05Q5 * WrtJCCW -31 u QO J3 » QH-3EH H H %W 5« COCQ«a: *""« _. H 33 25 -a: no 33J3Q + + 05 OO CQ WEHHE-t W W W CN O T 9 zz^ * 05 Oi Ui Ol Oi fti N o -^-'0) O^O W H Ql i i i 03 Pn a, . , , 03 BJJQ4 <••* WWPOOOEhEhW + 25 OEh <3 cu . , , 25 % Oi i I i * WQH >,— Oj i • i ««j • • :?._ 53 OOW^D5«« OO iH «r EhEhC-hQ , or* sea >l O H ww^-T- • *mP0 S3* ^O

•«- C0 co < 3=r LD0303* ' w WW2500— 1 25CQQ car* u t-oo u « a^r

>«j ( j> un fN# 33 33 rn ^f l Q3OiQC0 •aJ-^-XW » un* =r \w 3> » >*OH

HEhHH II II II o v 25 as W »NH i n^ooooo« »\i-l DCNlDOCNC "-fflOiOiJ _).«. — • 33 *- cm ll as II II Q-t •cr 3- 3- 3-'- ^-t-tco II II II 33>W 1 II U"~*fcHCO * ^o * *o?o^o _J - - II «fl«*.a: 33 II 2323 II # &3«aJ» • » » || w»a:» . II II w

tq •> » » II II » % » % II II Oj 05Q5 QEhEhEH II CQ CQCQ * HHS »QO O II Q HZ3 30 a II O 03 SS«3^^>-1 Q«qQHQ * ^HaiXXX^^H H H sh«4xixxx«;h H E- :3a.-) — «=« r -i2:WW •* <- HEhHHQ^Q Oi ,25 u 05 Qj pu ft* Uafei-i-nr" 33 CJ)

\ * * ** * \ * •* N m * # N \ \ * * * W^» .WWW— * * * * * ^, * * * # O * \ * * # cq * m * # # CO .-^ —,.-. * — * * * \ HHH * O » * CO ti WWW * o * •«• EH W zcoco 5* H * * CO H tt>»SH a — SB < # * CCS CQ >hHEh OlE-i H «jjOO z # * z ^IHH W ^~m HHH HZ «a-««. * * IH HtOCO aw W COOQQ co\w- * * w C^Q3 03 33 OS 03 w > W33 33 C0 553'J^-*-» Olt.QH # 03 # 33 HH HO o WWH HZWH * O * «C P3 H HOQ o u \W — "*— SO NO * 03 * Oj -'V> o 3 • , * H*3!* m C5 03 • • H Cm cq a< oicu z cno • ZQ • t * paw* «$ 13 O H « • ocpQoiua wfcH03 03 Lncn >t i 1! HO t 1 * * S3 H 23 I 1 S » tWOOSt-tsH 5T5T

33 • • # t • • i .33Z.3; Hh)« s 1 W W W i i < W QW • Z-frH^-X- W CO H • • H lOO | ZZ OO 3- W ocu • t 0#h)H# Si CO » • CN3- CO 3 ( iUZS>Ji«< HH t OS S3>H lZQi« HH* E-t O » • • II II OO H • iQCO* CQO-H- H u3 m CN CO . iZ^hl O Eh W _ n o W t • coos* CQQ* M WO W~-w- m B , • Q WtH • 33 I tOT— CN U3»— CN rn^r ld ^o r-» co o> en <-(N "**"" — o H — 'm j t o • ro# a. * —. t .03 0*01 03OIOI «— cn # en • • —47»* * r^ * — i O EH • «^WW *- H .WW

• 133<7> • • * oaoo •*• 333- < • I # O o=r* Q3cr»Ho- l U «0 ifl* U O H* —' t •_)* Wi-(N * w* —» • -3k '-Q3H-X- ^-W»-CN *Oi Oi W * *Oj Qj n > >-r »• h^u -h* co*- * cj -'H* W* II tH J>-EHtO— * CO CO O *"*H CO coco .-T* II

,:dHH23 * » » »QO* i % »QDqx: ^^ >< >^-~rf -iHuJXIXX X-^fc-t* * HHWXXXXrCHOhZWH'^XXX's:* "H H u x x : x x x x xs x x < r w^esoooroooc0WQ# * ^wooorooorow^ora-^osoooooro www-sjjwooooor*")< )(Oooooro^OroW WW HUSCn'T-'-'— 03 O «» * * OStn<-<- r-r-cnui^WU3tnr«r-r-a3HHCJ St^r-r-T- «"i-T- r-i- r-T- 03 H H *» W*****1*-* •»• * # •« * * * ««»•«•«• * CN 00 r* CT( O T— o> a> n no 5f 3- 3" ^ cr 3" 3" 3" uooo 131 M

in in in miner in

in ooooooo oI ooooooo 2* CQw "*I t t • I I t • t"~ <0> OIOKJIOICXOI W -« Oi cqw wwtycqw .-» CM X(N X ***W — W OOOOOOOO (J* * CI, li OiCU 1< Oi Oi • co co co co co co en *-

eg II II II aa gMffM W II II OH OH O ii -r-ao

*-cN«orgcuocQO cu t>q &H j«| o HHMMHHH^ q pq Oi O W O-i O Oi C5 ON 3- "0 in in m in in m in 3- •=r 3- 3- 3 ST

L)

132 ' :. .

\ » *»•** ^ * « # CN —!_-«. * * * * * tNCN * * * * * * -* * «• * m* X * * * * •» T-* <— XX * * * \* * ^-^*' * # * CN* ro # #

* * -)«-* 1 <^cr * cq oo^o •* oo cnin « * * H * ^ r^T- Cq » s—.* • o t E-t * *^o* ^ •!*• » W*-4<- -» HW O | -a:\- r •» ^»# H J X 1 X CJN'« ^^ ^«, ao* H* * X* ^^ to. a: w CJ W* uqUM* 00 «• GO CN OWH t-l u O* W * r* ooco * ,^, o^^q H ^J* OO* O iO «»J »-«• c/)tq* * * X * 5325t>JSJ *T 1 o | > ""* t-l C5 "*-* ld CO X X m -*^ * •>* LOvO o * CN * t-tcj -1 « —.* OH* «- ncN o CN in OO HHbmno ^* QS&h* r- n , • o N ID 00003 • 1 O X CN* H * • i=tcn CN oo(^ »- «• t-Q o o m HW H * &q* • I t «C «• »• 25»~ II 1 I CN QQM ^>* | • • II *miO ^-» 3- IT) cjr^uj Sfc) | n» o> * I con» • i =3 ft* MU3* QN0 00 « <** ^-S«- rn sO F» U>tO • S QW* i -q i 1— m CN r* QStOW • • II II o * * OQ* O win^»w ** *~ t CX> H Oi • • * w m* o * H mr-*m4f) r~1-, Q » I • \ 0* • j 3SCS H w*r»aa* o \Q\J) • «< «-

LOlO 1 in rt! • • -) 1 .ocq • 1 I o ^ i* Q* T~ NoO z:\r- CT> W • • Oi—»—»* o T--M- u * —*2;^to iloo -4H!H m>* u^ox ^3>t * 3= . • CO«-CNO u * « ajw# ^w\ ,ho> . H-) pH U1T-» o>x asuimsM £J —» * ei • iM t •*— H 5G* Hi

II II II II SOOI II II II II CN3h1*"-» tq«-cn axidicj * ||* <«*2aMilQ .M cq """ — coc/j II II OiCT>W || II ^CJ'-tH* CO^-" * * * O* iW Q^-XQ . >-»« ww^w >HS SMSCS* • SMCQ xcqu* >-tqtq || * Q* 35 t II II

X>lQ*«>iaiaHQ(H|| Oi-)BS « % % * %Q.3503 # <:«. ». cq^-3 ll ^j ,—q c^tq >-' c/) Q H— in Q H h-J H 03 X X x x xj-aj^^-"T3 «• 1-1* * wxhhwh-ox H" 2SPQOtii h-J 25 CQ O < CC Oron^crif'OLqFuliiCQ * W* * (XltlH Q -3 rq W^OH cq Wfii CJCJ Ds (J4r-*-r-t-i-«MHrq * a.* * * * mh *- w »^«»<«1** CO 3- o> -* CTi O •3" 3- «-

CJ CJ U 'J cj U cj

133 1 w ,

\\N

CN CNCN ,«, # * * • \ * * # * N\-^ X XX * m » • <«, ""* "** * # v * * «• * cn (Nn * • 1 «- 1 * CO 1 - W Wr * -H ID i^)(N * • W • vO 1 23 2! r* io .•X>t • • M 25 r- 1 1 w WHH WQ4

X | X H" MH*-) ow C5 33 * -<)( a MCOC/J OI25 ^ CJ 3- #rn Q cnasos HH*-. * coo O «ww 25CQEq. x W r- OO S3 «>>• 33SZQ3 05 u • U"> • >HM UOHW H M »" i«— 25 HQQ uucqz O C3 1 «- « H SM i >

