Integrated Approach for Identifying the Molecular, Cellular, and Host Responses to Chemical Insults
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neurogenic Decisions Require a Cell Cycle Independent Function of The
RESEARCH ARTICLE Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase Fre´ de´ ric Bonnet1†, Angie Molina1†, Me´ lanie Roussat1, Manon Azais2, Sophie Bel-Vialar1, Jacques Gautrais2, Fabienne Pituello1*, Eric Agius1* 1Centre de Biologie du De´veloppement, Centre de Biologie Inte´grative, Universite´ de Toulouse, CNRS, UPS, Toulouse, France; 2Centre de Recherches sur la Cognition Animale, Centre de Biologie Inte´grative., Universite´ de Toulouse, CNRS, UPS, Toulouse, France Abstract A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent *For correspondence: of its action on the cell cycle. [email protected] (FP); [email protected] (EA) †These authors contributed equally to this work Introduction In multicellular organisms, managing the development, homeostasis and regeneration of tissues Competing interests: The requires the tight control of self-renewal and differentiation of stem/progenitor cells. -
Identification of Small Molecule Modulators of Diguanylate Cyclase
bioRxiv preprint doi: https://doi.org/10.1101/402909; this version posted August 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Identification of Small Molecule Modulators of Diguanylate Cyclase by FRET-based High-Throughput-Screening Matthias Christen1, , Cassandra Kamischke2, Hemantha D. Kulasekara2, Kathleen C. Olivas3, Bridget R. Kulasekara4, Beat Christen1, Toni Kline5, and Samuel I. Miller2,4,6, 1Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland 2Department of Microbiology, University of Washington, Seattle, United States 3Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021 4Department of Genome Sciences, University of Washington, Seattle 5Sutro Biopharma, 310 Utah Avenue, South San Francisco, CA 94080 6Department of Medicine, University of Washington, Seattle The bacterial second messenger cyclic diguanosine monophos- parent role of c-di-GMP in the cell cycle and the presence of phate (c-di-GMP) is a key regulator of cellular motility, the cell many paralogous DGC enzymes controlling diverse cellular cycle, and biofilm formation with its resultant antibiotic tol- functions indicate that there is likely tight spatial and tem- erance, which may make chronic infections difficult to treat. poral regulation of c-di-GMP (10–12). Bacterial genomes Therefore, diguanylate cyclases, which regulate the spatiotem- encode multiple GGDEF domains in proteins with signal- poral production of c-di-GMP, may be attractive drug tar- sensing domains (13). -
Cardiovascular Monitoring with Acetylcholinesterase Inhibitors: a Clinical Protocol† Jeremy P
Advances in Psychiatric Treatment (2007), vol. 13, 178–184 doi: 10.1192/apt.bp.106.002725 Cardiovascular monitoring with acetylcholinesterase inhibitors: a clinical protocol† Jeremy P. Rowland, John Rigby, Adam C. Harper & Rosalind Rowland Abstract There has been significant anxiety among prescribers regarding the potential for cardiac adverse effects associated with acetylcholinesterase (AChE) inhibitors in Alzheimer’s disease. There is no consensus on how to manage this cardiovascular risk, and memory clinics vary widely in their practice. Review of published evidence reveals that the incidence of cardiovascular side-effects is low, and that serious adverse events are rare. Intensive cardiovascular screening such as pre-treatment electrocardiograms or 24 h cardiac monitoring is not justified. Furthermore, there are no high-risk groups to target. This article suggests pragmatic guidelines for managing cardiovascular risk in patients receiving AChE inhibitors. The guidelines are intended to be easy to incorporate into routine clinical practice in a memory clinic. A few years ago it was estimated that almost 18 thus followed some uncertainty as to how treatment million people worldwide had dementia (Alzheimer’s should be properly managed. Society, 2004), with Alzheimer’s disease accounting Since the manufacturers’ cautions remain (see the for over half of cases (Fratiglioni, 2000). The second- relevant entries in http://emc.medicines.org.uk) and generation acetylcholinesterase (AChE) inhibitors guidance has been unforthcoming, services now vary donepezil, rivastigmine and galantamine were widely in their practice: some, for example, require introduced into clinical practice from 1997 for the electrocardiograms (ECGs) before use and during symptomatic treatment of Alzheimer’s disease, and treatment, whereas others do not. -
On Cellular Automaton Approaches to Modeling Biological Cells
