UNIVERSITY of CALIFORNIA SAN DIEGO Establishment and Validation of the Freshwater Planarian, Dugesia Japonica, As an Alternative

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA SAN DIEGO Establishment and Validation of the Freshwater Planarian, Dugesia Japonica, As an Alternative UNIVERSITY OF CALIFORNIA SAN DIEGO Establishment and Validation of the Freshwater Planarian, Dugesia japonica, as an Alternative Animal Model for Developmental Neurotoxicology using Organophosphorus Pesticides A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Danielle Hagstrom Committee in charge: Professor Eva-Maria Schoetz Collins, Chair Professor James Posakony, Co-Chair Professor Palmer Taylor Professor Robert Tukey Professor Jing Wang Professor Deborah Yelon 2018 Copyright Danielle Hagstrom, 2018 All rights reserved. The Dissertation of Danielle Hagstrom is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii TABLE OF CONTENTS Signature Page………………………………………………………………………………... iii Table of Contents……………………………………………………………………………... iv List of Figures……………………………………………………………………………........ v List of Tables………………………………………………………………………………..... vii Acknowledgements………………………………………………………………………....... viii Vita…………………………………………………………………………………………… xii Abstract of the Dissertation…………………………………………………………………… xiii Chapter 1: Planarian brain regeneration as a model system for developmental neurotoxicology………….……………………………………………………………………. 1 Chapter 2: Freshwater planarians as an alternative animal model for neurotoxicology………. 38 Chapter 3: Multi-behavioral endpoint testing of an 87-chemical compound library in freshwater planarians………………………………………………………………………………………. 83 Chapter 4: Comparative analysis of zebrafish and planarian model systems for developmental neurotoxicity screens using an 87-compound library………………………………………….. 136 Chapter 5: Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation………………………………... 169 Chapter 6: Planarian cholinesterase: molecular and functional characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity………………………………… 198 Chapter 7: Comparative analysis of the mechanisms of organophosphorus pesticide developmental neurotoxicity in freshwater planarians........…………………………………………………… 240 Chapter 8: Conclusion and future outlook……………………………………………………... 274 Appendix: Studying planarian regeneration aboard the International Space Station within the Student Space Flight Experimental Program………………………………………………….. 281 iv LIST OF FIGURES Figure 1.1. Comparison of the two scoring systems by Grebe and Schaeffer (GS-system) (Grebe & Schaeffer 1991) and Wu et al (Wu, Chen, et al. 2012).……………………………………… 8 Figure 1.2. Examples of planarian morphological readouts and body shapes…………………... 12 Figure 1.3. Overview of behavioral assays employed in the literature to quantify neuronal function after toxicant exposure…………………………………………………………………………. 14 Figure 1.4. Morphological and anatomical readouts of developmental neurotoxicity in planarians. …………………………………………………………………………………………………. 18 Figure 2.1. Overview of assay………………………………………………………………….. 54 Figure 2.2. Viability of full and regenerating worms…………………………………………… 56 Figure 2.3. Unstimulated behavior of toxicant-exposed full and regenerating worms………… 60 Figure 2.4. Regeneration is generally unaffected by toxicant exposure………………………... 64 Figure 2.5. Effects on brain morphology………………………………………………………. 67 Figure 2.6. Temperature sensing assay………………………………………………………… 71 Figure 2.7. Effect and potency of all toxicants on ten quantitative endpoints………………….. 73 Figure 3.1. Overview of planarian screening platform………………………………………… 103 Figure 3.2. Lethality and eye regeneration endpoints………………………………………...... 105 Figure 3.3. Unstimulated behavior: gliding and resting……………………………………….. 108 Figure 3.4. Comparison of time-points and worm types for unstimulated behavior hits………. 110 Figure 3.5. Stimulated behaviors………………………………………………………………. 111 Figure 3.6. Comparison of shared hits in stimulated vs unstimulated behaviors………………. 115 Figure 3.7. Analysis of LOEL by endpoint…………………………………………………….. 117 Figure 3.8. Summary of screening results for regenerating tail………………………………... 118 Figure 3.9. Summary of screening results in full planarians…………………………………… 119 Figure 4.1. Comparison of screening schemes in the zebrafish and planarian systems………... 148 v Figure 4.2. Summary of (A) zebrafish and (B) planarian hits in each endpoint class………… 150 Figure 4.3. Comparison of active hits in the zebrafish and regenerating planarian screens……. 