Anti-OR51I2 Monoclonal Antibody (DCABH- 201148) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use

Total Page:16

File Type:pdf, Size:1020Kb

Anti-OR51I2 Monoclonal Antibody (DCABH- 201148) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use Anti-OR51I2 monoclonal antibody (DCABH- 201148) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein-coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. Immunogen A synthetic peptide of human OR51I2 is used for rabbit immunization. Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Protein A Conjugate Unconjugated Applications WB, ELISA Size 1 mg Buffer In 1x PBS, pH 7.4 Preservative None Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. GENE INFORMATION Gene Name OR51I2 olfactory receptor, family 51, subfamily I, member 2 [ Homo sapiens (human) ] Official Symbol OR51I2 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Synonyms OR51I2; olfactory receptor, family 51, subfamily I, member 2; OR11-38; olfactory receptor 51I2; HOR5Beta12; olfactory receptor OR11-38; odorant receptor HOR5beta12; Entrez Gene ID 390064 Protein Refseq NP_001004754 UniProt ID Q9H344 Chromosome Location 11p15.4 Pathway GPCR downstream signaling; Olfactory Signaling Pathway;Olfactory transduction; Signal Transduction; Signaling by GPCR; Function G-protein coupled receptor activity; olfactory receptor activity; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 2 © Creative Diagnostics All Rights Reserved.
Recommended publications
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Genetic Characterization of Greek Population Isolates Reveals Strong Genetic Drift at Missense and Trait-Associated Variants
    ARTICLE Received 22 Apr 2014 | Accepted 22 Sep 2014 | Published 6 Nov 2014 DOI: 10.1038/ncomms6345 OPEN Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants Kalliope Panoutsopoulou1,*, Konstantinos Hatzikotoulas1,*, Dionysia Kiara Xifara2,3, Vincenza Colonna4, Aliki-Eleni Farmaki5, Graham R.S. Ritchie1,6, Lorraine Southam1,2, Arthur Gilly1, Ioanna Tachmazidou1, Segun Fatumo1,7,8, Angela Matchan1, Nigel W. Rayner1,2,9, Ioanna Ntalla5,10, Massimo Mezzavilla1,11, Yuan Chen1, Chrysoula Kiagiadaki12, Eleni Zengini13,14, Vasiliki Mamakou13,15, Antonis Athanasiadis16, Margarita Giannakopoulou17, Vassiliki-Eirini Kariakli5, Rebecca N. Nsubuga18, Alex Karabarinde18, Manjinder Sandhu1,8, Gil McVean2, Chris Tyler-Smith1, Emmanouil Tsafantakis12, Maria Karaleftheri16, Yali Xue1, George Dedoussis5 & Eleftheria Zeggini1 Isolated populations are emerging as a powerful study design in the search for low-frequency and rare variant associations with complex phenotypes. Here we genotype 2,296 samples from two isolated Greek populations, the Pomak villages (HELIC-Pomak) in the North of Greece and the Mylopotamos villages (HELIC-MANOLIS) in Crete. We compare their genomic characteristics to the general Greek population and establish them as genetic isolates. In the MANOLIS cohort, we observe an enrichment of missense variants among the variants that have drifted up in frequency by more than fivefold. In the Pomak cohort, we find novel associations at variants on chr11p15.4 showing large allele frequency increases (from 0.2% in the general Greek population to 4.6% in the isolate) with haematological traits, for example, with mean corpuscular volume (rs7116019, P ¼ 2.3 Â 10 À 26). We replicate this association in a second set of Pomak samples (combined P ¼ 2.0 Â 10 À 36).
