Pyrolaser Emissivity Measuring Infrared Thermometer Fundamental
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Overview of Thermal Infrared Imaging-Based Screenings During Pandemic Emergencies
International Journal of Environmental Research and Public Health Review An Overview of Thermal Infrared Imaging-Based Screenings during Pandemic Emergencies David Perpetuini , Chiara Filippini , Daniela Cardone * and Arcangelo Merla Department of Neuroscience and Imaging, Institute for Advanced Biomedical Technologies, University G. D’Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy; [email protected] (D.P.); chiara.fi[email protected] (C.F.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +39-0871-3556954 Abstract: Infrared thermal imaging (IRI) is a contact-less technology able to monitor human skin temperature for biomedical applications and in real-life contexts. Its capacity to detect fever was exploited for mass screening during past epidemic emergencies as well as for the current COVID- 19 pandemic. However, the only assessment of fever may not be selective for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Hence, novel approaches for IRI data analysis have been investigated. The present review aims to describe how IRI have been employed during the last epidemics, highlighting the potentialities and the limitations of this technology to contain the contagions. Specifically, the methods employed for automatic face recognition and fever assessment and IRI’s performances in mass screening at airports and hospitals are reviewed. Moreover, an overview of novel machine learning methods for IRI data analysis, aimed to identify Citation: Perpetuini, D.; Filippini, C.; respiratory diseases, is provided. In addition, IRI-based smart technologies developed to support the Cardone, D.; Merla, A. An Overview healthcare during the COVID-19 pandemic are described. Finally, relevant guidelines to fully exploit of Thermal Infrared Imaging-Based IRI for COVID-19 identification are defined, to improve the effectiveness of IRI in the detection of the Screenings during Pandemic SARS-CoV-2 infection. -
What Do “Infrared Thermometers” Measure?
What do “infrared thermometers” measure? Overview These days, infrared (or “non-contact”) thermometers are popular items in hardware stores, auto parts stores, and stores that carry high-end cooking equipment. You point the thermometer at an object, and it reads the temperature. You can see how this could be useful to a chef or mechanic. But... What does such a thermometer actually measure? If you’re baking a potato, there’s a good chance that the reading will correspond to the surface temperature. But the truth is not always so simple — for example, if you’ve wrapped your potato in aluminum foil, you won’t see anything like the temperature of the spud itself! In the title, we’ve put “infrared thermometer” in quotes because this device doesn’t measure temperature directly; rather, temperature is inferred from a different measurement. So just what does the device measure? This is a good open question that you can ask your students to explore. Theory All matter is made of atoms, and all the atoms are in constant random motion. This is the molecular view of thermal energy. Atoms ,in turn, are composed of charged particles. And when you accelerate a charged particle (as occurs perpetually in the atomic motion associated with thermal energy), it emits electromagnetic waves. Does this mean that all objects will emit electromagnetic waves? Indeed it does. (Well, it does for any object with a temperature greater than absolute zero — that is, any object you’re apt to ever encounter.) Hotter objects emit more of this thermal radiation, objects at different temperatures emit different wavelengths, and some objects (metals, for instance) are pretty poor emitters. -
A New Pyrometer for the True Temperature Measurement of Aluminium Billet and Bar in Forging Process
A NEW PYROMETER FOR THE TRUE TEMPERATURE MEASUREMENT OF ALUMINIUM BILLET AND BAR IN FORGING PROCESS Prepared by: Boris Shtarker and Ofer Yoely Introduction Temperature control plays an important role in any hot-working operation. Contact methods of measurement are often difficult as the probes tends to wear and maintenance of the probes can be time consuming and expensive. Non-contact measurement using infrared sensors has been tried many times but with only limited success on aluminum because of the low and variable emissivity. The 3T company in Israel has successfully developed an infra-red temperature measurement system that uses several different wavelengths and complex algorithms to accurately measure the temperature in the extrusion, forging, hot- rolling and casting of aluminum alloys. The P3000 pyrometer joins the family of innovative products that have been developed by 3T - True Temperature Technologies for use in the aluminum forging industry. Accurate measurement of aluminum parts during forging process is vital to ensure quality product. It is well established that even minor changes in the billet temperature can cause deterioration in the mechanical properties of the forged part, by creating internal stresses and deformations. For that reason, AUTOMOTIVE PARTS MANUFACTURERS demand accurate measurement of each forged billet coming in and out the press. Due to long response time of contact probe, and frequent probe tip maintenance, measurement with thermocouple is not applicable - a few seconds for each measurement will be very expensive in mass production. ISRAEL Tel: 972-4-9990025, Fax: 972-4-9990031 ,20179 סאל Teradion Industrial Park, Misgav E-Mail: [email protected], Web: www.3t.co.il Unlike contact probe 3Ts non-contact optical pyrometer, will measure temperature within less than a second, and therefore is the most suitable instrument for forging application. -