* I r- H jq oocq 03 sO vOO CO CM<-a: JHUS O CJ5 o com W 03=5 25H O D3 O • tCO • a «a M-3 25CJ US M" r-Q ,«— 3) . 3J3H W •* sc E4 1 • 1 SO | H ^QS 25 25 ««J t « II | II w Q co_itj)0 o X < O • Ol EH -3 • t S3«fl H Qj 03 U -Jl CO O • • 053-^U CO H feU S» ~^0 .-, X UH«!W pq 25 o> • vO 1 OW3 CO S : X3H « W o i r» 1 W 1 J » X-SOTCq * J3*^ WLD .-*&-! sa H • • E-ta£3CqCO ^oo incN loo <; ujm CJ lT>*-*-An Q co » . cN-3- H i . • CO • it • • H cncr* 25 O t— <»» t t"00 vOO> Cij x • • II II CO J . COzt^O CNuO CH K h5 03 iHCA • ^» 33 t IC/1»-CN H • t • co^ss: ss S3E *« tqo3 *-. •" WCJ(NW M I «UJ • |o» Q • I IWUUMH MM MM W— mm o + J • iU CO * ,-» 1 • Q3 OKJ*N t • : 05-JQQ QQ QQ Q5<- H »—. 'O O iXO • i* * co E«t • •—Jyeqco EH . • • -^»f~ - Tl ^JOO • t o qi*) >•«*: •>" O 03 r- •» CTi U f »0 • tCt (J f t tO »-^-» —~~> ^^_ ^_^ 030> • =r 9 *-

-*«—. • I t |C7N V^Enr^CiHti) || r~ '-'uq^H-? #OW * \* *N>-' iT> a o *\^^ ^DCO t(T\ t(J\ » » II — >— " *-* «Q iW OOh)f- Wt-'N »OiOi-tt- ^-^q*— rsirn »^ oio»^- OlO^- OJOI^T • * ^25 »^^q 1 T-)01>-^'-«. >< >-**— Q^-JmQ «-cr>(_) H •— CO CO *M C/J «. T-WWr-MWr-WWr-^^'ehw# h »e: s: ww^jwri. '"* W t • » . II M-<- t w<=3» - - ^-wpqpqrtj. • . • • • ww^;. <(JH HtM || * l^Pn^CuM II OM" HS » EhS » %Qu3a3E-tS » % * * QOhJhIO-^^O^^OHH 53 »Qs>aiCqa,H > s s ^*> HHWHC Hh1WHO)XWHWXX^^ ^-H SXX>*^OnnnwuHfea3Onrn^^W3^^O^l^0^^O4cil0'TlWoi*, ,-J 25Q •— W 0*CJ)CJC/)» fer-C/J 3 &-.«-<-*- Q5MH»<^*-^-*-*- J5C3HHOHHUHHt5S3^<-J3^H W «k-5 CO <** * * * W*W»W^» ^» tn « co (N rn vo co rno r- CN S7» CO cn co CD CO co cj^o'ia^ cx» ^ •=r ^3" ^T 3- ^3" ^ -tct^3- =r

134 m . *, . » . »

*•*«* • » * * \ * •»* * * XXX »• * * * V w « * # «. * * • • * * » — * * H * * ^.^ m # * XU W\— * * ^> » ^-» m w * * * »HW» • • > •»• * * % h^ *m. «a« » # * * UJH>-1 « * CO CN co CO CO * * * * q>qq Z * * H H s 03 03 # * * # CQHCO O * * w % -4 — w aa 03 * * * * h»U "^H * * M ^^ > H H * * * * M^QEH^Z *• w# ^ o H" H #o * * * ^3Q3WtHHQ« s JC * # * A * Bjv-Jpq&n * o* H w EH *— • CO OQZE-iCO * s* Q rq »^ * 1 * # * H * * * * HQUZMSft •» * «aj W w u cq •* ^-w* *^ * * uq Hi Q o -* 2 * WS* Q OS>Z CO * CO Hi 03 wm «s * Z03# J3WCU CJ Oh «• * o «• * pq w tM OS uE)Q3Q3U % >-q 23 1 zoo 33 # OC3* * # * * > H -3 I U * COO* tH u-i hS w uj uj .-I ^*. * * f * » krl-^ w— «c H«!r- «• O*!* ZHOHtHHU O •« # o * * 03^, «aJM H"H 2 >i^ srcN C-J # HOi* WZV.ZZZW CN •«• * z » * WH fcicja W * Q * MWQWWHZ U3 •« * •» * H^- 03 CO 03 CU 03 « e-t * =* * 03 Z Zi- * * Q3 * ZEh cqcq cqs W r + s w "33 * 03 # 33W- q 03 * * CJiD t » . • cuo » # H * - —j- Eh ^^ % -j=q -jq ^~W HH<- U cn * * PMZZ • • • • «ro »• * WW ^r »a p-X— r-n ,-JN- ^,^™ w •» T U4SSCJ M * m«i:m t • * iu3 » * ** - H »o^o< T— LT> I^.vf3 »^j^» > — » ^n ». -_.—«.—» LT) h4 »\H Pm » >— O * o * U5 a> M Eh H «- t03*O * • * * <*cnpohi-J WW|Tt *«« rornnrr) no \OCN ^*EH «c —Eh •« H'"-** bH**** tH*-* •* >t-i-t - w^jpq^-' r oz*»- CN o * rir-ttj >\r0H II W«— r-CJ* * oo o * hJ*-^**»*»» ^H HS«JEHSQaHQSFHL3 53H w , w * II # en * » CJ fcHXXX:xX1X*r 0(_> EH ^H* H H03QH03«tJ3H«a:03H'«;'T3H •» (T) cr, rr) *rtj II II * ll * # W SCNarPi-i« 3:CtiQ3(i1 3!Q3Cvl JeaiCtl 3: H03* <3 •«• z Z-\ * # HH03 LfJ -o r» o cr» o rn o o r-O ro m in rn <') m n cin ro no no rn U UCJU U UtjUUU

135 *k, t . , « H >» *, » ^,H ^ * '

* * % * X * m * % * • z * — W * U as * *"* H * Z * cu ^^ pq * » — ^^ 33 w • O H CI H CO t Q3 z ^ ^^ cq * o (N _« H cq X — H 1 o u"> H-» H • • S3 '— * * fr \"=S H pq O V CU • - H ^» H H H — >v0 O fc-t • i H cq 3H —^3 JS — — US S » » = Oi 3 H H «»^ -*X z * o Q Q H CO ^"r— H cq «d <: CO Oi » 03 CJ in 03 03 H cq S3»- QZ r* CJ) C5 cq « UJ • H • CM 25 z *l — ** en He* = CO 00 1 Cm o> »M-I S4 ^rq i 1 o * .^, » Z Z LO com Q Q z q o X! MX —"H r» —. if" z z ;j Q > ^-*^> «— (N i CNH^ • OM "**'» »-». » Hcq H wH*—— * . cq Q-l JI:H » cqo Q O —^ £3 W H + r~ _ iCO tq ,z • • • i t— ^_^ > H w *— -5 - «* 1 03X II SXH^-M- -»S H + w • • t CJJ H z » — *C0—»— . OH -J13 —^sW- ,\\vOHCq ^HHZ!0«~|| II —.11 II • II II • II II o H > *"Q3 —^r>xcoo>pM^ UH 3-a3>nZHH —-» • -H HH II H H ^ ^^ u H «*- rrjuj >— »**«" vyomwo 3 , , HHI** >hJ*«Z(_).— ^^^ M — M — •»> P»QMH OHH '— H >^M M # W>-

« . •>«. cq w Q-- oo «ro cq .1 <* %N.Qh cq Oi ai II Q- .\HQr- H II II — y«c*- * H II

>-"# — i. i »#*- * ^-va:s»-•# % t ,^^33>> II || — -. w HHOSCjcq oSQCq -sjotq -^q<«5 0cq"a:rt«33 CU ."<« *«**- >-cq cq^-zz'— — II HQQZQX^^OhiitOOXPMOOJHPMCq* ll -— QHSCUt-tanEHSXCOOHQ^xtJajll II l| HHQjDHHH 03 O « O ^ OS O Q3 W tt, Cfc, bq H H 3 a S3 w H CN «C «i: 03 C5 C5 t*i Zii, ZB4 ZLbi SH# or)

Q3 3S&-I" 3 a,j«Cm- - C53ftiHHHQ

136 .o »

NN

* * » =3 WW^ • * *S QQ4* (*• * W Q O * * a hh)w a » X 3h)H H » a * # 3 PQHW H W w * X W 3H to V) X * S3 33 * H Ha H a* 3 H 25252: H a w* —. tO HOW Oi ^» 03* H —h OHQ < ^ —' ^», H* I — 55HH H W o * H O «CH •* OS t *•*, H oi • aw a 3- — <: x .3- 25 25 H HOI ^~.+ «sia HOW OH • W HH—» W<« w W tH Q3 Q *~ >"*-*- -3W Q 0«! H 25 sepq 25 25 > <3 a SH I XE Ht^<^ O "-a wXi^H * XH W O Q«^W 25 CJ • H H «C^-* -^tt25 33 CJ — t25HC5H 25 pq —» o^ T-»-a „^t- | *-CNCN>t I 23 23 *~. pq »W4 «S «- S3 » a «^ CO o I Of <-|H| \\X *|*-33CN O 3 W . t t t— + HCO I H*-*HXP-»S3W pq pq pq^H O S> S > w w 3- to • =$ 3-H H I o OH ~'H 23S3:3«3:aiaicuwaiai pq a < *^> w-^ S3H tO ••^SHS33t0WOOXHO>t t—^JJHS3 c* O 33 OH HTsjoscooO »oa3Q3• --. Wqw-1 + 2 *«Q i O 03 23 >tt0Q <-Q W(Nh3>U Ol « 3 Ji <- ,M S S • CN SM CN MSaiK Op* (_) M* W» » *-« = • y^ll pq-*- 33r- «»*->*»» 1| qg || P3 xx^XXXXX^oCftHHWWHUlW H II II —. »a — »- C3 hq -'~ »3H II Qj II H-# DDD3D333Sai-lHCQH!HWH>*H 25&H QH EH m»- m«-HW ^*OOl O H*"* lOtOCOtOtOtOtOCOX^COXQQEHCOQt-tQ OMH 25 U U 00 N.03 ^\«3 » II OOCNHr-pqticW- H aWCJoa-eC 1*0 3 3PnW *\OC0 »Nw* H-^t pq=a>i«— CNH * tqH W WH W WBEnas OH53.33Q *" * aH« s*BH'TSH< HO * O03O O03O W ^Q * U3SCH-C5CSW-Q3 * « * * en ui oo u> ^ co

u

137 . « r , » »

