Cholinergic Drugs

Total Page:16

File Type:pdf, Size:1020Kb

Cholinergic Drugs Autonomic nervous system drugs • classes of drugs that affect the autonomic nervous system • uses and varying actions of these drugs • how these drugs are absorbed, distributed, metabolized, and excreted • drug interactions and adverse effects of these drugs. Cholinergic drugs • promote the action of the neurotransmitter acetylcholine. • These drugs are also called parasympathomimetic drugs because they produce effects that imitate parasympathetic nerve stimulation. There are two major classes of cholinergic drugs: • Mimickers • Inhibitors • Cholinergic agonists mimic the action of the neurotransmitter acetylcholine. • Anticholinesterase drugs work by inhibiting the destruction of acetylcholine at the cholinergic receptor sites. • By directly stimulating cholinergic receptors, cholinergic agonists mimic the action of the neurotransmitter acetylcholine. cholinergic agonists include: • bethanechol • carbachol • cevimeline • pilocarpine. anticholinesterase drugs include: • Ambenonium • Edrophonium • Neostigmine • Physostigmine • pyridostigmine Pharmacokinetics • The action and metabolism of cholinergic agonists vary widely and depend on the affinity of the individual drug for muscarinic or nicotinic receptors. • Cholinergic agonists rarely are administered by I.M. or I.V. injection because • they’re almost immediately broken down by cholinesterases in the interstitial spaces between tissues and inside the blood vessels. • Moreover, they begin to work rapidly and can cause a cholinergic crisis (a drug overdose resulting in extreme muscle weakness and possibly paralysis of the muscles used in respiration). Cholinergic agonists are usually administered: • topically, with eye drops • orally • by subcutaneous (subQ) injection. **SubQ injections begin to work more rapidly than oral doses. All cholinergic agonists are metabolized by cholinesterases: • at the muscarinic and nicotinic receptor sites • in the plasma • in the liver. • All drugs in this class are excreted by the kidneys. • When a neuron in the parasympathetic nervous system is stimulated, the neurotransmitter acetylcholine is released. • Acetylcholine crosses the synapse and interacts with receptors in an adjacent neuron. • Cholinergic agonists stimulate cholinergic receptors, mimicking the action of acetylcholine. • Anticholinesterase drugs inhibit acetylcholinesterase. • As a result, acetylcholine isn’t broken down and begins to accumulate, leading to prolonged acetylcholine effects. • Cholinergic agonists work by mimicking the action of acetylcholine on the neurons in the target organs. • They bind with receptors on the cell membranes of target organs and stimulate the muscles Cholinergic agonists produce; • salivation • bradycardia (a slow heart rate) • dilation of blood vessels • constriction of the bronchioles • increased activity of the GI tract • increased tone and contraction of the bladder muscles • constriction of the pupils. Pharmacotherapeutics- Cholinergic agonists are used to: • treat atonic (weak) bladder conditions and postoperative and postpartum urine retention • treat GI disorders, such as postoperative abdominal distention and GI atony • reduce eye pressure in patients with glaucoma and during eye surgery • treat salivary gland hypofunction caused by radiation therapy or Sjögren’s syndrome. Drug interactions • Cholinergic agonists have specific interactions with other drugs. • Examples include the following: • Other cholinergic drugs, particularly anticholinesterase drugs boost the effects of cholinergic agonists and increase the risk of toxicity • Cholinergic blocking drugs such as – Atropine – belladonna – Homatropine – Methantheline – Methscopolamine – propantheline, and – Scopolamine reduce the effects of cholinergic drugs. • Quinidine reduces the effectiveness of cholinergic agonists Adverse reactions to cholinergic agonists • Because they bind with receptors in the parasympathetic nervous system, cholinergic agonists can produce adverse effects in any organ innervated by the parasympathetic nerves. These adverse effects can include: • nausea and vomiting • cramps and diarrhea • blurred vision • decreased heart rate and low blood pressure • shortness of breath • urinary frequency • increased salivation and sweating. Anticholinesterase drugs • Anticholinesterase drugs block the action of the enzyme acetylcholinesterase at cholinergic receptor sites, preventing the breakdown of acetylcholine. • As acetylcholine builds up, it continues to stimulate the cholinergic receptors • Anticholinesterase drugs are divided into two categories – reversible and – irreversible. Reversible anticholinesterase drugs have a short duration of action and include: – ambenonium – demecarium – donepezil – edrophonium – Galantamine – . – guanidine – neostigmine – physostigmine – pyridostigmine – rivastigmine – tacrine. Irreversible anticholinesterase drugs • have long-lasting effects • are used primarily as – toxic insecticides and – pesticides or – as nerve gas in chemical warfare. **Pyridostigmine enhances the effects of antidotes used to counteract nerve agents.) **Only one has therapeutic usefulness: echothiophate. Pharmacokinetics • Many of the anticholinesterase drugs are readily absorbed from the – GI tract, – subcutaneous tissue, and – mucous membranes. • Because neostigmine is poorly absorbed from the GI tract, the patient needs a higher dose when taking this drug orally. • Because the duration of action for an oral dose is longer, therefore, the patient doesn’t need to take it as frequently. • When a rapid effect is needed, neostigmine should be given by the I.M. or I.V. route. Distribution • Physostigmine can cross the blood-brain barrier. • Donepezil is highly bound to plasma proteins • tacrine is about 55% bound • rivastigmine is 40% bound, and • galantamine is 18% bound. Metabolism and excretion • Most anticholinesterase drugs are metabolized by enzymes in the plasma and excreted in urine. • Donepezil, galantamine, rivastigmine, and tacrine are metabolized in the liver. Pharmacodynamics • Anticholinesterase drugs promote the action of acetylcholine at receptor sites. • Depending on the site and the drug’s dose and duration of action, they can produce a stimulant or depressant effect on cholinergic receptors. • Reversible anticholinesterase drugs block the breakdown of acetylcholine for minutes to hours • irreversible anticholinesterase drugs do so for days or weeks. Anticholinesterase drugs are used for a variety of therapeutic purposes, including: • to reduce eye pressure in patients with glaucoma and during eye surgery • to increase bladder tone • to improve tone and peristalsis (movement) through the GI tract in patients with reduced motility or paralytic ileus (paralysis of the small intestine) • to promote muscle contractions in patients with myasthenia gravis • to diagnose myasthenia gravis (neostigmine and edrophonium) • as an antidote to cholinergic blocking drugs (also called anticholinergic drugs), tricyclic antidepressants, belladonna alkaloids, and narcotics • to treat mild to moderate dementia and enhance cognition in patients with Alzheimer’s disease (donepezil, galantamine, rivastigmine, and tacrine). Drug interactions • Other cholinergic drugs, esp cholinergic agonists increase the risk of a toxic reaction when taken with anticholinesterase drugs. • Carbamazepine, dexamethasone, rifampicin, phenytoin, and phenobarbital may increase donepezil’s rate of elimination. • Aminoglycoside antibiotics, • anesthetics, • cholinergic blocking drugs, • magnesium, • corticosteroids, and • antiarrhythmic drugs - procainamide and quinidine can reduce the effects of anticholinesterase drugs and can mask early signs of a cholinergic crisis. • Other medications with cholinergic-blocking properties e.g. – tricyclic antidepressants – bladder relaxants, and – Antipsychotics • can counteract the effects of anticholinesterase drugs. • The effects of tacrine, donepezil, and galantamine may be increased when these drugs are combined with known inhibitors of cytochrome P-450 enzymes, such as cimetidine and erythromycin. • Cigarette use increases the clearance of rivastigmine. Adverse reactions to anticholinesterase drugs • Most of the adverse reactions caused by anticholinesterase drugs result from increased action of acetylcholine at receptor sites. Adverse reactions associated with anticholinesterase drugs include: • cardiac arrhythmias • nausea and vomiting • diarrhea • shortness of breath, wheezing, or tightness in the chest • seizures • headache • anorexia • insomnia • pruritus • urinary frequency and nocturia. Cholinergic blocking drugs • Cholinergic blocking drugs interrupt parasympathetic nerve impulses in the central and autonomic nervous systems. • also referred to as anticholinergic drugs because they prevent acetylcholine from stimulating cholinergic receptors. • Cholinergic blocking drugs don’t block all cholinergic receptors • Only block the muscarinic receptor sites. • Muscarinic receptors are cholinergic receptors that are stimulated by the alkaloid muscarine and blocked by atropine. The major cholinergic blocking drugs are the belladonna alkaloids: • atropine (the prototype cholinergic blocking drug) • belladonna • homatropine • hyoscyamine • methscopolamine • scopolamine. • Synthetic derivatives of belladonna alkaloids (the quaternary ammonium drugs) include: – glycopyrrolate – propantheline. The tertiary and quaternary amines • The tertiary amines include: – benztropine – dicyclomine – Oxybutynin – trihexyphenidyl – tolterodine. • Quaternary amines – trospium..