Thermal Imaging Guidebook for Industrial Applications
THERMAL IMAGING GUIDEBOOK FOR INDUSTRIAL APPLICATIONS An informative guide for the use of thermal imaging cameras in industrial applications 1 Content page 1. The thermal imaging camera and how it works 6 2. Why use thermal imaging? 8 3. Using thermal imaging for industrial applications 12 4. Choosing the right thermal imaging camera supplier 24 5. Thermal physics for industrial applications 26 6. Finding the best solution 30 7. How to carry out thermal inspections 42 This booklet is produced in close cooperation with the Infrared Training Centre (ITC). All images used are for illustrative purposes only. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE © Copyright 2011, FLIR Systems AB. All other brand and product names are trademarks of their respective owners. 3 Introduction Ever since the first commercial thermal imaging camera was sold in 1965 for high voltage power line inspections, by what would later become FLIR Systems, the use of thermal imaging 1 cameras for industrial applications has been an important market segment for FLIR. Since then thermal imaging technology has evolved. Thermal imaging cameras have become compact systems that look just like a digital video camera or digital photo camera. They are easy to use and generate crisp real-time high-resolution images. Thermal imaging technology has become one of the most valuable diagnostic tools for industrial applications. By detecting anomalies that are usually invisible to the naked eye, thermal imaging allows corrective action to be taken before costly system failures occur. Thermal imaging cameras are a unique tool to determine when and where maintenance is needed, for electrical and mechanical installations tend to get hot before they fail. -
(12) United States Patent (10) Patent No.: US 6,799,137 B2 Schietinger Et Al
USOO67991.37B2 (12) United States Patent (10) Patent No.: US 6,799,137 B2 Schietinger et al. (45) Date of Patent: Sep. 28, 2004 (54) WAFER TEMPERATURE MEASUREMENT 3.262,758 A 7/1966 Stewart et al. METHOD FOR PLASMA ENVIRONMENTS 4,075,493 A 2/1978 Wickersheim 4,348,110 A 9/1982 Ito Inventors: Charles W. Schietinger, Milwaukie, 4,574.486 A 3/1986 Drechsler (75) 4,750,139 A 6/1988 Dils OR (US); Ronald A. Palfenier, Oregon 4,845,647 A 7/1989 Dils et al. City, OR (US) 4.956,538 A 9/1990 Moslehi 5,154,512 A 10/1992 Schietinger et al. (73) Assignees: Engelhard Corporation, Iselin, NJ 5,231,595 A * 7/1993 Makino et al. ............. 702/134 (US); Exactus, Inc., Boca Raton, FL 5,305,416 A * 4/1994 Fiory ............... ... 392/416 (US) 5,624,590 A * 4/1997 Fiory ......................... 219/390 Notice: Subject to any disclaimer, the term of this (List continued on next page.) patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 65 days. “Optical Pyrometry Begins to Fulfill its Promise,” Alex ander Braun, Semiconductor International, Mar. 1998, pp. 1 (21) Appl. No.: 10/197,230 and 2. (22) Filed: Jul. 16, 2002 (List continued on next page.) (65) Prior Publication Data Primary Examiner John Barlow US 2003/0033110 A1 Feb. 13, 2003 ASSistant Examiner Demetrius R. Pretlow (74) Attorney, Agent, or Firm-Stoel Rives LLP Related U.S. Application Data (57) ABSTRACT (63) Continuation-in-part of application No. 09/872,752, filed on Jun. -
Digital Infrared Thermometer
Model #480742 DIGITAL INFRARED THERMOMETER CAREFULLY READ THROUGH THE ENTIRE OWNER’S MANUAL BEFORE OPERATING YOUR DIGITAL INFRARED THERMOMETER. KEEP MANUAL WITH IMPORTANT RECORDS FOR SAFETY INSTRUCTIONS, OPERATING PROCEDURES AND WARRANTY. Please retain these instructions for future reference. If you encounter any problems or difficulties, please contact our toll free Customer Service Department at: 1-800-423-3598 1431 VIA PLATA 1-310-522-9008 (California only) LONG BEACH, CA 90810-1462 www.alltradetools.com FOR CUSTOMER SERVICE 1-310-522-9066 Fax © Copyright 2004, Alltrade Tools LLC Rev.1 1-800-423-3598 SPECIFICATIONS: GENERAL Congratulations on your purchase of the Digital Infrared Thermometer! Your Digital Infrared Thermometer is fitted with optical filters that allow you to safely take infrared surface temperature Display 4 digit LCD display readings when contact with the object is not an option. Its convenient laser targeting and high Measurement Ranges -40˚C to 500˚C (-40˚F to 932˚F) with 0.1˚C (32.18˚F) resolution distance-to-spot ratio gives you the flexibility to take accurate temperatures of hard to read objects. Sample rate Approximately 1 second Laser power <1mW output at 675µm wave length. (Class II laser product) SAFETY & WARNINGS Storage Temperature -20˚C to 50˚C (-4˚F to 122˚F) The Digital Infrared Thermometer is a laser device and should be used with caution and care. Operating Temperature 0˚C to 50˚C (32˚F to 122˚F) Please observe the following guidelines when using this device. Operating Humidity Max. 80% • Infrared thermometers only measure surface temperature. Therefore when used in food applications, Power Supply One 9V battery (included) critical temperatures must be verified with an internal temperature-measuring device. -