* ft » 39 mi ft vO OSS H « .M, ft, ^-^btf «^ ^JJ ft ,-», H ft •a: » CJ *•• • * e-t X *• m -~l ^5 H W « on m ft ft CN CO V ^^ M W «s * fO^O— X a * «tj MM « r~ • t • tf*"( o 03 H # >•» •> u CJ • WVQVOH a EH CiJ * «^ ft* m 3 <-Q CU'Ij ^H ft \ w # w xas ft ft En X ft ft* M ft 03 # * mo X _, Si EH" - X— El * * *H :H» H X '•^ CO -J * •— # - fcH ft n ft • • t CO 13 a * * •OH m 3 ft Q.i, cq o H r— •> ^1Q ^ i—4 m r • 1 X Oi Eh A H WZ! PQ ft t EH 1 1 . CO fcH fcH t • t t H OtCJ H ^ W • t • ^' C3 -J a H -**< k-3 m V •> S3 53EH . • , Eh Cm <5 05 N ft H X «C w H «s m ft * * r~ w «HEH iCO 03 CO X Q >• V ,», t ca «CJX iEh w 05 s: 03 - CO _ H ^, % ftOCJ) iH H^ a «* E-i .-3 ftfcH u w En « i4QH $a H CJ 35 "33 *** XH tti ft x 33 W ,D CM a rt! • • t H na > X H HCJ33 1 o H Cm 03 3 »:=> % 3 43 SQ hH iS OS o — CL| ^», W m X % % W » ftCHCJJ « ^» ^ !H 03 3- T"~ EHixja . 03 uo S cue: _« acEH CO 1 «s CJ a ^* r— a S3. ft H • HQj ai33HCOX r- &q 3 'X, >> ~-«* *>* »* O W ft 1* O OCUhh'COH Q H Cm « 03 EHX „«» Cm Em ^33 XtOCUWH ca «s ^3 a>-* X «aJ H - nt OQ s •j • » *oaaco -u 03O H53 33 03 X > » % a U-l X Q QOiO^a 33 tH cqcii 03 03 w H *«» cnwcj a X» H 00 W wouuw a a EH CO a, ft o H a r-3 ft w POfcH V % » CU* U|« MbH ft -a: 3W tH o z, w ^0 3— ft&H •J _», T— -six X C-H 23 33 a -~s 3 M03 KIM r^ &n HP" fr - « X H t B3H H- ratHM r- au3<: r- -* \o H fts CN 3 &3*-»WoiS * H *-* Ha — * cos % CO u, m ^, ^XHHH o >OSft » o •! -t raj CN H CJ > H :f Q cjcj< M QS * i-q Q3 X OCN Q3CN'-Clia3 o 33 «1 u3 W o # ft » 32 OjX w Cm (N cqro k t »/NW ».'V» • • uq CJ Q C3P3 I— m * •"J ft ""» ft • »*" GO » LxJ=»M—oTvj^O • >^ hH* ft ft 3 UP5 • — M * U-l «• Z^-v-»<-—.X» - X ^J O** EH CN 03 * » % . tJ!^*W s- - ft • to ft^r^coun- hicn"" WOrorOPO H I CNX pq »0 M • • - t— !"«• to*"" — r »£ht- % •TSItiJXX ^ sWHH^HS:*-'-'- H ro«- .-*o r-J a Jl 3-» ^m., OOJcncT-'r^Xi-^X*--no tursjin * fOiHUMHIKNW ~3 en roN *CTi25"-'ai 3 tyo<# r** cqw taw «*- ftM »|| OCuiy », ft\"- scn ft n »—*\a 1 ftX\ S-tMCD^CCiO ftLOQW H •orj , ,f^r*'— 'or^^^Hr-H^-^-^r^MHsauacvi won^f* * >-r\i * »Qj in ^ H H'O^-K-PO* CO co —— eh ^"H "~^H *«* *£h »z: >* -"^ CO Qa— —fHPO^** COHlH a •J--U—t- *"* azwH<«w^aWrt!?w,^vOHWOli ^H =5MW w^: w-» Ctl 03*33 Oln3 CJ w

138 O *..

N * * • * * * • * * o % \—, Z * * • © • - H * * * • _, <; * * * v£ HW O * * * II CJJ> * * M * *3 HU —, ix * * O * - 2*5 S3 o O pqH • • 33 * * Q * "*3 TO oo om 33 . —, h * * o * in oo o«- =rcoo q z co * # an * © in cocoooco v^o CDrs H^Stq * **^5fMO CNrn O°0r-* 2:35 «s:wc/j •« W # t m H oocooooh CO HO t3 ^ < # M * O O HH HOO HQ3 — 23 S3 • w O —.- z —. * #0^ r- CN .—»—TsJ .0— 3 33 35 r/)-» H « * Z * M S3 . rfr~mcs)r-r- .00 S3W O CO 03 HW «a! Q * H * OO *Z O . • . 1 . •*- • H> U3 CO W MO O w * i«S # «SJCN • t-H^-t-t-m ,0 HO ^3 W 3i-I # O * feO in Cq .O 1 . iOH • OiCQ Pq Z X 35-^ HZ tt * • r*. 'J3 H tHHM .OH *— 0* 33 M * H # »0 • 'JHOOUH iO XCJHS3 O < # 33 * > ^ 1 0, . . .a,FH 1 Ht/3 S3 - 13 33 H TCS3 HO # O * W II HOHHHO^H CJP3H W 33 W E| W*a! W # H •* H tin H CU 32 Cu Ot Q* 03 O CU 35u3ftt fn H33 XOH 33 H # W * WH S3 OQOOMDOO^^O QHO SB H Q — M|| LOW T II h-3Hll*3 *H * W * ^0-4D?^' 1.'N'-00 03 •«« z,T3 h HQcq * zo * h # • *^oomm ain • • > • 9 , • : * - U3 H4 l*J«3 33 c4 .r-r-r-»-^-T- t— r- » O I W« * * moOZLDlN lO uj **- ^ % <»w^» 03—.• h—» sow — —» # >•) :>!.«: m • > • • 1 • • . % » - .^53= r*.xx *cn ao en * - o »—.cn * W * -^Lnocc 11 1 ow iKnawwywww i «- (N^-»-in —JTNXtn —AN HO—» 03—P")XvO • * H* ,MHMMHh-3MHMM rn\ CNC0Tt-»-fir>'-CN »rr) 33 r»rsio<<* rT«"Oip»0 # W * W +WHS3S3 tO •••••<• r •»• »\ i-OMhCN 1, »\mCN * »\WlO' IHOW » »\00CihO « z 11 ^;z^:«c^ .hhhhmmhh < % ^ — **-*^r)^ •»• — •**»»• « >-tHrtj » —r^M* » *•* %^-^o •» * H c/jHM -^-t33HaiaiCui3yaiai jjOi > ir > % > ^-H * H" -^-'H^f l"-^ -HZ —»• H*-0*'* -*H* H*- * « S3 52 IS S3—'MH ftiO OOO O O O O w«$ '—< f»q pq rij ^-» pquJ

HS3 Q230HHS3QOHHS3- - Q S30HHH*3 Q S30 * « W W 03 II ^—33' HQ3 *JJ CBHHH03'^HHH0^ * +<< as H M M M U3 <3 OS H * « HinilHO —*<* 03O WOO0333OMJOt-303OX>4WOO'=Ca303OWOQ * # MC0 cq Z UilitH W ix, Cn &-. ttt i^i H hH Oh sew J3ii4O33:lii03O-saii.^r-03(i,O rj3:aeuHa3WO *«•«•««• flrg«QH«HHHHHHHHHHH r*-r*» m cutnco r-r\jcn o o o ^o »• o* CNiN CN CNCNCN r^r^-CN [*• vO CO CN « O* uuuuuuuuu uu

139 v

\N * * * * * ^-^ * * a \ * * H \\\ * * -as V « « * * COO * 23 * 03 * X * WH o * * QEH33 * oo • * *- * WoqCJ * OCNlD * T- * MsnHCl* or- * 1- * - «3H ocov • * U * * * * * * * * * WW HM oooo • * * .-»* * ^<** —s* * —.* * ^^ • 6HS I • • • * * -^XX —>!X -JXX ~*XX ^^ *-*-< rf,»^ 1*""^^ " EhQXHH(J EH * Q * -^OO croo ^•oo CfOO ir> u gtowo 33 W * * lOO •oo lOO •oo # t-t HlJ-tQ U 3 * * Eh • • EH • | H • • EH • • x WhH H a *u * h4oo JOO WOO WOO w 03 hlaq W M * 3 * » • I • • QHW awHO o * w » !*4* * -M* * fct* * Pm* * 1*1 w HtKWWW waco a * H «• —T7\r» s-r»Ln ~-WC0 ^-•nun *^ O «;3Qfcih5 W*:ao H * <: * »v©0 •ooo • ooo iO<- • a OUO w muwen EH * > CTJ* QOO woo MOO «oo w H SQ OHEH a * w Eh* aoo aoo aoo aoo a H HW W* usa« O * w H* «* • •