152 Figure 4.4. Physicochemical properties of the NTP 87-compound library…………………….. 154 Figure 4.5. Inter-relationship between 28 chemicals, zebrafish and planarian assay endpoints and study types in ToxRefDB……………………………………………………………………… 157 Figure 5.1. DjChE shows kinetic characteristics intermediate to mammalian AChE and BChE. 179 Figure 5.2. Inhibition by classic reversible quaternary and uncharged amine inhibitors………. 180 Figure 5.3. Oxime elicited reactivation of diazinon oxon inhibited DjChE activity using 4 mM (A) 2-PAM or (B) RS194B)………………………………………………………………………. 183 Figure 5.4. DjChE is efficiently reactivated by NaF……………………………………........... 184 Figure 6.1. Candidate DjChEs show characteristics of both AChE and BChE……………….... 213 Figure 6.2. Homology modeling of planarian cholinesterase protein structure……………....... 214 Figure 6.3. Planarian cholinesterases are expressed in the nervous system…………………..... 215 Figure 6.4. Planarian cholinesterases co-localize with each other and Djchat in the medial arc of the brain……………………………………………………………………………………….. 216 Figure 6.5. Inhibition of DjChE decreases sensitivity to heat stress…………………………… 218 Figure 6.6. Diazinon and physostigmine, but not DjChE knockdown, increase worm adhesion (“stickiness”)………………………………………………………………………………….. 222 Figure 7.1. Body shape classifications in the morphology assay………………………………. 253 Figure 7.2. Regenerating planarian toxicological profiles…………………………………….. 256 Figure 7.3. Full planarian toxicological profiles………………………………………………. 264 vi LIST OF TABLES Table 1.1. Mechanistic pathways tested in planarian toxicology………………………………. 23 Table 2.1. Chemicals and concentration ranges tested………………………………………..... 44 Table 2.2. LC50 values after 2, 4, 8, or 15 days of exposure for full and regenerating worms…. 57 Table 2.3. Comparison of LC50 values for planarians with zebrafish and nematodes………….. 74 Table 2.4. Comparison of LOEL values of tested chemicals in planarians with previous studies in zebrafish and nematodes………………………………………………………………………. 75 Table 3.1. Summary of statistical testing……………………………………………………… 101 Table 3.2. Summary of percentage of actives observed in different toxicant classes in all endpoints for either full worms (F) or regenerating tails (R)……………………………………………… 120 Table 3.3. Developmentally selective chemicals ……………………………............................ 121 Table 3.4. Comparison of results with previous planarian studies……………………………... 125 Table 3.5. Summary of the strengths and weaknesses of the planarian toxicology system……. 127 Table 4.1. Classes of endpoints used in the two systems………………………………………. 144 Table 5.1. IC50 (M) of reversible inhibitors for 0.1 and 1 mM ATCh and BTCh……………… 181 Table 5.2. Rates of inhibition by OP oxons……………………………………………………. 182 Table 5.3. Rates of inhibition by carbamylating agents………………………………………... 182 Table 7.1. Chemicals tested in this screen……………………………………………………... 248 Table 7.2. Most sensitive endpoints affected by each chemical in regenerating planarians…… 257 Table 7.3. Developmental selectivity scores, quantified as the log(LOELfull/LOELregen), for endpoints shared in both worm-types………………………………………………………….. 265 vii ACKNOWLEDGEMENTS I would like to acknowledge Professor Eva-Maria S. Collins for her amazing support as the chair of my committee and as a fantastic mentor. I would also like to thank my committee members for all of their support and guidance through my graduate work. I would like to acknowledge Siqi Zhang for being my partner through most of my research. Our well-oiled teamwork was instrumental for our success. Her creation of the planarian medium-throughput screening platform was essential to my work. Chapter 1, in full, is a reprint of the material as it appears in Hagstrom, Danielle; Cochet- Escartin, Olivier; and Collins, Eva-Maria S. “Planarian brain regeneration as a model system for developmental neurotoxicology”, Regeneration, vol. 3, 2016. The final version is available online at: https://onlinelibrary.wiley.com/doi/full/10.1002/reg2.52. The authors retain copyright of this manuscript, which is an open access article permitting the use herein. Danielle Hagstrom, Olivier Cochet-Escartin, and Eva-Maria S. Collins co-wrote and edited the manuscript. Danielle Hagstrom was the primary investigator and author of this paper. Chapter 2, in full, is a reformatted reprint of the