LECTURE 37 Temperature Measurement: Radiation Pyrometry
LECTURE 37 Temperature Measurement: Radiation Pyrometry Contents Black Body Radiation Radiation from real surfaces Principles of radiation pyrometer Total radiation pyrometer Limitations of Radiation Pyrometer Disappearing Filament Pyrometer Key Words: furnaces, radiation, pyrometer Black body radiation A body at higher temperatures emits electromagnetic radiation. The rate at which energy is emitted depends on surface temperature and surface conditions. The thermal radiation from a body is composed of wavelengths forming an energy distribution. The total emissive power of a black body e at a particular temperature is e e dλ (1) In which is wavelength and e is monochromatic emissive power. Planck’s distribution law relates e to the wavelength and temperature: e (2) KB T In which is Planck’s constant, a is velocity of light, is wavelength. is absolute temperature and KB is Boltzmann constant. Total emissive power of a black body is e σ T . (3) In which is Stefan’s Boltzmann constant and its value is 5.67 10 W m K. Radiation from real surfaces Black body is an idealized concept in radiation. A black body absorbs all incoming radiation and transmits none. Black body is also a perfect emitter, since it emits radiation of all wavelengths. Its total emissive power is theoretically the highest that can be achieved at any given temperature. Thus, all real surfaces emit thermal radiations lower than black surface at any temperature such that e e (4) In which is emissivity and is total radiation from a real surface. Obviously 1 for a black body and 1 for all a real surfaces. -
Basics of Non Contact Temperature Measurement 2 Physical Basics
More Precision. Basics of non contact temperature measurement 2 Physical Basics With our eyes we see the world in visible light. Whereas visible light fills only a small part of the radiation spectrum, the invisible light covers most of the remaining spectral range. The radiation of invisible light carries much more additional information. The Infrared Temperature Measurement System Each body with a temperature above the absolute zero (-273.15°C = 0 Kelvin) emits an electromagnetic radiation from its surface, which is proportional to its intrinsic temperature. A part of this so-called intrinsic radiation is infrared radiation, which can be used to measure a body’s temperature. This radiation penetrates the atmosphere. With the help of a lens (input optics) the beams are focused on a detector element, which William Herschel (1738 - 1822) generates an electrical signal proportional to the radiation. The signal is amplified and, using successive digital signal processing, is transformed Discovery of the Infrared Radiation into an output signal proportional to the object temperature. The measu- Searching for new optical material William Herschel by chance found the ring value may be shown in a display or released as analog output signal, infrared radiation in 1800. He blackened the peak of a sensitive mercury which supports an easy connection to control systems of the process thermometer. This thermometer, a glass prism that led sun rays onto a ta- management. ble made his measuring arrangement. With this, he tested the heating of different colors of the spectrum. Slowly moving the peak of the blackened thermometer through the colors of the spectrum, he noticed the increas- ing temperature from violet to red. -
Measuring Total Column Water Vapor by Pointing an Infrared Thermometer at the Sky
MEASURING TOTAL COLUMN WATER VAPOR BY POINTING AN INFRARED THERMOMETER AT THE SKY BY FORREST M. MIMS III, LIN HARTUNG CHAMBERS, AND DAVID R. BROOKS A $20 infrared thermometer pointed at the cloud-free zenith sky can measure precipitable water vapor about as well as a sun photometer, and it can do so during the day or night. ater vapor is the constituent of the atmosphere that is most responsible for weather, the W hydrological cycle, and the maintenance of Earth’s temperature within a range that supports life as we know it (Mockler 1995). Furthermore, water vapor condensed on sulfate and other hygroscopic aerosols can significantly increase the aerosol optical thickness of the atmosphere (Tang 1996). The direct and indirect influence of water vapor on weather, climate, and the environment is so important that there is significant interest in techniques for infer- ring its vertical distribution and its total abundance in Readings from this infrared thermometer (fore- a vertical column through the atmosphere. The latter ground) were compared with total water vapor measured by the nearby NOAA GPS receiver at parameter, the measurement of which is the central Hawaii’s Mauna Loa Observatory. subject of this paper, is variously described as X total column water vapor, integrated water vapor heating of these sensors, and the wake effect of the (IWV), precipitable water (PW), and integrated ascending balloon. precipitable water (IPW). Each of these phrases speci- Precipitable water can also be measured by a fies the depth of liquid water that would result if all microwave radiometer tuned to frequencies emitted of the water vapor in a vertical column through the by liquid and gaseous water molecules (Liljegren atmosphere were brought to the surface at standard 1994). -