<< «C . 1 • 1 1 00^- • U H W * tfr*b* o^ * 1 * 1 1 • 1 n • 1 t ^•o WUUEh HCJU«CLicn * CNJ33*0 t (NO o . OOO o • • • o • • i o ^\ 33COXCQ OiOOcqcoo> * lO * OCNC0O • • OC0P0O • • o^inoo>- O'-OOO t-cm o 00 - OJUMO OQQHMm * ^o*uio?o r-(N jo^TLnof^jo r^LncNo*"'-* COCNf-o

t ;»cr»;rr» ^T^THCO 1 i i 1

If-H; • «-^-H; 1 o I 1 I 1 - t • r- m x x «yi x x >P'if r • ..* II tHcaco*-H-)cor ">m V )-—o * OOO OOO II ooo II OOO II o * s# • «-CN • t-rsj • *-CN • «-CN • • t- --: -; t- «- w »\ •iDQO* •• -tH **" * mm* OjW* as*-CNWWi-H tB»-(Nri^H 03»-rsiwwW u3r-csjpqwW J3 o W«J5 sq-*i) * «SOUJ* NOO~BWyi*t&-iOOcaWCq iiiCmOOtXiWWCtituiOO^WilCMfi! , 1 BhJBS HQ350* Oi33Q* ^BimOQW"-3333 Em aQH >-' 3333 t>-« QQH^- 33 33 U-O.C) M-*- ^-WHQ5 HrtJ-'EH* •«• ^ Q-^ a w 3"- Q w u*«$ceo LGWfetO* * tt, a Cm acn 3tt( ac^ HU.3&-, 3B * * * * WH ^H •a-******* 21HO* H *»H «iH o *— o 03 00 o uu

**#»*• ^_, * * CN * * * * s * * * m * X * * «-» * =r # * I™ * * —.# * —»* * —.* * —* * -.* * XX coo 000, oo * Q * n-oo ^00 ^00 3-00 inoo -^ » • • oo 1 * «oo •00 00 •00 00 t • ,^ * tH * EH i t H t 1 H » • EH 1 1 H , . oo T— w * U * ^OO hJOO MOO MOO MOO T™ CJ * O * • • • • • + + LD 33 * Q * o»+ + 01+ + 0+ + OJ+ + OI+ + »— ^^ # * rq cq w tq rq XX o • o # Q * Q3XX 03XX Q3XX «xx zaxx *— •» #* cno * M * Ph* Pn# * tn* •«• un* * P=H* * tn«- 00 o * EH * '-VOO> ^-CTi^- >-,^, in "—tOt- *-r-o ^ CO* MOO aoo QOO QOO aoo oo HW * •« rq H* ZOO zoo ZOO ZOO zoo 1 • Ocj O * hlEH# «C t t *c I • n^o • • • • • ¥ * t- 53* O • • • 1 cn^o • 1 • • • • t 1 • ©«*© oor-ua 7 I 7^O0U a-jLTi *)# tt-T-=J- ,r-r-^- »— 3" T-f-^J ' t* * 1 1 ir-<~3 t»— • t-r-^r cq cq 1 • II II t «T-OS * * W • t II || U • t II II t 1 11 11 pq • • II II t t 11 11

II n* II 11 OO WOI*-£H * OOO 000 II OOO || CJJOO II 000 * t t «— 1 *- fM '-CM ZW 1 M S3* TM • f-CN r-CM • CM • • «:•«• «- '- *- »-'^« II II*- JjUi M«~ •* II OJII II »-a5P1 011 11 C«u5 OJ II II 05 05 OJII 11 aJ« Olll II OJHEH OOUIQcr<# HB*W aHh W Ol6-tH w oihh M OlH b* t'4 "n)F-< E-" »-CNW hJM wrq OO* OrfM* «»-CMPqMM CEJT-CMW^M IKi-(NW^h5 OSr-CMPqMM CcJ'-CMWMM rt» iJ-t rjj CJJC3U3PqrqPnP3«GS || * UOW# PnOOM^WPnP^OO«MPqCi*MMOO«MWP*&-iOCJ5aSPqcq O tc cq W 33 33PmQQHCj-iEhE-i Q * 0*32 0-* ^-SXIi

ao U'JUUU 141 * ^ «

***** * * # * * * * s * * m * * * * * * r- * * o * * r» * * • * * o * * * * • • * Z Z z z Z * v: -w Uj uJ w a w *m. * 33 * 33*-*-^ 33 33 » 33—^-^ , 33^^ <>) * H * H^NKN HCNCN HCNOJ EH

X * *.-*XX ^xtX ~>4X -*xx ,—XX >"^ s **»» • """ r '^'— * * * i " t>^»' t l«'^~ * * 0»- p^r»T— COr-O cnoo OOr- a M * Q * ?oo ^OO ^oo ^•oo • LOOO o CJ * * »oo • OO • oo •oo • OO • 03 * trl * iri • • H . • H • . H • • H i • a w * U * hOO -3oo -JOO kJOO hJOO O * 3 * • • • • • + r- * a * Of* + o+ + OI+ + Oi> + o»+ + u> * * W w W w w o x o * a * U3XX '23 XX J3XX 03XX 33 XX o en * t-q * 53 * &H* * 1*1* * Cjh* * JH* * U*-* * a> co o * * EH * ^-CTiCO *—COLTI '-^dcn ^TNCO >^oocri co T— o * 10* QOO uoo QOO aoo CJOO o HWO *-" * cq Eh* zoo zoo zoo zoo zoo H r-H* • QI • * H «C « < • •

.1 oo li, 1 LOLD • 1 lo t cn^r • 1 • 1 lT)vX3 ^-» _s— * * • 1 1 1 1 + *m • t O i • • o • . • • o • t • • •— oo o • * * r» * ocNcnorsjcsj ocrir~o • ) OP--3-0 f-OOilO(N»- r*coo>o r-t- cocnr»oo T~^" o>r*»^o r~ »- o »~ - , • • -7;\|^U) 3-^O'JJvi) T— 3-cocNr* OTM^-COCri 3 1 OOCN'~t-t * * 1 1 1 1 coo> 1 1 3 1 o T~. »r-T-^r tr-r-3" • r-T-O- *— •? ;*• ulUIT— =r* 1 ir-r-ZT=t • J~> 1 H * 1

• * • • Cx3 • I II II pq • • Pc3 . . II • • ft II II II II II a t W * a II II WOO || Q * • •* ooo II uoa II ooo ii OOO 11 II OOO II w ** 53 W * S3* • r-(N • T-CN • *-CN • -3 w iiii5J3UWO(H *ffl04#l^e)U«WW&(i^OUu5WMI^U(C!)U*WW^^UU«KWWfti*iUUQ5WW&iQ5 MP"H*!33Qn3HO*a.33Cl* ^.CSfwQQHXCiiliiQQH^JJIfeQQH^^BSrHfeQQH^EB&HQQHfe u5~-— QEh* * ^* 0>-- Q^< Q^* Q >— Q~— ZEtiU^ ZO* * P4 Z»jh Z&H ZlAi SSPm ZU-i WmH WO*****H ^H WH WH «H WH o CN OCJOUU

142

* * t^O*- 00t-O cr>oo ooo o o w * Q * ?oo *oo ?oo -*oo JIOO o O O * * iQO tOO tOO »oo »oo O O *"* o O X O * O. *Q5XX OJXX MXX -*iXX 3JXX o X # W *w *w*## W** (*•* * ^*i* * W## a> * , > <7> « H * -^«" it— O tOO iQr f— no n") ao c\j *> io*«oo «oo uoa uoo uao yao WO "** * W H#300 ZOO ZOO 3SOO ZOO HWO 33 . * _q h*

4» t coco t t—cri • .o • ^or« i ^, I r»w * I 1 + oco + + + + + + o> + i .^^ a> t sOCC * r*-S3*0 • t i O tCOP*» O tttO t • • O • t t » • r- oCN

* t t*3-^iNtn i ^rrsa>vx)*-T- ^-crMnr* i ^tldoco i ^ronocn i oco*-w i i i t oorr-

| -» r-cj* t— t-^- ,<— t— .^-t-^- tr-r-^ Lf)r- .f-5 t | W | | ^ unai«— • i t , , , , » W * * W i || || W || || W || || Wit II II W • || || tit OOIIQ * ii-»OOOII OOO II OOO II OOO II OOO || WOO II W # S* • *-CN i *~CN t i— (N i '"CN t »~CN 55U3

