AKAP12/Gravin Is Inactivated by Epigenetic Mechanism in Human Gastric Carcinoma and Shows Growth Suppressor Activity

Total Page:16

File Type:pdf, Size:1020Kb

AKAP12/Gravin Is Inactivated by Epigenetic Mechanism in Human Gastric Carcinoma and Shows Growth Suppressor Activity Oncogene (2004) 23, 7095–7103 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $30.00 www.nature.com/onc AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity Moon-Chang Choi1, Hyun-Soon Jong*,1, Tai Young Kim1, Sang-Hyun Song1, Dong Soon Lee2, Jung Weon Lee1, Tae-You Kim1,3, Noe Kyeong Kim3 and Yung-Jue Bang*,1,3 1National Research Laboratory for Cancer Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, Korea; 2Department of Clinical Pathology, Seoul National University College of Medicine, Seoul 110-744, Korea; 3Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744, Korea AKAP12/Gravin, one of the A-kinase anchoring proteins Introduction (AKAPs), functions as a kinase scaffold protein and as a dynamic regulator of the b2-adrenergic receptor complex. AKAP12/Gravin, one of the A-kinase anchoring However, the biological role of AKAP12 in cancer proteins (Dell’Acqua and Scott, 1997; Nauert et al., development is not well understood. The AKAP12 gene 1997; Diviani and Scott, 2001; Feliciello et al., 2001), encodes two major isoforms of 305 and 287 kDa was first isolated as a protein recognized by serum (designated AKAP12A and AKAP12B, respectively, in from myasthenia gravis patients (Gordon et al., 1992). this report). We found that these two isoforms are AKAP12 organizes the complex of PKA and PKC independently expressed and that they are probably under (Nauert et al., 1997), and is an important regulator the control of two different promoters. Moreover, both of the b2-adrenergic receptor complex (Shih et al., isoforms were absent from the majority of human gastric 1999; Lin et al., 2000a). AKAP12 expression can cancer cells. The results from methylation-specific PCR be induced by several drugs like phorbol ester (MSP)and bisulfite sequencing revealed that the 5 0 CpG (Gordon et al., 1992; Nauert et al., 1997) and lysopho- islands of both AKAP12A and AKAP12B are frequently sphatidylcholine (Sato et al., 1998), which suggests the hypermethylated in gastric cancer cells. Treatment with participation of AKAP12 in diverse signal transduction DNA methyltransferase inhibitor and/or histone deacety- cascades. lase inhibitor efficiently restored the expression of AKAP12 has been mapped to chromosome 6q24– AKAP12 isoforms, confirming that DNA methylation 25.2, which frequently contains deletions in tumors, is directly involved in the transcriptional silencing of including melanoma (Millikin et al., 1991) and breast AKAP12 in gastric cancer cells. Hypermethylation of cancer (Tibiletti et al., 2000). Interestingly, the down- AKAP12A CpG island was also detected in 56% (10 regulation of AKAP12 expression has been reported in of 18)of primary gastric tumors. The restoration of human prostate cancers in vivo (Xia et al., 2001), AKAP12A in AKAP12-nonexpressing cells reduced suggesting that the inactivation of AKAP12 expression colony formation and induced apoptotic cell death. In may be linked to oncogenesis. Thus, the molecular conclusion, our results suggest that AKAP12A may mechanism of the tumor-specific inactivation of function as an important negative regulator of the survival AKAP12 expression should be defined. pathway in human gastric cancer. The patterns of DNA methylation and chromatin Oncogene (2004) 23, 7095–7103. doi:10.1038/sj.onc.1207932 structure are profoundly altered in neoplasia. Aberrant Published online 19 July 2004 methylation of the CpG islands located in the promoter regions of tumor suppressor genes (TSGs) is now firmly Keywords: AKAP12; alternative promoter; DNA established as a major epigenetic mechanism of gene methylation; histone deacetylation; apoptosis inactivation in tumorigenesis (Jones and Laird, 1999; Esteller, 2002; Jones and Baylin, 2002). Genes silenced by DNA methylation can be restored by treatment with 5-aza-20-deoxycytidine (5-Aza-dC), an inhibitor of DNA methyltransferase (Jones and Taylor, 1980). The src-suppressed C-kinase substrate (SSeCKS), the rodent orthologue of human AKAP12, was originally *Correspondence: Y-J Bang, Department of Internal Medicine, Seoul identified as a gene downregulated in response to Src National University College of Medicine, 28 Yongon-dong, Chongro-gu, and Ras activation (Lin et al., 1995). The overexpression Seoul 110-744, Korea; of SSeCKS suppressed Src-induced oncogenesis by E-mail: [email protected]; H-S Jong, Cancer Research Institute, inhibiting the cellular proliferation, and by reducing Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, Korea; E-mail: [email protected] anchorage-independent growth in soft agar and inva- Received 16 November 2003; revised 1 April 2004; accepted 6 May 2004; siveness in Matrigel (Lin and Gelman, 1997). A recent published online 19 July 2004 report showed that SSeCKS