material as it appears in Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; and Collins, Eva-Maria S. “Freshwater planarians as an alternative animal model for neurotoxicology”, Toxicological Sciences, vol. 147, 2015. The version of record is available online at: https://academic.oup.com/toxsci/article/147/1/270/1642148. Use of this manuscript in the dissertation herein is covered by the rights permitted to the authors by Oxford Journals. Danielle Hagstrom, Olivier Cochet-Escartin, and Eva-Maria S. Collins designed the experiments and co- wrote the manuscript. Danielle Hagstrom, Olivier Cochet-Escartin, and Siqi Zhang designed and performed the experiments, analyzed,
Recommended publications
  • Manual of Experimentation in Planaria
    l\ MANUAL .OF PSYCHOLOGICAL EXPERIMENTATION ON PLANARIANS Ed;ted by James V. McConnell A MANUAL OF PSYCHOLOGICAL EXPERIMENTATI< ON PlANARIANS is a special publication of THE WORM RUNNER'S DIGEST James V. McConnell, Editor Mental Health Research Institute The University of Michigan Ann Arbor, Michigan BOARD OF CONSULTING EDITORS: Dr. Margaret L. Clay, Mental Health Research Institute, The University of Michigan Dr. WiHiam Corning, Department of Biophysics, Michigan State University Dr. Peter Driver, Stonehouse, Glouster, England Dr. Allan Jacobson, Department of Psychology, UCLA Dr. Marie Jenkins, Department of Biology, Madison College, Harrisonburg, Virginir Dr. Daniel P. Kimble, Department of Psychology, The University of Oregon Mrs. Reeva Jacobson Kimble, Department of Psychology, The University of Oregon Dr. Alexander Kohn, Department of Biophysics, Israel Institute for Biological Resear( Ness-Ziona, Israel Dr. Patrick Wells, Department of Biology, Occidental College, Los Angeles, Calif 01 __ Business Manager: Marlys Schutjer Circulation Manager: Mrs. Carolyn Towers Additional copies of this MANUAL may be purchased for $3.00 each from the Worm Runner's Digest, Box 644, Ann Arbor, Michigan. Information concerning subscription to the DIGEST itself may also be obtained from this address. Copyright 1965 by James V. McConnell No part of this MANUAL may be ;e�p� oduced in any form without prior written consen MANUAL OF PSYCHOLOGICAL EXPERIMENTATION ON PLANARIANS ·� �. : ,. '-';1\; DE DI�C A T 1 a'li � ac.-tJ.l that aILe. plle.J.le.l1te.cl iVl thiJ.l f, fANUA L [ve.lle. pUIlc.ilaJ.le.d blj ituVldlle.dJ.l 0& J.lc.ie.l1tiJ.ltJ.lo wil , '{'l1d.{.vidua"tlu aVld c.olle.c.t- c.aVlVlot be.g.{.Vl to l1ame.
    [Show full text]
  • Cardiovascular Monitoring with Acetylcholinesterase Inhibitors: a Clinical Protocol† Jeremy P
    Advances in Psychiatric Treatment (2007), vol. 13, 178–184 doi: 10.1192/apt.bp.106.002725 Cardiovascular monitoring with acetylcholinesterase inhibitors: a clinical protocol† Jeremy P. Rowland, John Rigby, Adam C. Harper & Rosalind Rowland Abstract There has been significant anxiety among prescribers regarding the potential for cardiac adverse effects associated with acetylcholinesterase (AChE) inhibitors in Alzheimer’s disease. There is no consensus on how to manage this cardiovascular risk, and memory clinics vary widely in their practice. Review of published evidence reveals that the incidence of cardiovascular side-effects is low, and that serious adverse events are rare. Intensive cardiovascular screening such as pre-treatment electrocardiograms or 24 h cardiac monitoring is not justified. Furthermore, there are no high-risk groups to target. This article suggests pragmatic guidelines for managing cardiovascular risk in patients receiving AChE inhibitors. The guidelines are intended to be easy to incorporate into routine clinical practice in a memory clinic. A few years ago it was estimated that almost 18 thus followed some uncertainty as to how treatment million people worldwide had dementia (Alzheimer’s should be properly managed. Society, 2004), with Alzheimer’s disease accounting Since the manufacturers’ cautions remain (see the for over half of cases (Fratiglioni, 2000). The second- relevant entries in http://emc.medicines.org.uk) and generation acetylcholinesterase (AChE) inhibitors guidance has been unforthcoming, services now vary donepezil, rivastigmine and galantamine were widely in their practice: some, for example, require introduced into clinical practice from 1997 for the electrocardiograms (ECGs) before use and during symptomatic treatment of Alzheimer’s disease, and treatment, whereas others do not.