Recommended publications
  • Cardiovascular Monitoring with Acetylcholinesterase Inhibitors: a Clinical Protocol† Jeremy P
    Advances in Psychiatric Treatment (2007), vol. 13, 178–184 doi: 10.1192/apt.bp.106.002725 Cardiovascular monitoring with acetylcholinesterase inhibitors: a clinical protocol† Jeremy P. Rowland, John Rigby, Adam C. Harper & Rosalind Rowland Abstract There has been significant anxiety among prescribers regarding the potential for cardiac adverse effects associated with acetylcholinesterase (AChE) inhibitors in Alzheimer’s disease. There is no consensus on how to manage this cardiovascular risk, and memory clinics vary widely in their practice. Review of published evidence reveals that the incidence of cardiovascular side-effects is low, and that serious adverse events are rare. Intensive cardiovascular screening such as pre-treatment electrocardiograms or 24 h cardiac monitoring is not justified. Furthermore, there are no high-risk groups to target. This article suggests pragmatic guidelines for managing cardiovascular risk in patients receiving AChE inhibitors. The guidelines are intended to be easy to incorporate into routine clinical practice in a memory clinic. A few years ago it was estimated that almost 18 thus followed some uncertainty as to how treatment million people worldwide had dementia (Alzheimer’s should be properly managed. Society, 2004), with Alzheimer’s disease accounting Since the manufacturers’ cautions remain (see the for over half of cases (Fratiglioni, 2000). The second- relevant entries in http://emc.medicines.org.uk) and generation acetylcholinesterase (AChE) inhibitors guidance has been unforthcoming, services now vary donepezil, rivastigmine and galantamine were widely in their practice: some, for example, require introduced into clinical practice from 1997 for the electrocardiograms (ECGs) before use and during symptomatic treatment of Alzheimer’s disease, and treatment, whereas others do not.
    [Show full text]
  • Malathion Human Health and Ecological Risk Assessment Final Report
    SERA TR-052-02-02c Malathion Human Health and Ecological Risk Assessment Final Report Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-06-0012 SERA Internal Task No. 52-02 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Fax: (315) 637-0445 E-Mail: [email protected] Home Page: www.sera-inc.com May 12, 2008 Table of Contents Table of Contents............................................................................................................................ ii List of Figures................................................................................................................................. v List of Tables ................................................................................................................................. vi List of Appendices ......................................................................................................................... vi List of Attachments........................................................................................................................ vi ACRONYMS, ABBREVIATIONS, AND SYMBOLS ............................................................... vii COMMON UNIT CONVERSIONS AND ABBREVIATIONS.................................................... x CONVERSION OF SCIENTIFIC NOTATION ..........................................................................