    [Show full text]
  • Supplemental Files 1-5.Pdf
    Supplemental file 1: The whole list of tumor aberrations by time tumor biopsy ctDNA 2002 (T1) 2012 (M1) 2015 (M2) 08/2015 09/2015 11/2015 02/2016 05/2016 07/2016 11/2016 02/2017 05/2017 07/2017 11/2017 PIK3CA Q546R PIK3CA Q546R PIK3CA Q546R PIK3CA Q546R 0.30% PIK3CA Q546R 1.30% PIK3CA Q546R 5.40% PIK3CA Q546R 12.50% PIK3CA Q546R 9.50% PIK3CA Q546R 32.58% PIK3CA Q546R 44.30% PIK3CA Q546R 15.40% PIK3CA Q546R 41.00% TP53 E180K TP53 E180K TP53 E180K TP53 E180K 0.30% TP53 E180K 1.00% TP53 E180K 4.80% PIK3CA M1043I 0.20% PIK3CA M1043I 0.70% PIK3CA E453K 0.69% PIK3CA E453K 3.20% PIK3CA E453K 0.55% PIK3CA M1043I 0.20% PIK3R2 S688* PIK3R2 S688* ATR E2579K VHL E173Q 0.40% PTEN Q245* 0.20% PTEN Q245* 0.30% PIK3CA E726K 1.50% PIK3CA E245Q 0.10% PIK3CA M1043I 0.36% PIK3CA M1043I 1.20% TP53 E180K 11.80% PIK3CA E453K 0.25% PLCG2 P737T PLCG2 P737T PIK3CA E726K VHL E173Q 1.10% RB1 R556* 3.10% TP53 E180K 11.00% PIK3CA E726K 0.20% PIK3CA E726K 0.23% PIK3CA E726K 0.44% TP53 I195F 1.20% PIK3CA E39Q 0.53% CDKN1B Q163* PIK3CA M1004I MET S1061F MET L229F 0.30% CCND1 E9K 0.10% PTEN Q245* 0.80% TP53 E180K 7.30% TP53 E180K 24.28% TP53 E180K 35.40% TP53 L137Q 1.30% TP53 E180K 38.40% ERBB2 R487W PTEN S229* TBX3 S435* MET W112C 1.20% NF1 D1556N 1.30% TP53 I195F 0.20% TP53 R175G 0.20% TP53 I195F 1.70% ESR1 E380Q 7.10% TP53 I195F 0.56% ALK E1407K RB1 Q217* SPEN Q743* NF1 R1176T 1.00% NF1 E76K 0.30% ESR1 E380Q 0.90% TP53 I195F 1.37% TP53 L137Q 2.10% ESR1 L391V 0.41% TP53 I254M 0.25% APC E2637K PIK3CA D1017N PTEN I253M VHL E173Q 1.20% RB1 R556* 7.20% NF1 R1176T 0.50% TP53
    [Show full text]
  • Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib
    Supplementary Online Content Chen G, McQuade JL, Panka DJ, et al. Clinical, molecular and immune analysis of dabrafenib-trametinib combination treatment for metastatic melanoma that progressed during BRAF inhibitor monotherapy: a phase 2 clinical trial. JAMA Oncology. Published online April 28, 2016. doi:10.1001/jamaoncol.2016.0509. eMethods. eReferences. eTable 1. Clinical efficacy eTable 2. Adverse events eTable 3. Correlation of baseline patient characteristics with treatment outcomes eTable 4. Patient responses and baseline IHC results eFigure 1. Kaplan-Meier analysis of overall survival eFigure 2. Correlation between IHC and RNAseq results eFigure 3. pPRAS40 expression and PFS eFigure 4. Baseline and treatment-induced changes in immune infiltrates eFigure 5. PD-L1 expression eTable 5. Nonsynonymous mutations detected by WES in baseline tumors This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 eMethods Whole exome sequencing Whole exome capture libraries for both tumor and normal samples were constructed using 100ng genomic DNA input and following the protocol as described by Fisher et al.,3 with the following adapter modification: Illumina paired end adapters were replaced with palindromic forked adapters with unique 8 base index sequences embedded within the adapter. In-solution hybrid selection was performed using the Illumina Rapid Capture Exome enrichment kit with 38Mb target territory (29Mb baited). The targeted region includes 98.3% of the intervals in the Refseq exome database. Dual-indexed libraries were pooled into groups of up to 96 samples prior to hybridization.
    [Show full text]
  • A Genome-Wide Association Study of Age-Related Hearing Impairment in Middle- and Old-Aged Chinese Twins
    Hindawi BioMed Research International Volume 2021, Article ID 3629624, 14 pages https://doi.org/10.1155/2021/3629624 Research Article A Genome-Wide Association Study of Age-Related Hearing Impairment in Middle- and Old-Aged Chinese Twins Haiping Duan ,1,2,3 Wanxue Song ,1 Weijing Wang ,1 Hainan Cao ,4 Bingling Wang ,2,3 Yan Liu ,2,3 Chunsheng Xu ,2,3 Yili Wu ,1 Zengchang Pang ,2 and Dongfeng Zhang 1 1Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021 Shandong Province, China 2Qingdao Municipal Center for Disease Control and Prevention, No. 175 Shandong Road, Shibei District, Qingdao, 266033 Shandong Province, China 3Qingdao Institute of Preventive Medicine, No. 175 Shandong Road, Shibei District, Qingdao, 266033 Shandong Province, China 4Department of Otorhinolaryngology, Qingdao Municipal Hospital, Qingdao, 266011 Shandong Province, China Correspondence should be addressed to Dongfeng Zhang; [email protected] Received 23 July 2020; Revised 17 June 2021; Accepted 3 July 2021; Published 19 July 2021 Academic Editor: Cheol Lee Copyright © 2021 Haiping Duan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Age-related hearing impairment (ARHI) is considered an unpreventable disorder. We aimed to detect specific genetic variants that are potentially related to ARHI via genome-wide association study (GWAS). Methods. A sample of 131 dizygotic twins was genotyped for single-nucleotide polymorphism- (SNP-) based GWAS. Gene-based test was performed using VEGAS2.