    [Show full text]
  • Integrative Descriptions of Two New Species of Dugesia from Hainan Island, China (Platyhelminthes, Tricladida, Dugesiidae)
    ZooKeys 1028: 1–28 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1028.60838 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Integrative descriptions of two new species of Dugesia from Hainan Island, China (Platyhelminthes, Tricladida, Dugesiidae) Lei Wang1,3, Zi-mei Dong1, Guang-wen Chen1, Ronald Sluys2, De-zeng Liu1 1 College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China 2 Naturalis Biodiver- sity Center, Leiden, the Netherlands 3 Medical College, Xinxiang University, Xinxiang 453003, China Corresponding author: Guang-wen Chen ([email protected]) Academic editor: Y. Mutafchiev | Received 17 November 2020 | Accepted 24 February 2021 | Published 05 April 2021 http://zoobank.org/A5EF1C8A-805B-4AAE-ACEB-C1CACB691FCA Citation: Wang L, Dong Z-m, Chen G-w, Sluys R, Liu D-z (2021) Integrative descriptions of two new species of Dugesia from Hainan Island, China (Platyhelminthes, Tricladida, Dugesiidae). ZooKeys 1028: 1–28. https://doi. org/10.3897/zookeys.1028.60838 Abstract Two new species of the genus Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from Hainan Island of China are described on the basis of morphological, karyological and molecular data. Dugesia semiglobosa Chen & Dong, sp. nov. is mainly characterized by a hemispherical, asymmetrical penis papilla with ven- trally displaced ejaculatory duct opening terminally at tip of penis papilla; vasa deferentia separately open- ing into mid-dorsal portion of intrabulbar seminal vesicle; two diaphragms in the ejaculatory duct; copula- tory bursa formed by expansion of bursal canal, lined with complex stratified epithelium, which projects through opening in bursa towards intestine, without having open communication with the gut; mixoploid chromosome complement diploid (2n = 16) and triploid (3n = 24), with metacentric chromosomes.
    [Show full text]
  • Occurrence of the Land Planarians Bipalium Kewense and Geoplana Sp
    Journal of the Arkansas Academy of Science Volume 35 Article 22 1981 Occurrence of the Land Planarians Bipalium kewense and Geoplana Sp. in Arkansas James J. Daly University of Arkansas for Medical Sciences Julian T. Darlington Rhodes College Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Daly, James J. and Darlington, Julian T. (1981) "Occurrence of the Land Planarians Bipalium kewense and Geoplana Sp. in Arkansas," Journal of the Arkansas Academy of Science: Vol. 35 , Article 22. Available at: http://scholarworks.uark.edu/jaas/vol35/iss1/22 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 35 [1981], Art. 22 GENERAL NOTES WINTER FEEDING OF FINGERLING CHANNEL CATFISH IN CAGES* Private warmwater fish culture of channel catfish (Ictalurus punctatus) inthe United States began inthe early 1950's (Brown, E. E., World Fish Farming, Cultivation, and Economics 1977. AVIPublishing Co., Westport, Conn. 396 pp). Early culture techniques consisted of stocking, harvesting, and feeding catfish only during the warmer months.