ON CELLULAR AUTOMATON APPROACHES TO MODELING BIOLOGICAL CELLS MARK S. ALBER∗, MARIA A. KISKOWSKIy , JAMES A. GLAZIERz , AND YI JIANGx Abstract. We discuss two different types of Cellular Automata (CA): lattice-gas- based cellular automata (LGCA) and the cellular Potts model (CPM), and describe their applications in biological modeling. LGCA were originally developed for modeling ideal gases and fluids. We describe several extensions of the classical LGCA model to self-driven biological cells. In partic- ular, we review recent models for rippling in myxobacteria, cell aggregation, swarming, and limb bud formation. These LGCA-based models show the versatility of CA in modeling and their utility in addressing basic biological questions. The CPM is a more sophisticated CA, which describes individual cells as extended objects of variable shape. We review various extensions to the original Potts model and describe their application to morphogenesis; the development of a complex spatial struc- ture by a collection of cells. We focus on three phenomena: cell sorting in aggregates of embryonic chicken cells, morphological development of the slime mold Dictyostelium discoideum and avascular tumor growth. These models include intercellular and extra- cellular interactions, as well as cell growth and death. 1. Introduction. Cellular automata (CA) consist of discrete agents or particles, which occupy some or all sites of a regular lattice. These par- ticles have one or more internal state variables (which may be discrete or continuous) and a set of rules describing the evolution of their state and position (in older models, particles usually occupied all lattice sites, one particle per node, and did not move). -
Proteomic and Bioinformatic Investigation of Altered Pathways in Neuroglobin-Deficient Breast Cancer Cells
molecules Article Proteomic and Bioinformatic Investigation of Altered Pathways in Neuroglobin-Deficient Breast Cancer Cells Michele Costanzo 1,2 , Marco Fiocchetti 3 , Paolo Ascenzi 3, Maria Marino 3 , Marianna Caterino 1,2,* and Margherita Ruoppolo 1,2,* 1 Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; [email protected] 2 CEINGE—Biotecnologie Avanzate S.C.Ar.L., 80145 Naples, Italy 3 Department of Science, University Roma Tre, 00146 Rome, Italy; marco.fi[email protected] (M.F.); [email protected] (P.A.); [email protected] (M.M.) * Correspondence: [email protected] (M.C.); [email protected] (M.R.) Abstract: Neuroglobin (NGB) is a myoglobin-like monomeric globin that is involved in several processes, displaying a pivotal redox-dependent protective role in neuronal and extra-neuronal cells. NGB remarkably exerts its function upon upregulation by NGB inducers, such as 17β-estradiol (E2) and H2O2. However, the molecular bases of NGB’s functions remain undefined, mainly in non- neuronal cancer cells. Human MCF-7 breast cancer cells with a knocked-out (KO) NGB gene obtained using CRISPR/Cas9 technology were analyzed using shotgun label-free quantitative proteomics in comparison with control cells. The differential proteomics experiments were also performed after treatment with E2, H2O2, and E2 + H2O2. All the runs acquired using liquid chromatography–tandem mass spectrometry were elaborated within the same MaxQuant analysis, leading to the quantification Citation: Costanzo, M.; Fiocchetti, of 1872 proteins in the global proteomic dataset. Then, a differentially regulated protein dataset was M.; Ascenzi, P.; Marino, M.; Caterino, M.; Ruoppolo, M. -
Malathion Human Health and Ecological Risk Assessment Final Report
SERA TR-052-02-02c Malathion Human Health and Ecological Risk Assessment Final Report Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-06-0012 SERA Internal Task No. 52-02 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Fax: (315) 637-0445 E-Mail: [email protected] Home Page: www.sera-inc.com May 12, 2008 Table of Contents Table of Contents............................................................................................................................ ii List of Figures................................................................................................................................. v List of Tables ................................................................................................................................. vi List of Appendices ......................................................................................................................... vi List of Attachments........................................................................................................................ vi ACRONYMS, ABBREVIATIONS, AND SYMBOLS ............................................................... vii COMMON UNIT CONVERSIONS AND ABBREVIATIONS.................................................... x CONVERSION OF SCIENTIFIC NOTATION .......................................................................... -
Addressing 360O of Biochemical Imbalances to Restore Balance and Relieve Symptoms