regulates blood–brain Epigenetic inactivation of AKAP12 M-C Choi et al 7096 barrier differentiation by inhibiting angiogenesis by and SNU-5 cells expressed three isoforms (305, 287 and reducing VEGF expression, and that the constitutive 250kDa). Two isoforms were detected in SNU-484 (305 expression of SSeCKS may be important for brain and 250kDa) and SNU-638 (287 and 250kDa). homeostasis (Lee et al., 2003). Figure 2a is a schematic diagram of the AKAP12 gene In this study, we identified AKAP12 as a novel structure based on Genbank database (Accession no. epigenetic target gene in gastric cancer, and compara- NT_023451). AKAP12A is composed of four exons (1a, tively evaluated the silencing of the two transcripts of 2, 3 and 4), whereas AKAP12B contains three (1b, 3 and AKAP12. We also examined the tumor suppressor 4). To distinguish between the transcripts of AKAP12A activity of AKAP12A in gastric cancer cells. and AKAP12B, we performed 50-RACE using primers derived from exon 3, which is common to the two transcripts. All RACE products using the mRNA from Results SNU-638 encoded exon 1b, but not exon 1a (data not shown), indicating that SNU-638 cells express only Loss of AKAP12 expression in gastric cancer cell line AKAP12B. Notably, the upstream of exon 1b was not detected by 50-RACE, suggesting the existence of an Northern and Western analyses were performed to internal promoter located at the 50 boundary of the examine the expression of AKAP12 in human gastric coding exon 1b. To characterize the expression profiles cancer cells. HepG2 and three gastric cancer cell lines (SNU-5, -484 and -638) were found to express AKAP12 mRNA and protein, whereas the other cells did not (Figure 1). To determine whether AKAP12 inactivation is due to chromosomal deletion, the genomic DNA at the AKAP12 locus was examined by Southern blot and FISH analysis in gastric cancer cells; however, no genetic defects were detected (data not shown). These cell lines provided a panel of AKAP12-expressing and -nonexpressing cells, and were used to further investi- gate the mechanism underlying the loss of AKAP12 expression. Identification of distinct transcripts of AKAP12 The two transcripts of AKAP12 encode three isoforms of 305, 287 and 250 kDa (Xia et al., 2001; Gelman, 2002). One transcript variant 1 (designated AKAP12A in this study) encodes the large isoform (305 kDa), and another transcript variant 2 (designated AKAP12B in this study) has the small isoform (287 kDa), whereas the Mr 250kDa isoform is a proteolytic cleavage product of these two major isoforms. As shown in Figure 1, HepG2 Figure 2 Identification of differentially expressed AKAP12 Figure 1 Expression of AKAP12A mRNA and protein in gastric transcripts. (a) Schematic diagram of the intron/exon structure of cancer cells. Northern blot of total RNA was hybridized with the AKAP12 and splicing patterns. This representation is based on the probe for exon 3 (common to the two AKAP12 transcripts) and human genome sequence contig NT_023451. (b) Northern blots of subsequently with the b-actin probe as a loading control. The total RNA from HEK293, HepG2, SNU-601 (À), SNU-601 expression of AKAP12 protein was determined by Western blot exposed to 10 mM 5-Aza-dC ( þ ), and SNU-638 cells were analysis. A Western blot with anti-Tubulin antibody was used to hybridized with probes for exon 1a´ and exon 2 (P1 and P2), exon control for protein content 1b (P3), exon 3 (P4), and b-actin Oncogene Epigenetic inactivation of AKAP12 M-C Choi et al 7097 of the AKAP12 transcripts by Northern analysis, we complete or partial methylation in eight of 11 gastric designed four kinds of probes specific for each cancer cell lines. In contrast, three cell lines (SNU-5, transcript. Probes, P1 and P2, derived from exon 1a -484 and -668) were unmethylated at the AKAP12A and exon 2 were specific for the AKAP12A transcript. CpG island. In the case of AKAP12B, four cell lines P3 derived from exon 1b was specific for the AKAP12B (SNU-5, -16, -638 and -668) were unmethylated at the transcript. P4 derived from exon 3 was common to the AKAP12B CpG island, whereas the remaining seven cell both transcripts. Figure 2b shows that HepG2 expressed lines were either completely or partially methylated. A both AKAP12 transcripts, whereas HEK293 and close correlation was observed between the expression SNU-638 expressed AKAP12A and AKAP12B, respec- and methylation status of each CpG island, except in tively. These results imply that both AKAP12 isoforms SNU-16 and -668 cells (Figures 1 and 3c). were missing in the majority of gastric cancer cells. Restoration of AKAP12 by 5-Aza-dC treatment Aberrant promoter methylation of AKAP12A and AKAP12B in gastric cancer cells We examined whether demethylation could restore AKAP12 expression in gastric cancer cells. In During the genetic mapping of AKAP12, we found that many cases, treatment with the DNA methyltransferase AKAP12A and AKAP12B have CpG islands in their inhibitor 5-Aza-dC in AKAP12-nonexpressing cells promoter regions.