• || U3 || «-* »# Hh* w OHH W *H W o^H W aHH W OlHtH CHOI H WW^W CD* 0|.-}# QSr-(NWhq^ PSr-tNWn)^ 03«-CNWWH" «^"CN WWH 03 «- CN W h-1 H WWWh-5 Oh O WOW * UOW# WOO«WWWW0003WWWWOOtaWWWWOO«WWWWOOa3 WWWU305OW w , v CuBQBHO* OiBQ* -SBlt(OqH S33^QQHYl!K[HClQH -XBli(QQH i:EfeQQNfcl U(a:a — QH* # *-* Q*- Q>* Q"- Q >- Q^-^— W ZO# *W 3Uh 25W ZAi 25W ZWW H WO*****H ^H WH WH Wh «HH O

uuuuu

143 »•,

***** * * * * * * # * * s * * ^ * * * * * * o> * * 00 * * o * * 1 * * o * * * •* M * Z 3 Z 3 z * « * W W w W w * a; *:B — CC.^— W — 33^-.^-. X — ^_^ * EH * EHCNCN HCNCM HCNrsj HCNrsj HfNCN CN * Q * »• # * * * * « * * * * * * —* * —* * —* * —* * —* * * * * —X:X —XX —XX —XX —XX X x* ** 1*^"""* >^**-' >«* * * I**—""' t^-*"*^ • —> t » * w * * H * —TNCM ^"CMCN >-TsJ»- ^-*-CN —rsjc^ CO o> *• *"" O * «< * tnno lOr t*— •t-m • roo o o CN * P» to* «oo UOO UOO «oo WOO ozo CN *•* * W Eh* ZOO zoo zoo zoo zoo HWO *-* * -J M*

* «=>* — CM ^»» _» r^o —. Ot- A t-m

1 t C0v0 Cm * 1 * t+ (N^- t 1 + (NP* I* + r* o t+ 1 >ooo 1 1 ^^^»i tncn <— Q3 * T— 53*0 • t t O t r» o • • t O ttt o • t t t t S0O3 * * LO « O^tNO ^-co OCNC0O t t ornr*»o(Nro Of-CTiOrOCM OCTlCTlOCNCN OOCTi t* ,— T— OS * f~ i 3* unfncno ^t~ jacn^o^ocN r*=f^oo r—r- oo^ooot— cr>oaoo ~ oocorsjo; r-T— ft * t t* ^rrr-un i 1 =r || || J-.-S OJ|| II i- 33« Ol II II »-a3 03 OH II 03 03 t t II W || *- CTi* HH*W OIEH H W OIEhEh W OIHEh W OlHH W QE-itH oio» H cr> W 00* Oi_»* asr-cNWWW OS'-^NWWW Q3«-(NWi-5^ OJi-C\|UWh1 Q3*-CNWWW wtutquw ao OW * ^OW#feUO«WW^I^C50«WW^I^OC3 03WWI^taC5Ua^H^^UUQ3WM^^*UWC5[ii rHO*04SQ* ^a3B^QQH %^X^QQH^El!li(QQH ,>-tCa3li(QCIH >-^i:^ulQH* r^a:QI!HO ^» w Q*- - w ''**'' QH# * Q 1 Q^ 1 W l W WtH

ZO# * Cn 3(M ZCfc, zw : 3W ZWW zo WO* * * * * H *)H WH i WH WH i WhH wu o -J 00 uuuuu

144 » " . *,

* * * * * * * * * * * * * * * * * * 23 * * S3 * « * * t£ * * * * * * * ^ * * rn * r- * * * «- * * «- * • * * • * O * •> * * * * t« •* Z Z z Z z * »• * jS * W W M W w •«• ^: * 33 *- X—w-» a:—*-. ,t; ,«..-«, X^^^. fU^»— — * 33 * £H * HtNCN HCNSX -JXM -JXX ^*XX ^XX X * •**—* "*^— )'»»' '"~-"""- — * * i " • • l"^**' * * «sj * O* * o* * 0* * O* * 0* * * * -t, * Eh * o«-cn OCTir- 0<— CO oaDt^- or^co •X) ^-. * EH * «! * vtft-O r*o*- OOr-O r- -^^ >-'^in "^-IDsO ^-\oo CO * * H * < * »OCN •cNrn imo •Or .T—O O * to* «oo «oo woo WOO «oo * W H* ZOO 2:00 zoo zoo zoo Hcqo "*•* ^ *J * ^ M# Old • f + A IPm * r^s* o • • • O . r-cN O • • • t • • O • • • • • rsjiu * -3- T , * r^ -^ooMnocNCN OlO^-O • • ©'"COOlNfN oco>oo;Nfn O^QO' l' 1 OOO t# * ^J- T- »™ *~ »— •* * OO* 1/1 ^T^O r— ^P*C0O.cocno«— COOX300 a\oooo i" > OOQfOflJ O » t •* a'orqui t— r— 3-' •« t 1 1 ^rrnin ,d 1 .-TOXNCTi OC31N' ^uicNr* 1 1 ^cnao 1 1 1 ™t-" «-3-* • • unu^tr- «- # KNt-? ir"-^ 1 1 i'-t-^t ^-o-^ O^-cT 1 W *

. . • II • t • , • • < * * w II II « t II M • 1 II II U II II W II II W * ..* * OOO II 000 II CJDOO II 000 II CJOO 11 CtlOO II W * * S3* . i-CN • i-CN • «-CN • <— CN • «-CN ^U3 » t.-^-X- r- »- »-•« * OH1 || WttJ 311 II T- U3 0S Oill II «-03Q3 Oil II r- ^Xt 311 II acta • • II J3 || it * HH* W 3tHH W OHH W OlEHH ^ GH&HE-H W CUHH 33 H CTi* bH * CM*-?-* Q3»-(NSq^i-q CSJr-CNW^H P3r-c^W^^ US'-CNWH-q^ CC-CslWWH tKuQUnltq CO* Oi *ccow*i:i-iOOtt;r:q&3, i^i^cjo«&qpgfe(^e)oa5cqwfci^cjcju3WWMHUHCi5 0c«^w *qo * OiXQ* ^B'JtKQQH'-'BIfeQQH^^BS^QClH'-Slt^QQH^-XKiiqQH'ii luajQEHO* OjK -* =3^- 1 Q^^ Q^- 1 w * * Q 1 J^— C3IH* cm * * ZtM 3U4 ! ZCm zcm ZSm \M ZQ* «• «• * * * * H WH i MH «JH 1 •^H i ^M H CM rj -M- «. O IT) UO uuuuu U'J'J

145 . ' . » » » , .

* * •« * # tt * •» # * * * # -* * * * * a * * * »3 •«• * •* •* * * •> * # r*. # •» * T— •* •« * »— # * * • # * * o i> * * jfr * z z Z z z * • • * z * w w K) w w * x: * CiJ * 33,—.—, 33.^—. 33—»— 33—— 33_»— ^« * -r» * 33 * H^tN E-^fNcsi HCNCN Ho * o«-o r-oo TQOO o>oo OOt- r- *m. «• < -:<• >c * ^oo ^•oo ^oo =roo LOOO O w t>Q * -r * lOO •oo •oo •oo • OO O o * * • rr; « H • • EH • . H • , H • • H • • • * H * H * -lOO ^OO qOO hlOO hJ0 O ^^ * u * hJ «• >> l • • • • O # a • * o»+ + QJ + + 31+ + o»+ + Oi+ + + T— •* :3 -> Oi # w W M pq w. o * R- W # «XX *XX B5XX caxx Q3XX O X o * Q «• * # Cn* # £j# * CM* * en* * >'*#• * CTl »• ^ « W * EM * *-*r>r» *-r-^o >-^oro ^r^m '•I'li^ 00 (^ * # H * "-* * iCT- •«-o •o»- n-f- • ^•i— ^" o * < •* • :/}* «oo qoo aoo uoo UJOO OZO CN # > UJ* Q FH* ZOO zoo ZOO zoo zoo HtlO ^^ « cq H* z H* «J • t "4 t t << • • 1 crtr» 1 «-lii 1 * t 1 + i r»o • 1 uno> • 1 + t+ 1 r*in —^^ 1 * • i^ Tl* O « t • o «ctmj") o • • • o • • • o • • • • • UDK * S-* o r •* o^^o'Nn o»"ino • • OLDCNOCNO OfNoOOOCO oaocrio' l • * * lO »o o* itxnooo T«"r~ '3oor»oTs rx-r-ooo T—r- C0C0C3O ^«~ CTiO^O rm *~ 003"CN* * <^o* lD T- 3" • * 1 TCTNn")UD<— 1 3-C3 43Cn -t-t 1 1* ^tnuvn 1 1 1 1 * 1 ^a'Oco ^"M^-r- 1 OOvC"

• Ot-^- | it-T-cr ,r-r-cj- IDITH- .-) 03-* • vO* »»-o=r | i l*-*-^" * t • •J • ta # w • II II M . • II II w • • II II W • II II . II II • • • w # * • .•» •# yoo l| C500 II UOO II CJJOO || OOO II woio ii a * o s* • r-cg • «-(N • t— cn • T-CSJ • ^-rsj Zli) * s* >

i! *- T- t- *- »-* • • i «a* on crtoa Olll || T-QJflS OJ II II *« Olll || *W 3111 II 05* I • II * II -4* OI * qj *> e«4 ^ h W OlHH W OlHH W OlHH W OlHH OIOI H en-* HH* H* Q5t-(NW_j,_} air-cNW^i~J *t~cn Wh-JH Ccj»-CNW-3.-4 «»-(MW^hI i*JWW_}W ao* _ - • * W#U*OCJ*iacqfc,feOO««WI^>*40C3*WWIiilJ*00«tawi^CMOO*ia^ *WOW*fe,

-* ** Q'— Q w O w Q^-* Q^—— QH* * ** * Pu Zfe ZCv, ZfM Zfe ZfuCn ZQ» * frl * * H W M WJM WH WH WhH W O ***** H o o

oo oo

146 » . ' »