Addressing 360o of biochemical imbalances to restore balance and relieve symptoms. Product Guide Effective June 2015 Product availability subject to change without notice. View the most current catalog electronically at www.neuroscienceinc.com/productcatalog Dr. Gottfried Kellermann and Mieke Kellermann Ushering in a New Age of Personalized Care As NeuroScience, Inc. enters its 15th year in business, we reflect on the driving force behind our services- providing you, the practitioner, with tools that allow you to more efficiently and effectively care for your patients. Together with our laboratory partner, Pharmasan Labs, Inc. we pioneered the Assess and Address™ approach for personalized patient care. New and Exciting Direction We recognize the evolving changes in patient care and patient expectation from their healthcare practitioners. More than ever, patients are taking control of their health and demanding care that allows them to get better faster and enjoy the healthy lifestyle they deserve. NeuroScience, along with Pharmasan Labs, has taken the lead in focusing on a model that not only identifies the imbalances behind many symptoms but how the network of those imbalances indicates deeper issues. This network approach points you in the direction of the root cause of patient symptoms, which when resolved can lead to improved, long-term health outcomes. Never satisfied with the status quo, we will continue to innovate to provide you with unparalleled support toward this end. A Provider of Personalized, Clinical Solutions…this is WHO WE ARE. Together, NeuroScience and Pharmasan are committed to providing you with the clinical assessments and tools you need to thrive in this rapidly changing healthcare market while better serving your patients. -
On Tardive Dyskinesia'
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.8.941 on 1 August 1974. Downloaded from Journial of Neurology, Neurosurgery, alid Psychiatry, 1974, 27, 941-947 Effect of cholinergic and anticholinergic agents on tardive dyskinesia' H. L. KLAWANS2 AND R. RUBOVITS Fr-om the Divisioni of Neurology, Michael Reese Medical Center, Chicago, Illinois anid the Departmentt ofPsychiatry, University of Maryland, Baltimore, Maryland, U.S.A. SYNOPSIS Tardive dyskinesia, like several other choreiform disorders, is felt to be primarily related to dopaminergic activity within the striatum. Physostigmine has been demonstrated to improve the abnormal movements in patients with tardive dyskinesia while scopolamine tends to aggravate abnormal movements and in some cases elicits abnormal movement not previously observed. This evidence supports the hypothesis that anticholinergic therapy in patients prone to develop tardive dyskinesia may increase the incidence of this disorder the threshold for the by lowering appearance guest. Protected by copyright. of these movements. Tardive dyskinesia is a well-recognized side- been fully elucidated. However, there is evidence effect of long-term neuroleptic therapy (Crane, which suggests that dopamine acting at striatal 1968). The most prominent manifestation dopaminergic receptor sites may be closely is lingual-facial-buccal dyskinesia. Limb and related to the initiation of these choreiform trunkal chorea may accompany the facial move- movements in several clinical settings. Drugs ments (Paulson, 1968). The syndrome is most which alter the availability of dopamine at often seen in patients ranging in age from 50 to dopaminergic receptor sites alter choreiform 70 years who are most often diagnosed as symptomatology. Huntington's chorea is re- suffering chronic deteriorating schizophrenia. -
Increased Processing of SINE B2 Ncrnas Unveils a Novel Type Of
RESEARCH ARTICLE Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology Yubo Cheng1,2,3,4†, Luke Saville1,2,3,4†, Babita Gollen1,2,3,4†, Christopher Isaac1,2,3,4†, Abel Belay1,2,3,4, Jogender Mehla3, Kush Patel1,2,3, Nehal Thakor1,2,3, Majid H Mohajerani3, Athanasios Zovoilis1,2,3,4* 1Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada; 2Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Canada; 3Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada; 4Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Canada Abstract The functional importance of many non-coding RNAs (ncRNAs) generated by repetitive elements and their connection with pathologic processes remains elusive. B2 RNAs, a class of ncRNAs of the B2 family of SINE repeats, mediate through their processing the transcriptional activation of various genes in response to stress. Here, we show that this response is dysfunctional during amyloid beta toxicity and pathology in the mouse hippocampus due to increased levels of B2 RNA processing, leading to constitutively elevated B2 RNA target gene expression and high Trp53 levels. Evidence indicates that Hsf1, a master regulator of stress response, mediates B2 RNA *For correspondence: processing in hippocampal cells and is activated during amyloid toxicity, accelerating the [email protected] processing of SINE RNAs and gene hyper-activation. Our study reveals that in mouse, SINE RNAs † constitute a novel pathway deregulated in amyloid beta pathology, with potential implications for These authors contributed equally to this work similar cases in the human brain, such as Alzheimer’s disease (AD). -
Genetic Algorithms and Their Application to In-Silico Evolution of Genetic Regulatory Networks