Recommended publications
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • AKAP12 Regulates Human Blood–Retinal Barrier Formation by Downregulation of Hypoxia-Inducible Factor-1Α
    4472 • The Journal of Neuroscience, April 18, 2007 • 27(16):4472–4481 Cellular/Molecular AKAP12 Regulates Human Blood–Retinal Barrier Formation by Downregulation of Hypoxia-Inducible Factor-1␣ Yoon Kyung Choi,1* Jeong Hun Kim,2* Woo Jean Kim,4* Hae Young Lee,1 Jeong Ae Park,5 Sae-Won Lee,3 Dae-Kwan Yoon,1 Hyun Ho Kim,1 Hum Chung,2 Young Suk Yu,2 and Kyu-Won Kim1 1NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea, 2Department of Ophthalmology, Seoul National University College of Medicine and Seoul Artificial Eye Center, 3Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea, 4Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, and 5Department of Marine Biotechnology, College of Liberal Arts and Sciences, Anyang University, Incheon 417-833, Korea Many diseases of the eye such as retinoblastoma, diabetic retinopathy, and retinopathy of prematurity are associated with blood–retinal barrier (BRB) dysfunction. Identifying the factors that contribute to BRB formation during human eye development and maintenance could provide insights into such diseases. Here we show that A-kinase anchor protein 12 (AKAP12) induces BRB formation by increasing angiopoietin-1 and decreasing vascular endothelial growth factor (VEGF) levels in astrocytes. We reveal that AKAP12 downregulates the level of hypoxia-inducible factor-1␣ (HIF-1␣) protein by enhancing the interaction of HIF-1␣ with pVHL (von Hippel-Lindau tumor suppressor protein) and PHD2 (prolyl hydroxylase 2). Conditioned media from AKAP12-overexpressing astrocytes induced barriergen- esis by upregulating the expression of tight junction proteins in human retina microvascular endothelial cells (HRMECs).
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • PKA Compartmentalization Via AKAP220 and AKAP12 Contributes to Endothelial Barrier Regulation
    PKA Compartmentalization via AKAP220 and AKAP12 Contributes to Endothelial Barrier Regulation Mariya Y. Radeva, Daniela Kugelmann, Volker Spindler, Jens Waschke* Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany Abstract cAMP-mediated PKA signaling is the main known pathway involved in maintenance of the endothelial barrier. Tight regulation of PKA function can be achieved by discrete compartmentalization of the enzyme via physical interaction with A- kinase anchoring proteins (AKAPs). Here, we investigated the role of AKAPs 220 and 12 in endothelial barrier regulation. Analysis of human and mouse microvascular endothelial cells as well as isolated rat mesenteric microvessels was performed using TAT-Ahx-AKAPis peptide, designed to competitively inhibit PKA-AKAP interaction. In vivo microvessel hydraulic conductivity and in vitro transendothelial electrical resistance measurements showed that this peptide destabilized endothelial barrier properties, and dampened the cAMP-mediated endothelial barrier stabilization induced by forskolin and rolipram. Immunofluorescence analysis revealed that TAT-Ahx-AKAPis led to both adherens junctions and actin cytoskeleton reorganization. Those effects were paralleled by redistribution of PKA and Rac1 from endothelial junctions and by Rac1 inactivation. Similarly, membrane localization of AKAP220 was also reduced. In addition, depletion of either AKAP12 or AKAP220 significantly impaired endothelial barrier function and AKAP12 was also shown to interfere with cAMP-mediated barrier enhancement. Furthermore, immunoprecipitation analysis demonstrated that AKAP220 interacts not only with PKA but also with VE-cadherin and ß-catenin. Taken together, these results indicate that AKAP-mediated PKA subcellular compartmentalization is involved in endothelial barrier regulation. More specifically, AKAP220 and AKAP12 contribute to endothelial barrier function and AKAP12 is required for cAMP-mediated barrier stabilization.