    [Show full text]
  • On Tardive Dyskinesia'
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.8.941 on 1 August 1974. Downloaded from Journial of Neurology, Neurosurgery, alid Psychiatry, 1974, 27, 941-947 Effect of cholinergic and anticholinergic agents on tardive dyskinesia' H. L. KLAWANS2 AND R. RUBOVITS Fr-om the Divisioni of Neurology, Michael Reese Medical Center, Chicago, Illinois anid the Departmentt ofPsychiatry, University of Maryland, Baltimore, Maryland, U.S.A. SYNOPSIS Tardive dyskinesia, like several other choreiform disorders, is felt to be primarily related to dopaminergic activity within the striatum. Physostigmine has been demonstrated to improve the abnormal movements in patients with tardive dyskinesia while scopolamine tends to aggravate abnormal movements and in some cases elicits abnormal movement not previously observed. This evidence supports the hypothesis that anticholinergic therapy in patients prone to develop tardive dyskinesia may increase the incidence of this disorder the threshold for the by lowering appearance guest. Protected by copyright. of these movements. Tardive dyskinesia is a well-recognized side- been fully elucidated. However, there is evidence effect of long-term neuroleptic therapy (Crane, which suggests that dopamine acting at striatal 1968). The most prominent manifestation dopaminergic receptor sites may be closely is lingual-facial-buccal dyskinesia. Limb and related to the initiation of these choreiform trunkal chorea may accompany the facial move- movements in several clinical settings. Drugs ments (Paulson, 1968). The syndrome is most which alter the availability of dopamine at often seen in patients ranging in age from 50 to dopaminergic receptor sites alter choreiform 70 years who are most often diagnosed as symptomatology. Huntington's chorea is re- suffering chronic deteriorating schizophrenia.
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • ENLON-PLUS (Edrophonium Chloride, USP and Atropine Sulfate, USP) Injection
    NDA 19-677/S-005 NDA 19-678/S-005 Page 3 ENLON-PLUS (edrophonium chloride, USP and atropine sulfate, USP) Injection Rx only DESCRIPTION ENLON-PLUS (edrophonium chloride, USP and atropine sulfate, USP) Injection, for intravenous use, is a sterile, nonpyrogenic, nondepolarizing neuromuscular relaxant antagonist. ENLON-PLUS is a combination drug containing a rapid acting acetylcholinesterase inhibitor, edrophonium chloride, and an anticholinergic, atropine sulfate. Chemically, edrophonium chloride is ethyl (m-hydroxyphenyl) dimethylammonium chloride; its structural formula is: Molecular Formula: C10H16ClNO Molecular Weight: 201.70 Chemically, atropine sulfate is: endo-(±)-alpha-(hydroxymethyl)-8-methyl-8-azabicyclo [3.2.1]oct-3-yl benzeneacetate sulfate (2:1) monohydrate. Its structural formula is: Molecular Formula: (C17H23NO3)2·H2SO4·H2O NDA 19-677/S-005 NDA 19-678/S-005 Page 4 Molecular Weight: 694.84 ENLON-PLUS contains in each mL of sterile solution: 5 mL Ampuls: 10 mg edrophonium chloride and 0.14 mg atropine sulfate compounded with 2.0 mg sodium sulfite as a preservative and buffered with sodium citrate and citric acid. The pH range is 4.0- 5.0. 15 mL Multidose Vials: 10 mg edrophonium chloride and 0.14 mg atropine sulfate compounded with 2.0 mg sodium sulfite and 4.5 mg phenol as a preservative and buffered with sodium citrate and citric acid. The pH range is 4.0-5.0. CLINICAL PHARMACOLOGY Pharmacodynamics ENLON-PLUS (edrophonium chloride, USP and atropine sulfate, USP) Injection is a combination of an anticholinesterase agent, which antagonizes the action of nondepolarizing neuromuscular blocking drugs, and a parasympatholytic (anticholinergic) drug, which prevents the muscarinic effects caused by inhibition of acetylcholine breakdown by the anticholinesterase.