    [Show full text]
  • Tec-1 Kinase Negatively Regulates Regenerative Neurogenesis in Planarians Alexander Karge1, Nicolle a Bonar1, Scott Wood1, Christian P Petersen1,2*
    RESEARCH ARTICLE tec-1 kinase negatively regulates regenerative neurogenesis in planarians Alexander Karge1, Nicolle A Bonar1, Scott Wood1, Christian P Petersen1,2* 1Department of Molecular Biosciences, Northwestern University, Evanston, United States; 2Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States Abstract Negative regulators of adult neurogenesis are of particular interest as targets to enhance neuronal repair, but few have yet been identified. Planarians can regenerate their entire CNS using pluripotent adult stem cells, and this process is robustly regulated to ensure that new neurons are produced in proper abundance. Using a high-throughput pipeline to quantify brain chemosensory neurons, we identify the conserved tyrosine kinase tec-1 as a negative regulator of planarian neuronal regeneration. tec-1RNAi increased the abundance of several CNS and PNS neuron subtypes regenerated or maintained through homeostasis, without affecting body patterning or non-neural cells. Experiments using TUNEL, BrdU, progenitor labeling, and stem cell elimination during regeneration indicate tec-1 limits the survival of newly differentiated neurons. In vertebrates, the Tec kinase family has been studied extensively for roles in immune function, and our results identify a novel role for tec-1 as negative regulator of planarian adult neurogenesis. Introduction The capacity for adult neural repair varies across animals and bears a relationship to the extent of adult neurogenesis in the absence of injury. Adult neural proliferation is absent in C. elegans and *For correspondence: rare in Drosophila, leaving axon repair as a primary mechanism for healing damage to the CNS and christian-p-petersen@ northwestern.edu PNS. Mammals undergo adult neurogenesis throughout life, but it is limited to particular brain regions and declines with age (Tanaka and Ferretti, 2009).
    [Show full text]
  • S42003-018-0151-2.Pdf
    ARTICLE DOI: 10.1038/s42003-018-0151-2 OPEN Coordination between binocular field and spontaneous self-motion specifies the efficiency of planarians’ photo-response orientation behavior Yoshitaro Akiyama1,2, Kiyokazu Agata1,3 & Takeshi Inoue 1,3 1234567890():,; Eyes show remarkable diversity in morphology among creatures. However, little is known about how morphological traits of eyes affect behaviors. Here, we investigate the mechan- isms responsible for the establishment of efficient photo-response orientation behavior using the planarian Dugesia japonica as a model. Our behavioral assays reveal the functional angle of the visual field and show that the binocular field formed by paired eyes in D. japonica has an impact on the accurate recognition of the direction of a light source. Furthermore, we find that the binocular field in coordination with spontaneous wigwag self-motion of the head specifies the efficiency of photo-responsive evasive behavior in planarians. Our findings suggest that the linkage between the architecture of the sensory organs and spontaneous self-motion is a platform that serves for efficient and adaptive outcomes of planarian and potentially other animal behaviors. 1 Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan. 2 Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. 3 Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1
    [Show full text]
  • A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
    bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum.
    [Show full text]
  • The Effect of Caffeine and Ethanol on Flatworm Regeneration
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2007 The ffecE t of Caffeine nda Ethanol on Flatworm Regeneration. Erica Leighanne Collins East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Chemical and Pharmacologic Phenomena Commons Recommended Citation Collins, Erica Leighanne, "The Effect of Caffeine nda Ethanol on Flatworm Regeneration." (2007). Electronic Theses and Dissertations. Paper 2028. https://dc.etsu.edu/etd/2028 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. The Effect of Caffeine and Ethanol on Flatworm Regeneration ____________________ A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology ____________________ by Erica Leighanne Collins August 2007 ____________________ Dr. J. Leonard Robertson, Chair Dr. Thomas F. Laughlin Dr. Kevin Breuel Keywords: Regeneration, Planarian, Dugesia tigrina, Flatworms, Caffeine, Ethanol ABSTRACT The Effect of Caffeine and Ethanol on Flatworm Regeneration by Erica Leighanne Collins Flatworms, or planarian, have a high potential for regeneration and have been used as a model to investigate regeneration and stem cell biology for over a century. Chemicals, temperature, and seasonal factors can influence planarian regeneration. Caffeine and ethanol are two widely used drugs and their effect on flatworm regeneration was evaluated in this experiment.