    [Show full text]
  • Expression Pattern of Olfactory Receptor Genes in Human Cumulus Cells As an Indicator for Competent Oocyte Selection
    Turkish Journal of Biology Turk J Biol (2020) 44: 371-380 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-2003-79 Expression pattern of olfactory receptor genes in human cumulus cells as an indicator for competent oocyte selection 1 2 1,3 4 5 Neda DAEI-FARSHBAF , Reza AFLATOONIAN , Fatemeh-Sadat AMJADI , Sara TALEAHMAD , Mahnaz ASHRAFI , 3,1, Mehrdad BAKHTIYARI * 1 Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran 2 Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research, Tehran, Iran 3 Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran 4 Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Academic Center for Education, Culture and Research, Tehran, Iran 5 Department of Obstetrics and Gynecology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran Received: 26.03.2020 Accepted/Published Online: 09.09.2020 Final Version: 14.12.2020 Abstract: Odorant or olfactory receptors are mainly localized in the olfactory epithelium for the perception of different odors. Interestingly, many ectopic olfactory receptors with low expression levels have recently been found in nonolfactory tissues to involve in local functions. Therefore, we investigated the probable role of the olfactory signaling pathway in the surrounding microenvironment of oocyte. This study included 22 women in intracytoplasmic sperm injection cycle. The expression of olfactory target molecules in cumulus cells surrounding the growing and mature oocytes was evaluated by Western blotting and real-time polymerase chain reaction.
    [Show full text]
  • 1 Cannabis-Based Medicine Reduces Multiple
    Cannabis-based medicine reduces multiple pathological processes in APP/PS1 mice Running title: Cannabinoids reduce AD-like phenotype in mice Ester Asoa,b*, Alexandre Sánchez-Plac,d, Esteban Vegas-Lozanoc, Rafael Maldonadoe, Isidro Ferrera,b aInstitut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain bCIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain cDepartament d’Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain dStatistics and Bioinformatics Unit, Institut de Recerca de l'Hospital Universitari de Vall d'Hebron, Barcelona, Spain eLaboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain *Corresponding author: Ester Aso, Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, C/Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain. Phone: +34-93-2607452; Fax: +34-93-2607503; E- mail: [email protected] 1 Abstract Several recent findings suggest that targeting the endogenous cannabinoid system can be considered as a potential therapeutic approach to treat Alzheimer’s disease (AD). The present study supports this hypothesis demonstrating that delta-9- tetrahydrocannabinol (THC) or cannabidiol (CBD) botanical extracts, as well as the combination of both natural cannabinoids, which are the components of an already approved cannabis-based medicine, preserved memory in AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage. Moreover, THC+CBD reduced learning impairment in AβPP/PS1 mice. A significant decrease in soluble Aβ42 peptide levels and a change in plaques composition were also observed in THC+CBD-treated AβPP/PS1 mice, suggesting a cannabinoid-induced reduction in the harmful effect of the most toxic form of the Aβ peptide.
    [Show full text]
  • Explorations in Olfactory Receptor Structure and Function by Jianghai
    Explorations in Olfactory Receptor Structure and Function by Jianghai Ho Department of Neurobiology Duke University Date:_______________________ Approved: ___________________________ Hiroaki Matsunami, Supervisor ___________________________ Jorg Grandl, Chair ___________________________ Marc Caron ___________________________ Sid Simon ___________________________ [Committee Member Name] Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Neurobiology in the Graduate School of Duke University 2014 ABSTRACT Explorations in Olfactory Receptor Structure and Function by Jianghai Ho Department of Neurobiology Duke University Date:_______________________ Approved: ___________________________ Hiroaki Matsunami, Supervisor ___________________________ Jorg Grandl, Chair ___________________________ Marc Caron ___________________________ Sid Simon ___________________________ [Committee Member Name] An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Neurobiology in the Graduate School of Duke University 2014 Copyright by Jianghai Ho 2014 Abstract Olfaction is one of the most primitive of our senses, and the olfactory receptors that mediate this very important chemical sense comprise the largest family of genes in the mammalian genome. It is therefore surprising that we understand so little of how olfactory receptors work. In particular we have a poor idea of what chemicals are detected by most of the olfactory receptors in the genome, and for those receptors which we have paired with ligands, we know relatively little about how the structure of these ligands can either activate or inhibit the activation of these receptors. Furthermore the large repertoire of olfactory receptors, which belong to the G protein coupled receptor (GPCR) superfamily, can serve as a model to contribute to our broader understanding of GPCR-ligand binding, especially since GPCRs are important pharmaceutical targets.
