Barc/2011/E/008 Barc/2011/E/008 Development of Radiation
Total Page:16
File Type:pdf, Size:1020Kb
BARC/2011/E/008 BARC/2011/E/008 DEVELOPMENT OF RADIATION PYROMETER FOR TIME-RESOLVED MEASUREMENT OF TEMPERATURES IN SHOCK-WAVE COMPRESSION EXPERIMENTS by Amit S. Rav, K.D. Joshi and Satish C. Gupta Applied Physics Division 2011 BARC/2011/E/008 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION BARC/2011/E/008 DEVELOPMENT OF RADIATION PYROMETER FOR TIME-RESOLVED MEASUREMENT OF TEMPERATURES IN SHOCK-WAVE COMPRESSION EXPERIMENTS by Amit S. Rav, K.D. Joshi and Satish C. Gupta Applied Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2011 BARC/2011/E/008 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2011/E/008 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Development of radiation pyrometer for time-resolved measurement of temperatures in shock-wave compression experiments 11 Collation : 31 p., 11 figs., 1 tab. 13 Project No. : 20 Personal author(s) : Amit S. Rav; K.D. Joshi; Satish C. Gupta 21 Affiliation of author(s) : Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Applied Physics Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2011/E/008 30 Date of submission : March 2011 31 Publication/Issue date : April 2011 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English, Hindi 51 Language of summary : English 52 No. of references : 14 refs. 53 Gives data on : 60 Abstract : We have developed a radiation pyrometer system for time resolved measurement of temperature in materials subjected to shock loading or to sudden deposition of energy by any other means. This instrument has four channels, with each channel equipped with interference filter and photo-receiver. The interference filter selects the desired wavelength in the visible to near infrared range and the photo-receiver converts the filtered radiation into an electrical signal. The FWHM bandwidth of the interference filter is ~10 nm around the selected central wavelength and the dynamic bandwidth of proto-receiver is ~125 MHz which corresponds to time resolution of ~3ns. The output of photo-receivers at each channel is recorded in fast Digital Storage Oscilloscope (DSO). The recorded intensities at a given instant of time for four wavelength are fitted to Plank's radiation law and the information about the temperature and emissivity of the object is obtained. A software code has been developed to analyze the experimental data for generating time resolved profile of temperature and emissivity. The instrument is demonstrated to make steady state temperature measurement of standard Tungsten Halogen Lamp Source (THLS) with an accuracy of ~5%. Also it has been used for the measurement of time resolved temperature profile of electrically exploded conducting wire (copper) having transient of the order of ~15 ns. 70 Keywords/Descriptors : PYROMETERS; TEMPERATURE MEASUREMENT; SHOCK WAVES; TIME RESOLUTION; PERFORMANCE TESTING; SPECIFICATIONS; THERMAL RADIATION 71 INIS Subject Category : S46 99 Supplementary elements : ¯ÖϪ֟Öß ¤üÖ²Ö ¯ÖÏμÖÖêÖ ´Öë ÃÖ´ÖμÖ ×¾Ö³ÖêפüŸÖ ˆ¢ÖÖ¯Ö ´ÖÖ¯Ö−Ö êú ×»ÖμÖê ×¾Ö×ú¸üÖ ˆ¢ÖÖ¯Ö´ÖÖ¯Öß (¸êü×›üμÖê¿Ö−Ö ¯ÖÖμÖ¸üÖê´Öß™ü¸ü) úÖ ×¾ÖúÖÃÖ ÃÖÖ¸üÖÓ¿Ö Æü´Ö−Öê ‹êú ×¾Ö×ú¸üÖ ˆ¢ÖÖ¯Ö´ÖÖ¯Öß ˆ¯Öú¸üÖ (¸êü×›üμÖê¿Ö−Ö ¯ÖÖμÖ¸üÖê´Öß™ü¸ü) ×¾Öú×ÃÖŸÖ ×úμÖÖ Æî, •ÖÖê×ú ¯Ö¤üÖ£ÖÖì ´Öë †“ÖÖ−Öú †ÖμÖê ŸÖÖ¯Ö´ÖÖ−Ö êú ¯Ö¸üß¾ÖÔŸÖ−Ö úÖ ÃÖ´ÖμÖ ×¾Ö³ÖêפüŸÖ ´ÖÖ¯Ö−Ö ú¸üŸÖÖ Æîü… μÖÆü ¯Ö¸üß¾ÖÔŸÖ−Ö ¯Ö¤üÖ£ÖÖì ´Öë ¯ÖϪ֟Öß ¤üÖ²Ö (¿ÖÖòú »ÖÖêØ›üÖ) †£Ö¾ÖÖ ˆ•ÖÖÔ êú †“ÖÖ−Öú ×−Ö—Öê¯ÖÖ ÃÖê ˆŸ¯Ö®Ö ÆüÖêŸÖÖ Æîü… ×¾Öú×ÃÖŸÖ ˆ¯Öú¸üÖ ´Öê “ÖÖ¸ü ¯ÖÏúÖ¿Ö ´ÖÖÖÔ Æîü ‹Ó¾Ö ¯ÖÏŸμÖêú ´ÖÖÖÔ ´Öë ¾μÖןÖú¸üÖ ×−ÖÃμÖÓ¤üú (‡Ó™ü¸ü±êúμÖ¸ëüÃÖ ×±ú»™ü¸ü) †Öî¸ü ¯ÖÏúÖ¿Ö ˆ•ÖÖÔ ´ÖÖ¯Öú (±úÖê™üÖê ׸üÃÖß¾Ö¸ü) »ÖÖê Æîü… ¾μÖןÖú¸üÖ ×−ÖÃμÖÓ¤üú ¦üÛ™ü ÃÖß´ÖÖ (×¾ÖÃÖß²Ö»Ö ¸ëü•Ö) ‹Ó¾Ö ×−Öú™üÃ£Ö †¾Ö¸üŒŸÖ (×−Ö†¸ü ‡±ÏÓúÖ¸êü›ü) êú ´Ö‘μÖ †×³Ö™ü ŸÖ¸ÓüÖ¤îü¬μÖÔ úÖ “ÖμÖ−Ö ú¸üŸÖÖ Æî,ü †Öî¸ü ¯ÖÏúÖ¿Ö ˆ•ÖÖÔ ´ÖÖ¯Öú “ÖμÖ×−ÖŸÖ ŸÖ¸ÓüÖ¤îü¬μÖÔ úÖê ×¾ÖªãŸÖ ÃÖÓêúŸÖ ´Öë ¯Ö׸ü¾ÖÙŸÖŸÖ ú¸üŸÖÖ Æîü… ¾μÖןÖú¸üÖ ×−ÖÃμÖÓ¤üú úß ²Öï›ü “ÖÖî›üÖ‡Ô (±ãú»Ö ×¾Ö›ü£Ö ÆüÖ±úË ´ÖîŒÃÖß´ÖÖ) “ÖμÖ×−ÖŸÖ ŸÖ¸ÓüÖ¤îü¬μÖÔ êú †ÖÃÖ¯ÖÖÃÖ ú¸üß²Ö 10 −Öî−ÖÖê ´Öß™ü¸ü (‹−Ö ‹´Ö) Æîü, †Öî¸ü ¯ÖÏúÖ¿Ö ˆ•ÖÖÔ ´ÖÖ¯Öú úß ÖןÖú ²Öï›ü “ÖÖî›üÖ‡Ô (›üÖμÖ−ÖÖ×´Öú ²Öï›ü ×¾Ö›ü£Ö) ú¸üß²Ö 125 ´ÖêÖÖ Æü™Òü•ÖÔ Æïü, •ÖÖê×ú 3 −Öî−ÖÖê ÃÖü êú ÃÖ´ÖμÖ ×¾Ö³Öê¤ü−Ö êú †−Öãºþ¯Ö Æîü… ¯ÖÏŸμÖêú ¯ÖÏúÖ¿Ö ´ÖÖÖÔ êú, ¯ÖÏúÖ¿Ö ˆ•ÖÖÔ ´ÖÖ¯Öú êú, ×¾ÖªãŸÖ ÃÖÓêúŸÖÖê úÖê ×›üו֙ü»Ö ³ÖÓ›üÖ¸üÖ ¤üÖê»Ö−Ö¤ü¿Öá ´Öë †Ó×úŸÖ ×úμÖÖ •ÖÖŸÖÖ Æîü… ¤üÖê»Ö−Ö¤ü¿Öá ´Öë †Ó×úŸÖ “ÖÖ¸üÖê ¯ÖÏúÖ¿Ö ´ÖÖÖÖì êú †−Öãºþ¯Ö ×¾ÖªãŸÖ ÃÖÓêúŸÖÖê úÖ ÖÖ ¯ÖÏŸÖßÖÖ ¯»Öïú êú ×¾Ö×ú¸üÖ ×−ÖμÖ´Ö êú †−ÖãÃÖÖ¸ü ×¾Ö¿»ÖêÂÖÖ ×úμÖÖ •ÖÖŸÖÖ Æîü †Öî¸ü ¯Ö¤üÖ£ÖÖì êú ŸÖÖ¯Ö´ÖÖ−Ö ‹Ó¾ÖË ˆŸÃÖ•ÖÔúŸÖÖ ´Öê †Ö‹ê ¯Ö׸ü¾ÖÔŸÖ−Ö úß •ÖÖ−ÖúÖ¸üß ¯ÖÏÖ¯ŸÖ úß •ÖÖŸÖß Æîü… ‡ÃÖß ÃÖÓ¤Ôü³Ö ‹êú ÃÖÖ°™ü¾ÖêμÖ¸ü úÖê›ü úÖ ×¾ÖúÖÃÖ ×úμÖÖ ÖμÖÖ Æîü, •ÖÖê×ú ¯ÖÏÖμÖÖê×Öú †ÖÓú›üÖê úÖ ×¾Ö¿»ÖêÂÖÖ ú¸ ¯Ö¤üÖ£ÖÖì êú ŸÖÖ¯Ö´ÖÖ−Ö ‹Ó¾ÖË ˆŸÃÖ•ÖÔúŸÖÖ ´Öê †Ö‹ê ¯Ö׸ü¾ÖÔŸÖ−Ö úß ÃÖ´ÖμÖ ×¾Ö³ÖêפüŸÖ ºþ¯Ö¸êüÖÖ ŸÖîμÖÖ¸ü ú¸üŸÖÖ Æîü… ‡ÃÖ ˆ¯Öú¸üÖ úÖ ˆ¯ÖμÖÖêÖ Ûãָü †¾ÖãÖÖ ´Öë ´ÖÖ−Öú ™ÓüÙü−Ö Æîü»ÖÖê•Ö−Ö ¯ÖÏúÖ¿Ö Ã¡ÖÖêŸÖ úÖ ŸÖÖ¯Ö´ÖÖ−Ö 5% ¯Ö׸ü¿Öã«üŸÖÖ êú ÃÖÖ£Ö ´ÖÖ¯Ö−Öê êú ×»ÖμÖê ×úμÖÖ ÖμÖÖ Æüî… ‡ÃÖü ˆ¯Öú¸üÖ úÖ ˆ¯ÖμÖÖêÖ ×¾ÖªãŸÖßμÖ ×¾ÖñúÖê™üú “ÖÖ»Öú ŸÖÖ¸ü (úÖò¯Ö¸ü) úß ÃÖ´ÖμÖ ×¾Ö³ÖêפŸÖ ŸÖÖ¯Ö´ÖÖ−Ö ºþ¯Ö¸êüÖÖ ŸÖîμÖÖ¸ü ú¸ü−Öê êú ×»ÖμÖê ³Öß ×úμÖÖ ÖμÖÖ Æîü, וÖÃÖúß Ö×ÖúŸÖÖ 15 −Öî−ÖÖê ÃÖ úß Æîü… Development of Radiation Pyrometer for Time-Resolved Measurement of Temperatures in Shock-Wave Compression Experiments Amit S. Rav, K.D. Joshi and Satish C. Gupta Applied Physics Division Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India Email: [email protected] Abstract We have developed a radiation pyrometer system for time resolved measurement of temperature in materials subjected to shock loading or to sudden deposition of energy by any other means. This instrument has four channels, with