    [Show full text]
  • Integrated Approach for Identifying the Molecular, Cellular, and Host Responses to Chemical Insults
    Integrated Approach for Identifying the Molecular, Cellular, and Host Responses to Chemical Insults Audrey E. Fischer, Emily P. English, Julia B. Patrone, Kathlyn Santos, Jody B. G. Proescher, Rachel S. Quizon, Kelly A. Van Houten, Robert S. Pilato, Eric J. Van Gieson, and Lucy M. Carruth e performed a pilot study to characterize the molecular, cellular, and whole-organism response to nonlethal chemical agent exposure in the central nervous system. Multiple methodologies were applied to measure in vitro enzyme inhibition, neuronal cell pathway signaling, and in vivo zebrafish neural development in response to challenge with two different classes of chemical compounds. While all compounds tested exhibited expected enzyme inhibitory activity against acetylcholinesterase (AChE), a well-characterized target of chemical agents, distinct differences between chemical exposures were detected in cellular toxicity and pathway target responses and were tested in a zebrafish model. Some of these differences have not been detected using conventional chemical toxicity screening methods. Taken together, the data demonstrate the potential value of an integrated, multimethodological approach for improved target and pathway identification for subsequent diagnostic and therapeutic biomarker development. INTRODUCTION To build capability and leverage new and growing cell models to complete living organisms. Regardless of biology and chemistry expertise at APL, a collabora- the model selected, challenges exist in sample collection, tive, cross-departmental effort was established through a dose determination, and biases inherent in each assay/ series of related independent research and development technology. Therefore, multiple experimental methodol- (IR&D) projects. The focus of this effort was on mitiga- ogies brought to bear on a particular biological question tion of chemical and biological threat agents.
    [Show full text]
  • Carey Nat Pope
    CAREY NAT POPE College of Veterinary Medicine Oklahoma State University 264 McElroy Hall Stillwater, OK 74078 [email protected] (405)744-6257 (fax)744-4345 EDUCATION 1981-1985 University of Texas Graduate School of Biomedical Sciences, Houston, TX. Degree: Ph.D. (Pharmacology/Toxicology). 1977-1979 Stephen F. Austin State University, Nacogdoches, TX. Degree: M.S. (Biology). 1974-1976 Stephen F. Austin State University, Nacogdoches, TX. Degree: B.S. (Biology). 1971-1973 University of Houston, Houston, TX. EXPERIENCE 12/2015-present Adjunct Professor, Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 10/2014-present Adjunct Professor, Department of Integrative Biology, Oklahoma State University, Stillwater, OK 3/2013-present Director, Graduate Certificate Program in Interdisciplinary Toxicology, Oklahoma State University, Stillwater, OK. 6/2012-present Director, Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK. 7/1/2006-1/31/2012 Head, Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK. 8/1/2005-6/30/06 Interim Head, Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK. 1/2000-present Professor and Sitlington Endowed Chair in Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK. 8/95-12/99 Director, Division of Toxicology, College of Pharmacy and Health Sciences, University of Louisiana at Monroe, Monroe, LA. Division included five full-time tenured or tenure-track members and one instructor and was responsible for implementing B.S., M.S. and Ph.D. degree programs in Toxicology. 12/93-12/99 Director, B.S. Toxicology Program, College of Pharmacy and Health Sciences, University of Louisiana at Monroe, Monroe, LA.