*

as O H Z Z Z Z CJ B3 W w W fe

. . 33 — ^-» -V 33 . 3 33—. ^— -*' -^--' i^^w »'-rf«»' l^-^-w • >, "- 33 cq » * O* * o* * o* # o* * * O 33 T-^O O'^OC* OTiO OOCn OCnCT* ^^ H e-t «-o r*»oo 330«- CTt»-0 OOO O _» WZ oo *oo ^oo ^l-OO moo O tq 3Q — oo • oo •oo • oo •oo o a rs ,-s t t H • • (H • • H • • H • . • 33 QEH r~» oo qoo QOo h^OO QOO o ** z ^o • • I • O W-^ > <— + + OI + + o+ * 0+ CM+ + + s^. • C) w M w w C3 wn o \ XX osxx J3XX Q3XX Q3XX O X O can • «—. * # Cfct* * Cu* * Cn*# 0*# * CT> -»• Q UrO EH (N CNlT) ^-toco ^*n(N ^*CN^f ^rco CO CO * z • q m rsino • ro*- •<-o iOIn •r»o o O HO • EH OO QOO QOO QOO QOO OSSO CN > Q «Q OO ZOO zoo ZOO zoo HWO -— .55 EH —TNpq • • o ^^ —. m«- ^^ T— ,«, ^-m t-OQ ZCN + + + r*t>» 1 + + OtT) ,+ + r*«- «+ + «-lT> • + + LDO ^^-.+ r»tn \ — «5 • • t o • r»r» o • • • o • • • O • • • • • COM —>H • • 33«- f-ontN 0«-

OOC3QQU*UHOO«QWHC^OO«WQWWC2)0 3aWWWI*iOO i --asQUH^QOH BXI^QQH >— 1 — Q QH II H^" a^» zu. zpm Zfci 3lH ZfttClH ZO WCn ZtK

1 WH 1 *H-H «H AlH WHH WCJ3QQH ^H o* a># CO* u

147 ' * » .

WW*-. ***** — * * m * * co

* * 1 Z

* * 1 O

* * 1 H

* * 1 H * «»J * 1

* * 1 U

* * 1 H

* * 1 *i * * 1 H

* * 1 u * * 1 <*1 * * 1 ^ * * co * *

* a. * 1 S3

* * 1 O Z * =3 * 1 ^ H W * o * 1 » CO -? -J O u * * 1 I CJ * tn o * w * 1 1 •—»" Hj 25 J2J „^ * O * 1 1 EH • * r* * OS * II < z 3 W ^ Q o (N * Oi * |l u w w X 33 *«• CN * 1 CO c-i Z * | M 33 H ^•tf «e«S * 1 H 23^ * 1 O H .— 1 CN « * * o » 1 OXOEh- H- H^- V t-4- - «*! 1 • t II tuO o s CT> + ^-N* * cnr-cj>X | OM*»'J%(_J -}

*- »r- | *«- » , II W II HOWO «- W »\* * || II • II C5 II II 03 II II ""** w CJ -M Q jDO J3 H r-^'h^* *r»^r^ i r<»^T»:H H 25 Z r— T— tCJ)H «-V-03t- 3 ""-'HCJ >—w ***** ^H^EH 1 ^-tH^—«C<- — CO w CO Q^- Q Q H a M as hh" M >< X >< X H « H 05 | H-=1H Q co Q— CO Q SSPM ZCJOUO o cqo^ccO^rnpO^oocBOaaO* cco~£u- H-) Zb H" ZCn H-J asb i_q 25 r WH WKUSO 3tfc4U 3 Cx^r-^•t— 3 fit LB Cn »3 ,-M 3 H uq WH w mn w WH -^ W -^ Uf" ft *tf ™T rJ T «* <~ tn QT- o ^ IN f^l en OT C7> o^

UCJC->

148 ' »

m ;3}QQCOCOCO 03 CQ 33 ojsfl-alWrtW % Q Q H aaosajwpgw « % • «\ 32:23030303 — CN co • tm ouu t « w % « *~ *— HQ3 - - - aJU4M-l 3 J3 CN i-i H3W % % *QQQ o CM f H * ,— • • H> CNCNCN M h -O 23 * r- r* •H H — Cm co Cm Cm CNCm" r*»(*»r*» <• » % *»! % w k3 CmCmCmCNcNCN « •• » EH cqw ik •» « i . • —« *$ &HW O CmCmIM 33 CO CJ b-l 03W o «C «. * % 23 Cm" .. r/) EH - - - X « _ > CQ XX- ^^.S-l !•<••> It » CJ 03 — — » T-T- % unasw .^w .^ » 3 o 3 » •4 » CNQ3 * »CN n^Hi-H" «M W CN W H «q CN 3^- r-tqtNCN • 4 O'lUU^U • 3 w M • 3 • «aJH • >0 »OJ3&J33«3r-OI H 00 «LD »E-ioo acu- . -u«j:H^<:ct!»-i«< *» w as Cm EH Cm ta h Cm Cm Cm « OH CSEh » 03—» W o "• 3 » 323 » » % • • CN^N » OSWHWS>W trH (H00 «- XXX HtQCOHEHCOHEH co rt} L-l3WH3WH CO Cm S Eh 53 Eh co *H » % » 03 ^^CJ^'aSCJ'* S^HH H H3 S3WOnQ3M^^ »CJ)H>h5Hqj ,_?» i»r-i)^i«a!|H<» ----- nSEHCM'SWtS]- - t>3tSl- x;* idfjjwroo < «mgcui> ,-h •. x » % » »*• 'o- > «: »^-^«: \H O > C* '-CTt N. (7»»- T>»-QCr>N.COCr»'J^COCT\ S(N C3><— HO> Crtcn ujen »\H3W %N *\ »\ ».N. * —' N r*- -*"*, ,» r*» "~'^iiq^>-ro p*^^f=cr^.'>-"j3 >-tH _^ H W >^EH ^-EH ^H ^»EH ^-EH 03 ^*h 03 "—EH Cm > —EH 03 ^H *3 Cm'-^HS^- r P0<- - - rxq^w^ tri«afq<: W^OW-aJOW-aJ *< a <1 *<} x3 rti: . r^W -aJCtlCiq rij^c- . pqrtj- &q EH3S fc«,*EH:CEHS3 E-trCE-iZ!03EH23CqEHSW(HS3- EnHSQi^r: » »EH SEHEH 23 EH eh s3 » »ehs3 %eh HQSXXXMQ3H03 H 03 H W3 O H 03 Q H f^l Q M 03 \ h3 H JS W H M X O H HiHH «H hqsxxh^sxh > ,,, 03 O in tn lo i s; q lis o 030030 CM03O ^C«O" *a3O U3Q3OCO03QLnr-03 003 03 O03 O3 0<-nino3 0in« 3 Cm «" "^ »— -* Tm ^s Cm 3Pi_,rBfM- SCM- 3ECM- StM" QSEPm- 3CM»~"MaB CmK jS Cms 3|j,t-t-teCm'-^ «»V»^4 4k*iiFH&**H& o> (J> CTi en en en en en en en en en

149 . »

XNW-* mssm m • w PQ 03 03 03 D3 03 03 03 34 W O303 03 03O3 &3 <=3 Q .3 Q Q Q Q Q Q QQQQQ z

w bH CO X CO \ m CO CO CO 03 w o 03 o -J H U U H H «aj N 3 Cn W 03 H a. a. CO -3 Z -1 M CO 03 o «aq Qj O «a3 * J-3 -4 U H hJOO O Cn 15 H H «C03M u H S3 -1 cu, zcoco O S3 at ik CJW3CI303 z H H03 QSZZ H h«: -3 03 VJBXUH M CO CO a, COO CJ HH CD a CO CO a 3 z o _ ._ CO J3 o o O cos o o b3 W H 03 coz as cj 03 o I WH H" 03 EH 53 CO S3 HHWhl H" OX SB <:H CO Z W OQ 03 03 u © ^» o z HO HtH -J EH w (JZWCJQ h-5-a: CO I 00 H CO H co: «ae-i co_q W >M«a3 u CN ft CJ X 03 U3 aauicoMttt t-t— 03O0"> U CTi CJ *>:*-. <:•-^ —» co^-. tn— H ^_» WC3U ur- en tuo z<*- e-tcN oo o=r 5j- z>atW53 r*-»CN» CNr- »\ WCN tHor^^-cci CN iiioo Zfn-» OSro JOO Oiro CO i- kflW^tHUH ^tHU* zcn\ w< z

\Z «. \W ttx}i«t!fM W-3SU* Eh »\H »\H »\;H »\«3S »\QCJ WtO Km H m X>1 , rr1 «3i EhSH z t^-*-r»r^r^ •ens HU^ EH-^SmHOSQ HQ3Q "-tHOS^fcH ^^t-tSOStMHCO <- W -} uo zajocnosocnu") 04 Ou") 03 OlO cqOLD W Q^ ^OLOuoLnLnun Q3003Q3 03tM &*!-{£ «-U3 3 Pbt t- 3 Cn r- 3 Cm t- 3 Ctt «- 3t CM t— T- r- r- »-• 3Ct,333M f n >n td r **^ - r\ <#» Eft v* mm 03 00 O r- r\| or) ^ O CN cn in CN CN 00 00 or) oo on 00 en cn en en en en cn cr» en en CT> cn

U (J

150 . < . . »