each channel equipped with interference filter and photo- receiver. The interference filter selects the desired wavelength in the visible to near infrared range and the photo-receiver converts the filtered radiation into an electrical signal. The FWHM bandwidth of the interference filter is ~10 nm around the selected central wavelength and the dynamic bandwidth of proto-receiver is ~125 MHz which corresponds to time resolution of ~3ns. The output of photo-receivers at each channel is recorded in fast Digital Storage Oscilloscope (DSO). The recorded intensities at a given instant of time for four wavelength are fitted to Plank’s radiation law and the information about the temperature and emissivity of the object is obtained. A software code has been developed to analyze the experimental data for generating time resolved profile of temperature and emissivity. The instrument is demonstrated to make steady state temperature measurement of standard Tungsten Halogen Lamp Source (THLS) with an accuracy of ~5%. Also it has been used for the measurement of time resolved temperature profile of electrically exploded conducting wire (copper) having transient of the order of ~15 ns. Table of Contents Page No. 1. Introduction 1 2. Theory of Radiation Temperature Measurement (Pyrometry) 2 3. Instrument Design for Pyrometer 4 3.1. Radiation Collection from the Target 5 3.2. Distribution of Light in different Channels 6 3.3. Wavelength Selection 7 3.4. Detection of Radiation Intensity 7 3.5. Recording of Data 8 4. Calibration of System 8 5. Development of Code for Estimation of Temperature and Emissivity 10 5.1. Theory of Least Square Method for Parameter Estimation 10 5.2. Code Development 13 5.3. Uncertainty Calculation 15 6. Experiments 17 6.1. Validation of Pyrometer by Measuring Temperature of Standard 17 Radiation Source 6.2. Time Resolved Temperature Measurement of Electrically Exploding 19 Wire 7. Conclusion & Future Development 23 8. Acknowledgement 23 9. References 24 1. Introduction Shock compression of materials generates not only very high pressures but also high temperatures in the materials. The Hugoniot equation of state (the relation between shock pressure P and density ) of the material can be determined by planer steady shock wave loading experiments by measuring quantities like shock velocity, pressure profile and particle velocity history and using these quantities along with three conservation laws of mass, momentum and energy. However for determination of complete thermodynamic behavior of the compressed state, measurement of temperature is required. The measurement of temperature gives insight into the partition of the total energy in the shocked system [1-3] and provides additional information on the complete equation of state, solid-solid phase transition and melting of shock compressed materials [4-9].