    [Show full text]
  • Pyridostigmine Bromide Tablets, USP 8249401/0420 Rx Only
    PYRIDOSTIGMINE BROMIDE- pyridostigmine bromide tablet American Health Packaging ---------- Pyridostigmine Bromide Tablets, USP 8249401/0420 Rx only DESCRIPTION Pyridostigmine bromide is an orally active cholinesterase inhibitor. Chemically, pyridostigmine bromide is 3-hydroxy-1-methylpyridinium bromide dimethylcarbamate. Its structural formula is: Pyridostigmine bromide tablets USP is available as a 60 mg tablet for oral administration. The tablet contains the following inactive ingredients: colloidal silicon dioxide, lactose anhydrous, magnesium stearate and stearic acid. CLINICAL PHARMACOLOGY Pyridostigmine bromide inhibits the destruction of acetylcholine by cholinesterase and thereby permits freer transmission of nerve impulses across the neuromuscular junction. Pyridostigmine is an analog of neostigmine (Prostigmin ®), but differs from it in certain clinically significant respects; for example, pyridostigmine is characterized by a longer duration of action and fewer gastrointestinal side effects. INDICATIONS AND USAGE Pyridostigmine bromide tablets are useful in the treatment of myasthenia gravis. CONTRAINDICATIONS Pyridostigmine bromide is contraindicated in mechanical intestinal or urinary obstruction, and particular caution should be used in its administration to patients with bronchial asthma. Care should be observed in the use of atropine for counteracting side effects, as discussed below. WARNINGS Although failure of patients to show clinical improvement may reflect underdosage, it can also be indicative of overdosage. As is true of all cholinergic drugs, overdosage of pyridostigmine bromide may result in cholinergic crisis, a state characterized by increasing muscle weakness which, through involvement of the muscles of respiration, may lead to death. Myasthenic crisis due to an increase in the severity of the disease is also accompanied by extreme muscle weakness, and thus may be difficult to distinguish from cholinergic crisis on a symptomatic basis.
    [Show full text]
  • Mytelase (Ambenonium Chloride) Tablets Label
    NDA 010155/S-022 NDA 010155/ S-023 FDA Approved Labeling Text dated 11/10/2011 Page 1 MYTELASE® AMBENONIUM CHLORIDE DESCRIPTION MYTELASE, brand of ambenonium chloride, is [Oxalylbis (iminoethylene)] bis[(o­ chlorobenzyl) diethylammonium] dichloride, a white crystalline powder, soluble in water to 20 percent (w/v). Inactive Ingredients: Acacia, Dibasic Calcium Phosphate, Gelatin, Lactose, Magnesium Stearate, Starch, Sucrose. CLINICAL PHARMACOLOGY The compound is a cholinesterase inhibitor with all the pharmacologic actions of acetylcholine, both the muscarinic and nicotinic types. Cholinesterase inactivates acetylcholine. Like neostigmine, MYTELASE suppresses cholinesterase but has the advantage of longer duration of action and fewer side effects on the gastrointestinal tract. The longer duration of action also results in more even strength, better endurance, and greater residual effect during the night and on awakening than is produced by shorter-acting anticholinesterase compounds. INDICATION AND USAGE This drug is indicated for the treatment of myasthenia gravis. CONTRAINDICATIONS Routine administration of atropine with MYTELASE is contraindicated since belladonna derivatives may suppress the parasympathomimetic (muscarinic) symptoms of excessive gastrointestinal stimulation, leaving only the more serious symptoms of fasciculation and paralysis of voluntary muscles as signs of overdosage. MYTELASE should not be administered to patients receiving mecamylamine, or any other ganglionic blocking agents. MYTELASE should also not be administered to patients with a known hypersensitivity to ambenonium chloride or any other ingredients of MYTELASE. WARNINGS Because this drug has a more prolonged action than other antimyasthenic drugs, simultaneous administration with other cholinergics is contraindicated except under strict medical supervision. The overlap in duration of action of several drugs complicates dosage schedules.