    [Show full text]
  • Malathion Human Health and Ecological Risk Assessment Final Report
    SERA TR-052-02-02c Malathion Human Health and Ecological Risk Assessment Final Report Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-06-0012 SERA Internal Task No. 52-02 Submitted by: Patrick R. Durkin Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Fax: (315) 637-0445 E-Mail: [email protected] Home Page: www.sera-inc.com May 12, 2008 Table of Contents Table of Contents............................................................................................................................ ii List of Figures................................................................................................................................. v List of Tables ................................................................................................................................. vi List of Appendices ......................................................................................................................... vi List of Attachments........................................................................................................................ vi ACRONYMS, ABBREVIATIONS, AND SYMBOLS ............................................................... vii COMMON UNIT CONVERSIONS AND ABBREVIATIONS.................................................... x CONVERSION OF SCIENTIFIC NOTATION ..........................................................................
    [Show full text]
  • New Zealand Flatworm
    www.nonnativespecies.org Produced by Max Wade, Vicky Ames and Kelly McKee of RPS New Zealand Flatworm Species Description Scientific name: Arthurdendyus triangulatus AKA: Artioposthia triangulata Native to: New Zealand Habitat: Gardens, nurseries, garden centres, parks, pasture and on wasteland This flatworm is very distinctive with a dark, purplish-brown upper surface with a narrow, pale buff spotted edge and pale buff underside. Many tiny eyes. Pointed at both ends, and ribbon-flat. A mature flatworm at rest is about 1 cm wide and 6 cm long but when extended can be 20 cm long and proportionally narrower. When resting, it is coiled and covered in mucus. It probably arrived in the UK during the 1960s, with specimen plants sent from New Zealand to a botanic garden. It was only found occasionally for many years, but by the early 1990s there were repeated findings in Scotland, Northern Ireland and northern England. Native to New Zealand, the flatworm is found in shady, wooded areas. Open, sunny pasture land is too hot and dry with temperatures over 20°C quickly lethal to it. New Zealand flatworms prey on earthworms, posing a potential threat to native earthworm populations. Further spread could have an impact on wild- life species dependent on earthworms (e.g. Badgers, Moles) and could have a localised deleterious effect on soil structure. For details of legislation go to www.nonnativespecies.org/legislation. Key ID Features Underside pale buff Ribbon flat Leaves a slime trail Pointed at Numerous both ends tiny eyes 60 - 200 mm long; 10 mm wide Upper surface dark, purplish-brown with a narrow, pale buff edge Completely smooth body surface Forms coils when at rest Identification throughout the year Distribution Egg capsules are laid mainly in spring but can be found all year round.
    [Show full text]
  • The Genome of Schmidtea Mediterranea and the Evolution Of
    OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5.
    [Show full text]
  • On Tardive Dyskinesia'
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.8.941 on 1 August 1974. Downloaded from Journial of Neurology, Neurosurgery, alid Psychiatry, 1974, 27, 941-947 Effect of cholinergic and anticholinergic agents on tardive dyskinesia' H. L. KLAWANS2 AND R. RUBOVITS Fr-om the Divisioni of Neurology, Michael Reese Medical Center, Chicago, Illinois anid the Departmentt ofPsychiatry, University of Maryland, Baltimore, Maryland, U.S.A. SYNOPSIS Tardive dyskinesia, like several other choreiform disorders, is felt to be primarily related to dopaminergic activity within the striatum. Physostigmine has been demonstrated to improve the abnormal movements in patients with tardive dyskinesia while scopolamine tends to aggravate abnormal movements and in some cases elicits abnormal movement not previously observed. This evidence supports the hypothesis that anticholinergic therapy in patients prone to develop tardive dyskinesia may increase the incidence of this disorder the threshold for the by lowering appearance guest. Protected by copyright. of these movements. Tardive dyskinesia is a well-recognized side- been fully elucidated. However, there is evidence effect of long-term neuroleptic therapy (Crane, which suggests that dopamine acting at striatal 1968). The most prominent manifestation dopaminergic receptor sites may be closely is lingual-facial-buccal dyskinesia. Limb and related to the initiation of these choreiform trunkal chorea may accompany the facial move- movements in several clinical settings. Drugs ments (Paulson, 1968). The syndrome is most which alter the availability of dopamine at often seen in patients ranging in age from 50 to dopaminergic receptor sites alter choreiform 70 years who are most often diagnosed as symptomatology. Huntington's chorea is re- suffering chronic deteriorating schizophrenia.
    [Show full text]