Infrared Thermography for Temperature Measurement and Non-Destructive Testing
Sensors 2014, 14, 12305-12348; doi:10.3390/s140712305 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Infrared Thermography for Temperature Measurement and Non-Destructive Testing Ruben´ Usamentiaga 1;*, Pablo Venegas 2, Jon Guerediaga 2, Laura Vega 2, Julio Molleda 1 and Francisco G. Bulnes 1 1 Department of Computer Science and Engineering, University of Oviedo, Campus de Viesques 33204 Gijon,´ Asturias, Spain; E-Mails: [email protected] (J.M.); [email protected] (F.G.B.) 2 Aeronautical Technology Centre (CTA), Parque Tecnologico´ de Alava,´ Juan de la Cierva 1, 01510 Minano,˜ Spain; E-Mails: [email protected] (P.V.); [email protected] (J.G.); [email protected] (L.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-985-182626; Fax: +34-985-181986. Received: 23 December 2013; in revised form: 26 June 2014 / Accepted: 30 June 2014 / Published: 10 July 2014 Abstract: The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. -
Towards an Ultra-High-Speed Combustion Pyrometer "2279
International Journal of Turbomachinery Propulsion and Power Article y Towards an Ultra-High-Speed Combustion Pyrometer Alberto Sposito, Dave Lowe and Gavin Sutton * National Physical Laboratory (NPL), Hampton Road, Teddington TW11 0LW, UK; [email protected] (A.S.); [email protected] (D.L.) * Correspondence: [email protected] This paper was presented at the 9th EVI-GTI International Gas Turbine Instrumentation Conference, Graz, y Austria on 20–21 November 2019. Received: 2 March 2020; Accepted: 10 December 2020; Published: 15 December 2020 Abstract: Measuring reliably the correct temperature of a sooty flame in an internal combustion engine is important to optimise its efficiency; however, conventional contact thermometers, such as thermocouples, are not adequate in this context, due to drift, temperature limitation ( 2100 K) and ≤ slow response time (~10 ms). In this paper, we report on the progress towards the development of a novel ultra-high-speed combustion pyrometer, based on collection of thermal radiation via an optical fibre, traceably calibrated to the International Temperature Scale of 1990 (ITS-90) over the temperature range T = (1073–2873) K, with residuals <1%, and capable of measuring at a sampling rate of 250 kHz. Keywords: combustion; temperature; pyrometer; optical sensor 1. Introduction Traceable, reliable measurement of combustion temperature is important because it can improve the understanding of the combustion process and provide a mechanism for the optimisation of engine power, fuel consumption and emissions [1]. These measurements are performed under highly dynamic conditions, with temperature changes of up to ~3300 K occurring on a millisecond timescale. Conventional temperature sensors based on contact thermometry (e.g., thermocouples) are inadequate in this context, due to their slow response time (~10 ms), temperature limitation ( 2100 K), drift and ≤ perturbation of the combustion process. -
Infrared Temperature Measuring Instrument
testo-826-P01 16.08.2012 12:24 Seite 1 We measure it. Infrared temperature measuring instrument testo 826 Non-contact measurement of surface temperature, ideally °C suitable for the food sector 6:1 optics for fast and accurate measurement 1-point laser measurement spot marking Combined instrument with infrared and penetration measurement Two adjustable limit values Waterproof and robust thanks to dishwasher-safe protective cover TopSafe, according to protection class IP65 Hold function and display of min./max. values HACCP from every point of view: the testo 826 series has The advantages: just been optimized. A higher resolution thanks to the new • Always monitor, measure and document temperature processor ensures even more accurate measurement accurately, cleanly and quickly. results. This allows the temperature to be recorded to an • Fulfil HACCP regulations, and be able to provide proof at accuracy of 0.1 °C. The min./max. display shows the limit any time. values of the last measurement. You can measure and • Maintain the cold chain in storage and transport. monitor the temperature of the goods reliably and safely. • Reduce the quantities of spoiled goods and use resources efficiently. • Measuring instruments calibrated according to strict regulations. • Conform to HACCP as well as EN 13485. testo-826-P02 16.08.2012 12:55 Seite 2 testo 826 We measure it. Technical data General technical data testo 826-T2 Spectral range 8 to 14 μm Measurement rate 0,5 s testo 826-T2, infrared thermometer with 1 point Distance to 6:1 laser sighting, alarm function, incl. TopSafe and measurement spot wall/belt holder Emissivity 0,1 to 1 Meas.