    [Show full text]
  • Cholinergic Regulation of Neurite Outgrowth from Isolated Chick Sympathetic Neurons in Culture
    The Journal of Neuroscience, January 1995, 15(i): 144-151 Cholinergic Regulation of Neurite Outgrowth from Isolated Chick Sympathetic Neurons in Culture David H. Small,’ Gullveig Reed,’ Bryony Whitefield,’ and Victor Nurcombe* Departments of ‘Pathology and 2Anatomy and Cell Biology, The University of Melbourne, and the Mental Health Research Institute of Victoria, Parkville, Victoria 3052, Australia Neurotransmitters have been reported to regulate neurite mate, serotonin, and dopamine have all beenshown to influence outgrowth in several vertebrate and nonvertebrate species. neurite outgrowth in culture (Mattson, 1988; Lipton and Kater, In this study, cultures of isolated embryonic day 12 (E12) 1989). There is also evidence that ACh could have nonclassical chick sympathetic neurons were grown in the presence of actions in the nervous system (Lankford et al., 1988; Lipton et cholinergic receptor agonists or antagonists. Both ACh and al., 1988; Mattson, 1988). The biosynthetic and degradative the nonhydrolyzable cholinergic agonist carbamylcholine enzymesofcholinergic pathways ChAT and AChE are expressed (CCh) inhibited neurite outgrowth. ACh (0.1-l .O mM) de- in the developing brain well before the major period of syn- creased the percentage of neurons bearing neurites, but had aptogenesis(Filogamo and Marchisio, 1971; Silver, 1974), sug- no significant effect on cell survival. The effect of ACh was gesting that they may be involved in functions unrelated to increased in the presence of the cholinesterase inhibitors neurotransmission. ACh has been shown to suppressneurite BW284C51 (1 MM), Tacrine (20 PM), and edrophonium (200 outgrowth from chick (Lankford et al., 1988) and rat (Lipton et PM). Neurite outgrowth was strongly inhibited by the mus- al., 1988) retinal cells, from hippocampal pyramidal neurons carinic receptor agonist oxotremorine (5-100 PM) and weakly (Mattson, 1988) and to prevent the inhibition of processout- inhibited by nicotine (50 nM to 10 PM).
    [Show full text]
  • 203629Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 203629Orig1s000 CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S) The Sponsor re-submitted the application on 7/11/2014 to address the deficiencies. No additional clinical pharmacology information was submitted in this submission. As stated in the review for the original submission, the Office of Clinical Pharmacology / Division of Clinical Pharmacology II (OCP/DCP-II) found the NDA acceptable from clinical pharmacology perspective. Since labeling negotiation with the Sponsor was not completed in the original submission cycle, we will continue to work with the Sponsor on the labeling language, such as dosing recommendations in specific population such as elderly, patients with renal or hepatic impairment. 2 Reference ID: 3677897 --------------------------------------------------------------------------------------------------------- This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. --------------------------------------------------------------------------------------------------------- /s/ ---------------------------------------------------- DAVID J LEE 12/23/2014 YUN XU 12/23/2014 Reference ID: 3677897 BIOPHARMACEUTICS GENERAL APPLICATION REVIEW Office of New Drug Quality Assessment Application No.: 203-629 27 January 2014 Reviewer: Minerva Hughes, Ph.D. Submission Date: 11 July 2014 Division of Anesthesia, Team Leader: Angelica Dorantes, Ph.D. Division: Analgesia, and Addiction Secondary:
    [Show full text]
  • UNIVERSITY of CALIFORNIA SAN DIEGO Establishment and Validation of the Freshwater Planarian, Dugesia Japonica, As an Alternative
    UNIVERSITY OF CALIFORNIA SAN DIEGO Establishment and Validation of the Freshwater Planarian, Dugesia japonica, as an Alternative Animal Model for Developmental Neurotoxicology using Organophosphorus Pesticides A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Danielle Hagstrom Committee in charge: Professor Eva-Maria Schoetz Collins, Chair Professor James Posakony, Co-Chair Professor Palmer Taylor Professor Robert Tukey Professor Jing Wang Professor Deborah Yelon 2018 Copyright Danielle Hagstrom, 2018 All rights reserved. The Dissertation of Danielle Hagstrom is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii TABLE OF CONTENTS Signature Page………………………………………………………………………………... iii Table of Contents……………………………………………………………………………... iv List of Figures……………………………………………………………………………........ v List of Tables………………………………………………………………………………..... vii Acknowledgements………………………………………………………………………....... viii Vita…………………………………………………………………………………………… xii Abstract of the Dissertation…………………………………………………………………… xiii Chapter 1: Planarian brain regeneration as a model system for developmental neurotoxicology………….……………………………………………………………………. 1 Chapter 2: Freshwater planarians as an alternative animal model for neurotoxicology………. 38 Chapter 3: Multi-behavioral endpoint testing of an 87-chemical compound library in freshwater planarians………………………………………………………………………………………. 83 Chapter 4: Comparative
    [Show full text]