\ - m \ • \ oo * 03 V. *C<5 O a • CQP3.CQ * ••« * QQQ <-« N % - =r * » « CN «» i * • - » *m, *)«*•»« O • (MO # % » k 03 CN * # » 00 »r— * (N• 1 £2 • • 04 * » * H • 03 t03 • II o * * H \ «• H • O »C0 t « * z » «• CO t In iH t (JJ (H * 03 o •» = • 03 »0 • »*— * OJ 03 V 03 • 03 «Z 1 hH 3 * kJ * 03 N a ru * i CJ— 03 # ra * 3 w 33 • hS. H >• 030 53 |03U3 OlT- » O » V H H CO Q3 z 03 ZCO co>- <: •» S # 03 \ H H H03 u HOZH 03 * * 35 m hJ, 03 hJ 0&3 u >»H-<3iO *A< H » oq * En o H a. H z % C0&H33Z «C33 05 ^K # a * V 03 k 03 \H o •3JCJ S3CJ < * * H * 03 N "* 53 < WH wco z^cj ««— LH04U3» - * CO * OS h-1 * ^«. «03r- H H HH "n— 1 EH ZCOQ3 II II * * << H N \ *-H —CTi\# 1 EfcH Z— ^» cr»t-t&H * * u W m •»• « 5B »\S\ 03 T- k\* »-* 3 CJ w Hr«.0- O =3—£T»hcti *coco •» « 3 H r-o COZ W^IOZNO 03 03 Bfl * rj) Z W H k*™ » 03 k\ LOO k k * * H 33 M >t03 HSX03CQHJ tEnS* HHQ3 EH pqr»^r* «3-» s-^Q «OCNr^ * *EH o •» «-* COCJ HOSCOUWUt EHHJ3* cOS3C^ Z ^--eH — CJ'-VIQ* r- n_»<^» * * a 03 ^-fcH 25 • Q3 03O» 03- • 0* 03 03 0- » » • OO^H03-aJ03 pq-sj, ^*^ r» O en 32 O »— CN r~ CN a> EH r- U^ U> C3> W^ cr»

fj CJ CJUCJUUCJ uuu

151 .» » X» o

X

w . » H w « r- H 55 4m^ K< fct H CN O O CO H 03 55 CU H 03 r"1 % CJ W % X 3 — W CU r~ H r- CQ II «C «- \ 03 H N 03 "— m H < » «*^ 0m* OS Q I O Si ^O W 03 H u H • H at a. CN X X>* CN Q r" W % » 5553 << m 03 w « — X\ H * * r» 2 h 33 < ii X X Qj *- to Q3 H XX H •~*r CO ""< Qa 03 —»* 55 % *»-* W Q H W HX + + H ^>» 355.«JUJW XX H CN r- Ui «. \N H x— -*"*i-(SOOO '-•a; » s » » H 03 XXT-XSXZZt- II II H O-* — w '- w w X MQ3 COOO CUQ-« «!«< >i «i(i «r II CQ ur^ H h

* ** ii xxr- | CN i^w usqq ^»asx n ^^«j-i h Qw "-'HX N HEH X 53HH-J« ZX>4 || * * MMH II II QOQO w *-»*-*— > 353 % «: * %oau3^ Hi u — ii -^-nr> o E-tkawKQ"" »*-««- H —, HE^X. »<«- EH II — • iHIIQa^^J^^ i=Cr-3HU1 E-l W03 U") aO« XOi w XC2J <— T-r-t-oO J3 u3 H H 03XI-3JX » » , O 550| O *Q »UJX • ,W"«^^- OM4aO' 'O w WCJ »—— =3" t-l H« r- ajl-l- || II sO>«;>«X(_j:*:a2C «™ OCTi XQ3 I t-«^^CJ(-l«UJ« H O Ui HW "^ N >—Oi *-»—^-» H H 53 US 03 03 03 53—^C—.O'- r-^ 1333 i£ r-iT) - [>qr-r-[vq i>-a)33:3SXXO HU~> •Or-x *^* »55 «*— « OH # * ^(N-.-"^-^ »^j>HWXXX!M'a!3 H ZU »h- •« 55 55 u3 05 55 » XWXCNH" M— 03 II H 1

H CQ55 O WW«qJJ5 » II —U< t^ 1 l«- N Mca» H 3Q HuCHHHO* II II II HXH ,— 3 to towuucqto*-' «fc-i ono ii — o b 55C?<:«j: ww o&h HW»a:W--»>x i— O LO r" 03 COOi WW^3u3«5HHOXzunH LHZJHHS O II II II — Q cq H"33 3fH^«:H^H2<|H tHH«HM>ii- II H«— 55 =3 U03 Mass fl «SJ Q5 OS S S3 O WCOaiXO II r-O^'TO^'*' *— WC0HOQMOUQU3XXXQ CO 3 Cn 3 0-. T1 ^XXQ^u: iO O tD O lT> O O O O -O vO r» [^ CO o> o in «- U UUUCJ uu

152 w Z Z O H H ^ X

< 33 ,33 > ^ 63 «C OS 63-0-1 lS«33 PS H —« ^ w w 63 t/3 * QZC3 Q Mi < 03S ^s ^ a 63 33 HHO O ID H EH U Q363CJ O O -3 H r- 63 63h3< Q. O II H W II UW z E-t H U «C33Z 63 * it Z CD i-3tQM (J O ^» _» ^rtJZ Oj co O Mm &3HH 63^ <3 **• O O CO CJ-^ 3EW —» O S >-' » Oi Q 0^*- S3 (H l"3 »- <» r- C0 W ZOO "* 33 II fri 33 03 <0Z Q X. O CO H OEH^-* HH M lO H Q * «S «*333 COCO"^ b-H H*- H —» a, a* sco ^ 233.x: as h-|* f- CJ »^» H O O U3» CslUS^HU • » O C9 O «-»*- '— CN H «i O*-. » 0>-i CO *-' ow^ r- un t-sjj x—. o rn co zr» w 6j* O CO X O w *»5 63uS"-C CQ * -» O a O CN Q*- K^ H H <5 H^S "" ft|rt!U OT- r-1 «S L-t » OS «• COO O X <~-> CN b-i O EhX*-- .-3 O am Q«- HO «< >-3 OS33»- H 63i-3< Cj + • o %uioo H fcri W *• u wz x r- O 3E O 63 * *-»^0 —»«J O ~~S~ «fl Z Z — CO HQ23 « *-«- Z ^ O O i O % •-»<-. UNO HO«al- 3Hj5 OS -~*- «-» i t«- • o r*» oco cox _ *-«-*< in h* N usro *«-» 63 oco^3 os N)»— |23 + rH ^+OttO • CN O CNi-OCNCO (S3 i || son fc-t—JH OiCOX* Z QSZeH <5 »*" • Q-^w O (J» <-» "~ Oi —. CN h&Jcts «•- iOOiH'* r~ "»\a3C0 03 » H flW , HuSOXa i Ol|r-||<-63 inmCNr-r^.^-TNI>« -*«-cHcn63 ^CNr>- -»*6303O 63r^^T--W H OS . Ct3 . • I -^^H OS^-HOU h3-* — I +*-M + O .OJ3 ^^t-(>63X X"*-'H Z 3 COHQ 33 Q»- > .XX6^ II *UOUO'-'-^nQOW r r r i 6h6^ i| a06< || 6n -O*-*OCM 3tM 3O ^33OO0SO'-l or- cnpo cj-m ^ r»cocn oo^~ cnpo po r- <— ;>4CNCNCN CNCNCN CNCNCN POni^ l'| rn

UU CJ U CJ U CJ U CJ

15 3 ^ » »

EH to Hcs fct w 33 tHP-t «« toosoi Xtti<3l<3 o WWQ CO *— 03 33 03 o WHO H Q W J33 O OHJ5 O w WtOQ -^03 CQcHhJ.ZU XQ-«W QMS + 05 HS3 H

«JJWW «-» O ^ .-J Hfc- i Ht-t w- ^* Q3b-4^3 *H03_»<:-* -ja—. t-i ^J* < W cq T- i^ 23 *«* cq «3o^ O lEHH II ^ H II (X T3 h MSJ -'.-» ""— k k W EH « V-JZ + .+ W i m EH

O.Q3 <-*. » 03 . 1 as 1 THO* «n *-EH — < IN — "»* «— ««•. f"TU( ZU-IX »-iC O II *U II II »*l z » z O *"* *- OPQffl » CJ %H«< H<«—~— us< iefli-3 T— >i <: Z 03 WrthlZi2W ,->^H3 03 WWf-3 :S|*-<*;Q oq II II II S3H«« -a u UH bHQ 03 S3H<«3 l| t-KJ-aJZHQ S3H

i cjuuu u U CJ U 1 J cj u 154 HEH > H fcH \ « w Q w 03 as 3 X X>" W \ *} 33 HM co XX W H US* z « o X o z o w QQin X H 03 03O EH O o H • >H WW X>t »Z U|U3 N uuo <-*»: •• W 33 &H ZZ»- II II H II *r- MfcH COQ 0303 || W HZ >tXr- | CO HH X srfs a w l -^nss 3=05 w a:&-(« OO U3P3 M H EH t^PQ || || II II O ZW o *Q *X H MM KH» X I II 11 ^OPxJXPicjrccaac; .-, aMsshHrn tHtH N'- r- »>—ww ww>-'N-*w<- t—ID COT—

l w«uehhi t<— 1A1 Z || (m- H PQ o WW*alo3 £H W + m-H WTH + = W M03 HHHO II WH""* QH Z => COW cow UCJpqcO tii i II W Z || 03 O H

lO •. " X X in C-t k H r— > uq % <: H •3 ^ o H -1 ^N o CJ >-A » as oj *— X PM w % sr w ttl 03