    [Show full text]
  • Supplementary Tables
    Supplementary Tables Supplementary Table 1. Differentially methylated genes in correlation with their expression pattern in the A4 progression model A. Hypomethylated–upregulated Genes (n= 76) ALOX5 RRAD RTN4R DSCR6 FGFR3 HTR7 WNT3A POGK PLCD3 ALPPL2 RTEL1 SEMA3B DUSP5 FOSB ITGB4 MEST PPL PSMB8 ARHGEF4 BST2 SEMA7A SLC12A7 FOXQ1 KCTD12 LETM2 PRPH PXMP2 ARNTL2 CDH3 SHC2 SLC20A2 HSPA2 KIAA0182 LIMK2 NAB1 RASIP1 ASRGL1 CLDN3 DCBLD1 SNX10 SSH1 KREMEN2 LIPE NDRG2 ATF3 CLU DCHS1 SOD3 ST3GAL4 MAL LRRC1 NR3C2 ATP8B3 CYC1 DGCR8 EBAG9 SYNGR1 TYMS MCM2 NRG2 RHOF DAGLA DISP2 FAM19A5 TNNI3 UNC5B MYB PAK6 RIPK4 DAZAP1 DOCK3 FBXO6 HSPA4L WHSC1 PNMT PCDH1 B. Hypermethylated-downregulated Genes (n= 31) ARHGAP22 TNFSF9 KLF6 LRP8 NRP1 PAPSS2 SLC43A2 TBC1D16 ASB2 DZIP1 TPM1 MDGA1 NRP2 PIK3CD SMARCA2 TLL2 C18orf1 FBN1 LHFPL2 TRIO NTNG2 PTGIS SOCS2 TNFAIP8 DIXDC1 KIFC3 LMO1 NR3C1 ODZ3 PTPRM SYNPO Supplementary Table 2. Genes enriched for different histone methylation marks in A4 progression model identified through ChIP-on-chip a. H3K4me3 (n= 978) AATF C20orf149 CUL3 FOXP1 KATNA1 NEGR1 RAN SPIN2B ABCA7 C20orf52 CWF19L1 FRK KBTBD10 NEIL1 RANBP2 SPPL2A ABCC9 C21orf13-SH3BGR CXCL3 FSIP1 KBTBD6 NELF RAPGEF3 SPRY4 ABCG2 C21orf45 CYC1 FUK KCMF1 NFKB2 RARB SPRYD3 ABHD7 C22orf32 CYorf15A FXR2 KCNH7 NGDN RASAL2 SPTLC2 ACA15 C2orf18 DAXX FZD9 KCNMB4 NKAP RASD1 SRFBP1 ACA26 C2orf29 DAZ3 G6PD KCTD18 NKTR RASEF SRI ACA3 C2orf32 DBF4 GABPB2 KDELR2 NNT RASGRF1 SRM ACA48 C2orf55 DBF4B GABRA5 KIAA0100 NOL5A RASSF1 SSH2 ACAT1 C3orf44 DBI GADD45B KIAA0226 NOLC1 RASSF3 SSH3 ACSL5
    [Show full text]
  • Supplementary Materialsupplementary Material
    DOI:10.1071/AN20275_AC CSIRO 2021 Animal Production Science 2021, 61, 731–744 Genome-wide association study between copy number variation regions and carcass and meat quality traits in Nellore cattle Mariana Piatto Berton1,5, Marcos Vinícius de Antunes Lemos1, Tatiane Cristina Seleguim Chud2, Nedenia Bonvino Stafuzza1, Sabrina Kluska1, Sabrina Thaise Amorim1, Lucas Silva Ferlin Lopes1, Angélica Simone Cravo Pereira3, Derek Bickhart4, George Liu4, Lúcia Galvão de Albuquerque1 and Fernando Baldi1 1Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, CEP 14884-900 Jaboticabal, SP, Brazil 2Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada N1G 2W1 3 Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil 4 USDA-ARS, ANRI, Bovine Functional Genomics Laboratory, Beltsville, Maryland 20705, USA; 2Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA 5Corresponding author. E-mail: [email protected] Table S1. Description of significant (P value<0.05) CNVRs associated with beef tenderness (BT) and candidate genes within the CNVRs. CNVR ID BTA Type* Start (bp) End (bp) Size (bp) Low** High** P value FDR CNVR_gain_3 1 Gain 1374155 3404571 2030417 27 45 0.026 0.36 CNVR_gain_644 2 Gain 81291862 83154452 1862591 32 15 0.015 0.40 CNVR_loss_936 5 Loss 22514133 22563988 49856 233
    [Show full text]
  • Aging Influences Hepatic Microvascular Biology and Liver Fibrosis in Advanced Chronic Liver Disease