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Hertfordshire Research Archive Genetic Algorithms and their Application to in-silico Evolution of Genetic Regulatory Networks Johannes F. Knabe‡†, Katja Wegner†, Chrystopher L. Nehaniv‡†, and Maria J. Schilstra†* †Biological and Neural Computation Laboratory, and ‡Adaptive Systems Research Group, STRI, University of Hertfordshire, Hatfield, AL10 9AB United Kingdom *To whom correspondence should be addressed ([email protected]) i. Abstract A genetic algorithm (GA) is a procedure that mimics processes occurring in Darwinian evolution to solve computational problems. A GA introduces variation through “mutation” and “recombination” in a “population” of possible solutions to a problem, encoded as strings of characters in “genomes”, and allows this population to evolve, using selection procedures that favor the gradual enrichment of the gene pool with the genomes of the “fitter” individuals. GA’s are particularly suitable for optimization problems in which an effective system design or set of parameter values is sought. In nature, genetic regulatory networks (GRN’s) form the basic control layer in the regulation of gene expression levels. GRN’s are composed of regulatory interactions between genes and their gene products, and are, inter alia, at the basis of the development of single fertilized cells into fully grown organisms. This paper describes how GA’s may be applied to find functional regulatory schemes and parameter values for models that capture the fundamental GRN characteristics. The central ideas behind evolutionary computation and GRN modeling, and the considerations in GA design and use are discussed, and illustrated with an extended example. -
Self-Reproduction Based on Turing Machines
MEASURES OF ORGANIZATION IN A MODEL OF CELLULAR SELF-REPRODUCTION BASED ON TURING MACHINES WALTER R. STAHL OREGON REGIONAL PRIMATE RESEARCH CENTER BEAVERTON, OREGON 1. Introductory summary The late John von Neumann first realized that self-reproduction, as observed in biological systems, was a legitimate problem of mathematics, specifically of automata and algorithm theory. He founded the study of self-reproduction in systems of "natural automata." This report deals with the self-organizing prop- erties of a new type of cellular self-reproduction model. The action of enzymes is simulated by Turing machines acting as molecular automata or computers, with their highly standardized coding corresponding to genes of the cell. Com- puter experiments have been done to test the stability and logical homeostatic properties of a 36 gene cell model. It is shown that the system will continue to organize itself and reproduce in spite of a variety of environmental deficiencies and disturbances, and also to repair itself after certain kinds of injury. The most pertinent organizational criteria for the described model are amounts of "energy" and "time cycles" needed to reach maturity and reproduce. Comparisons are drawn between these organizational measures and thermodynamic informa- tional parameters such as Gibbsean chemical potential and entropy. The total amount of genetic and cellular information can be quantified in the cell model and this helps clarify some confusing aspects of genetic information measures. The model is highly idealized. It bears somewhat the same relationship to real cells as computer circuits do to the brain, but shows that automata theory can be applied to molecular biology in a meaningful way. -
Metabolic Network Modeling with Model Organisms
Available online at www.sciencedirect.com ScienceDirect Metabolic network modeling with model organisms L Safak Yilmaz and Albertha JM Walhout Flux balance analysis (FBA) with genome-scale metabolic reconstruct a genome-scale metabolic network model network models (GSMNM) allows systems level predictions of (GSMNM), which is then used to calculate the flux metabolism in a variety of organisms. Different types of distribution over the entire network in any defined con- predictions with different accuracy levels can be made dition for the organism (see below). For model organisms, depending on the applied experimental constraints ranging high-quality genomic annotations allow the reconstruc- from measurement of exchange fluxes to the integration of tion of comprehensive GSMNMs that can be parame- gene expression data. Metabolic network modeling with model terized and validated with publically available experi- organisms has pioneered method development in this field. In mental datasets. In addition, since many properties of addition, model organism GSMNMs are useful for basic metabolic networks are conserved across taxa, model understanding of metabolism, and in the case of animal organism GSMNMs can be used to study human disease models, for the study of metabolic human diseases. Here, we with animal models, while plant models can instruct discuss GSMNMs of most highly used model organisms with agriculture. the emphasis on recent reconstructions. Here, we first summarize the basics of genome-scale meta- Address bolic network modeling, and then explore GSMNMs Program in Systems Biology, Program in Molecular Medicine, University and their applications in common model organisms [3] of Massachusetts Medical School, Worcester, MA, United States (Figure 1).