II a M ,_^ Q «a! » o ^^ pq ms 33 — • un H • U H CN O o o H CO CN a W CN k Q « fO w % T— 3 cq T" S3 2 X O II EH • II X 00 EH « >— A H H *•* bj • S3 *^ a k ^o O ««, ^-» ^» H _ D CD H LO cq ^3 — fN X *-» O l3 'J *" cum ki 3) «-*» o « < Q >^ r— o \ ,_» CT» «• a, 33 CO*— *™ -« •-5 ^~ » f" EH **" cow » ^O X II b H CU«3J CN • X • O w H O cH h WSJ II iN lO EH Q -1 CKCJ M T— H«- H .-«. Oi < S3 » % w M* r- a •>«-» H o w *-• o-. ,^ % • X Q u> o ^^T— CN H • • -^ ur- X O—v««J r» IT) T-* -«= ^ O en CO H «^>^ CN ^-tHCO Oh^\ II — CN o Tin o H O w QO^ CNX^s u M rn '-O ••< m o CO X c-l ,^P5 am # — o 53 o CN Q«- 33 LO Eh H >X «aji- * 0"-3t- *1 -a: H % OS •« COO X 3H Q'- O QS33-i •X EHX*-- l-J o 35 LO H O < ~i K)(J »*-*-—o*i ^ Q _> CQ O ^ >;<=« M » CJCJ -%sO «-.<; o ^je- «<\z

«. r— a, HlO Of\ X »z -O* ^r» 2 ,«», a o , o _ __ CJ- O r- »*"" wr*»- CO w >* 3 - *•* • w CS) (X) ) t CN cu » 3G * II -1 I | + tH ^-.O-K-C a (NJr-OCNCO OJ • || 303- b-tC/IH CN »**- t— r» ^.^ CN »»- r-» f* 1 l<- HCQ «Q— o *jjjcn iOOIH< \.BEHC3 H*— U- a eq—%.^— «f— II EHW^XCQ • O || r- II r-•w m'_nrsi «— r»TNr»^-»-•bHrnW ^(NOM^HO -s i X bH *H O^O II ^o >-*H n u H-)^ -» 1 1 + **^H ^-fcH+ (J lOCQ ^-tH>ZT3 - i"3 *- -»«s: r" 1 .O It- r- <"3 «s «< II ) m HW-aJW, O txxpk, II o* njouc o T w o w .OT- OW Or-CNon 3"LOsO r*00CT> OO'— CN^

156 » *

w 55 H J W05 « <-< 33 U O 00

I! V

25 ^ rs Oi t- H .-VJ OM fcH *-a« O—. t^ N. ra

c/)--» «" in hoi Q3 03 • O^J w # h-3«C \ O ON H <$:c h — H a EU SO* * WN Oi * ^ =5 Q3 » «H ax ti\ r- L0 03=1- 0^» was H'-O I 55P- fc-tO 0> "-^302'-' Otn + <-=3 *

HQ3 s * O X ocq co>p*- S3 * w -=»i— ds h o *+h —* a «r* « tjm \ 0333'- C0LT> —. OH St* X 23=3 • WtO ^ "** au r\j W!jHS • "-" •«- QSrO % W • • || || 03 W * *Oi CN kCSr-S O, «" OirnX - H(N\ O0O-3- II W* H™H X + r-W O X %»" 25 Xf-} • • i tX X r-53 H 55 XQ3 X\ ||H||tQW;jq Wr»»* 03 0>*-E-<# X + S3 OS *3 ^-tN O 03 »OI H-uDO'r) 3 > O "O • || S3 55 25 J3 —H25 H WXH W OX II 3WDCM 25 H WXC/J X • || ||

II t || • || =5 03 tHW-3505 HO OHCOH^OH II 03 HO O'-O M H23=> U K»^*j: X XII S3 ZD U W>-3«S II 1-HWDHU3 hho3Hq 55 h<:h ch^*-.'-* sw ii 11 chhq 55 h<r3Q (jWo3W o or) O CTi O UU U O O O u o

157 LIST OF REFERENCES

1. Freeman, R. L. , Tel ecommuni cat i ons Transmi ssi on

Handbook , John Wiley & Sons, Inc., 1981.

2. Osterholz, J. L. and Mensch, J. R. , System Design

Considerations -for Digital Troposcatter Transmission , paper presented at the Defense Communications Engineering Center, Reston, Virginia.

3. Monsen , P. , Analog and Digital Transmission Performance -For Models Troposcatter Links , paper presented at SIGNATRON, Inc., Lexington, Ma.

4. Zawislan, F., GHz Digital Troposcatter Terminal , paper presented at the Rome Air Development Center, New Jersey.

5. Weston, J.D. , Predicting the Propagation Effects c-f Elevated Tropospheric Ducts: An Investigation of

One Tactically Useful Model , M.S. Thesis, Naval Postgraduate School, Monterey, California 93941, March 1983.

6. Electromagnetic Compatibility Analysis Center

Technical Report ESD-TR-B1- 102 , A Model to Calculate EM Fields in Tropospheric Duct Environments at

Frequencies Through SHF , by S. Marcus and W. D. Stuart, September 1981.

7. Electromagnetic Compatibility Analysis Center Technical Note, Instructions for the Users of "DUCT" - A Computer Program for Calculating Fields in

ropospheric Duct Environments , by S. Marcus, December 19S4.

S. Petke, D. C. , A Numerical Investigation of the Powe r Distribution of Signals Propagating Through Elevated

"

tropospheric Ducts , FT. W. Thesi s , Naval Postgraduate School, Monterey, California 93941, October 19S2. 9. Naval Postgraduate School Technical Report NPS-62—82- 045PR, A Simple Model -For the Computation of Height

Gain in the Presence of Elevated Tropospheric Ducts , by J. B. Knorr, September 19S2.

10. Nag el , L.M. , MINIDUCT: Improvements to a Microcomputer

Based Elevated Duct Circuit Code , M.S. Thesis, Naval Postgraduate School, Monterey, California 93941, December 19S3.

11. Hall, M.P., Effects of the Troposphere on Radio

Commun i c at i on s , Peter Peregrinus Ltd. , New York, 1979.

12. Panter , P. F. , Communications Systems Design -

Line-of -Si ght and Troposcatter Systems , McGraw-Hill, New York, 1972.

13. Beckmann, P. , Probability in Communications Engineering

Har court , Brace & World, Inc. , New York, 1967.

14. Proakis, J. G. , Digital Communications , McGraw-Hill

Book Co. , 19S3.

15. Technical Report No. 12-76, DCS Transmission System

Performance , Defense Communications Engineering

t Center, November 1976.

16. Siller, C. A., "Multipath Propagation," IEEE

Communications Magazine , v. 22, pp. 11-12, February 19S4.

17. Knorr, J.B., Unpublished ECE 3600 lecture notes. Naval Postgraduate School, Monterey, California 93940, November 1984.

IS. Department of the Navy, NAVELEX 0101.112, Naval Shore Electronics Criteria - Li ne-of -Si ght and

Tropospheric Scatter Communi cat i ons Systems , Washington, DC, 1972.

19. Du Cast el , F. , Tropospheric Radiowave Propagation

Beyond the Horizon , Pergamon Press, New York, 1966.

20. International Radio Consultative Committee, Vol. I I_. , l Propagat on , pp. 143-173, International Telecommuni- cation Union, Geneva, 1967. . .

21. Levin, L. , "Troposcatter Aperture-Medium Coupling Loss",

A6ARD Con-f . Proc. on Aspects o-f Electromagnetic Wave - Scattering in Radio Communications , pp. 4.1 4.6, September 1977.

22. Yeh , L. P., "Simple Methods -for Designing Troposcatter

Circuits", I.R.E. Trans. C.S . , pp. 193-198, Septmeber 1960.

23. Feher , K. , Digital Communications: Satellite/Earth

Station Engineering , Prentice-Hall, Englewood,

NJ . , 1 981

24. Sunde, E.G., "Digital Troposcatter Transmission and

Modulation Theory", BSTJ , Vol. 43, January 1964.

25 White, R . F . , Engineering Considerations -for Microwave

Communications Systems , Lenkurt Electric Corp., 1975.

, , Analysis II 26. Ortenburger L.N., et al Radiosonde Data , Vol. 12, BTE Sylvania, Inc., December 1987.

27. Naval Ocean Systams Center Technical Report 659, I REPS

Revision 2.2 User's Manual , by C.R. Hattan and W.L. Patterson, 21 October 1983. INITIAL DISTRIBUTION LIST

No. Copies 1. Defense Technical Information Center 2 Cameron Station Alexandria, Virginia 22304-6145

2. Library, Code 0142 2 Naval Postgraduate School Monterey, CA 93943-5100

3. Department Chairman, Code 62 1 Department of Electrical Engineering Naval Postgraduate School Monterey, CA 93943-5100

4. Professor Jefferey B. Knorr , Code 62ko 10 Department of Electrical Engineering Naval Postgraduate School Monterey, CA 93943-5100

5. Commander, 7th Signal Brigade 2 ATTN: S-3/CSPE APO New York 0902S

6. CPT(P) Edward M. Siomacco 2 4913 Ash ton Road Fayettevi lie, NC 28403

i ,:. I. cO'.

ThesjThesis S538

25^ Thesis S53865 Siomacco c.l TROPO: a microcom- puter based troposcat- ter communications sys- tem design program.

>»"«*£

.^pw