    SUPPLEMENTARY DATA Aging Influences Hepatic Microvascular Biology and Liver Fibrosis in Advanced Chronic Liver Disease Raquel Maeso-Díaz1, Martí Ortega-Ribera1, Erica Lafoz1, Juan José Lozano2, Anna Baiges1,2, Rubén Francés2,3, Agustín Albillos2,4, Carmen Peralta2,5, Juan Carlos García-Pagán1,2, Jaime Bosch1,2,6, Victoria C Cogger7, Jordi Gracia-Sancho1,2,6 1Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain 2Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain 3Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL -Fundación FISABIO), Alicante, Spain 4 Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, Madrid, Spain 5Protective Strategies Against Hepatic Ischemia-Reperfusion Group, IDIBAPS, Barcelona, Spain 6Hepatology, Department of Biomedical Research, Inselspital, Bern University, Switzerland 7Centre for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia © 2019. Maeso-Díaz R et al. Published online at http://www.aginganddisease.org/EN/10.14336/AD.2019.0127 SUPPLEMENTARY DATA Supplementary materials and methods In vivo hemodynamic Rats were anesthetized with ketamine (100 mg/kg body weight, Imalgene 1000; Merial) plus midazolam (5 mg/kg body weight; Laboratorio Reig Jofre, S.A., Spain) intraperitoneally, fastened to a surgical board, and maintained at a constant temperature of 37 ± 0.5ºC. A tracheotomy and cannulation with a PE-240 catheter (Portex) was performed in order to maintain adequate respiration during anesthesia. Indwelling catheters made of polyethylene tubing (PE-50; Portex, UK) were placed into the femoral artery to measure mean arterial pressure (MAP; mm Hg) and heart rate (HR; beats per minute), and to the ileocolic vein to measure PP (mmHg).
    [Show full text]
  • Characterization of the Genomic Features and Expressed Fusion Genes In
    1 SUPPLEMENTARY INFORMATION (ONLINE SUPPORTING INFORMATION) Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast Natrajan et al. Supplementary Methods Supplementary Figures S1-S6 Supplementary Tables S1-S7 2 SUPPLEMENTARY METHODS Tumor samples Two cohorts of micropapillary carcinomas (MPCs) were analyzed; the first cohort comprised 16 consecutive formalin fixed paraffin embedded (FFPE) MPCs, 11 pure and 5 mixed, which were retrieved from the authors' institutions (Table 1), and a second, validation cohort comprised 14 additional consecutive FFPE MPCs, retrieved from Molinette Hospital, Turin, Italy. Frozen samples were available from five out of the 16 cases from the first cohort of MPCs. As a comparator for the results of the Sequenom mutation profiling, a cohort of 16 consecutive IC-NSTs matched to the first cohort of 16 MPCs according to ER and HER2 status and histological grade were retrieved from a series of breast cancers previously analyzed by aCGH[1]. In addition, 14 IC-NSTs matched according to grade, and ER and HER2 status to tumors from the second cohort of 14 MPCs, and 48 grade 3 IC-NSTs were retrieved from Hospital La Paz, Madrid, Spain[1] (Supplementary Table S1). Power calculation For power calculations, we have assumed that if MPCs were driven by a recurrent fusion gene in a way akin to secretory carcinomas (which harbor the ETV6-NTRK3 fusion gene in >95% of cases[2-4]) or adenoid cystic carcinomas of the breast (which harbor the MYB-NFIB fusion gene in >90% of cases[5]), a ‘pathognomonic’ driver event would be present in at least ≥70% of cases (an estimate that is conservative).
    [Show full text]