    [Show full text]
  • Pivotal Role of AKAP12 in the Regulation of Cellular Adhesion Dynamics: Control of Cytoskeletal Architecture, Cell Migration, and Mitogenic Signaling
    Hindawi Publishing Corporation Journal of Signal Transduction Volume 2012, Article ID 529179, 7 pages doi:10.1155/2012/529179 Review Article Pivotal Role of AKAP12 in the Regulation of Cellular Adhesion Dynamics: Control of Cytoskeletal Architecture, Cell Migration, and Mitogenic Signaling Shin Akakura and Irwin H. Gelman Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA Correspondence should be addressed to Irwin H. Gelman, [email protected] Received 24 February 2012; Accepted 24 May 2012 Academic Editor: Claire Brown Copyright © 2012 S. Akakura and I. H. Gelman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cellular dynamics are controlled by key signaling molecules such as cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). AKAP12/SSeCKS/Gravin (AKAP12) is a scaffold protein for PKA and PKC which controls actin-cytoskeleton reorganization in a spatiotemporal manner. AKAP12 also acts as a tumor suppressor which regulates cell-cycle progression and inhibits Src-mediated oncogenic signaling and cytoskeletal pathways. Reexpression of AKAP12 causes cell flattening, reorganization of the actin cytoskeleton, and the production of normalized focal adhesion structures. Downregulation of AKAP12 induces the formation of thickened, longitudinal stress fibers and the proliferation of adhesion complexes. AKAP12-null mouse embryonic fibroblasts exhibit hyperactivation of PKC, premature cellular senescence, and defects in cytokinesis, relating to the loss of PKC scaffolding activity by AKAP12. AKAP12-null mice exhibit increased cell senescence and increased susceptibility to carcinogen-induced oncogenesis.
    [Show full text]
  • Akap12 (NM 031185) Mouse Untagged Clone – MC224827 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MC224827 Akap12 (NM_031185) Mouse Untagged Clone Product data: Product Type: Expression Plasmids Product Name: Akap12 (NM_031185) Mouse Untagged Clone Tag: Tag Free Symbol: Akap12 Synonyms: AI317366; Srcs5; SSeCKS; Tsga12 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin Fully Sequenced ORF: >MC224827 representing NM_031185 Red=Cloning site Blue=ORF Orange=Stop codon TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGGTGCAGGCAGTTCCACCGAGCAGCGGAGCCCCGAGCAGCCGGCGGAGAGCGACACGCCGAGCGAGC TGGAGCTCAGTGGCCATGGGCCCGCAGCGGAAGCGTCGGGAGCAGCTGGAGATCCCGCTGACGCGGACCC CGCCACCAAGCTCCCACAGAAGAATGGTCAGCTGTCTGCCGTCAATGGTGTAGCTGAACAAGAAGATGTC CACGTCCAAGAGGAAAGCCAGGATGGGCAAGAGGAAGAAGTCACTGTTGAAGATGTTGGACAGAGAGAGT CAGAAGATGTGAAAGAAAAAGACCGAGCTAAAGAAATGGCAGCCAGTTCCACAGTTGTTGAAGATATCAC AAAGGACGAGCAGGAGGAAACACCGGAAATAATCGAACAGATCCCTGCTTCAGAGAGCAATGTGGAAGAA ATGGCGCAGGCTGCTGAGTCCCAAGCTAATGACGTCGGCTTCAAGAAGGTATTTAAATTTGTTGGTTTTA AATTCACGGTGAAGAAGGATAAAAACGAAAAGTCAGATACCGTCCAGCTACTCACTGTCAAGAAGGATGA AGGCGAAGGGGCAGAAGCCTCCGTCGGAGCAGGAGACCACCAAGAGCCCGGAGTGGAGACCGTCGGCGAA TCAGCATCCAAAGAAAGTGAGCTGAAGCAATCCACAGAGAAGCAAGAAGGCACCCTGAAGCAAGCACAGA GCAGCACAGAAATTCCCCTTCAAGCCGAATCTGGTCAAGGGACCGAGGAAGAAGCAGCCAAAGATGGAGA AGAAAACCGAGAGAAAGAACCTACCAAGCCCCTAGAATCTCCGACCAGCCCTGTCAGCAATGAGACAACA TCTTCCTTCAAGAAATTCTTCACTCACGGCTGGGCCGGCTGGCGCAAGAAGACCAGCTTCAAGAAACCAA
    [Show full text]
  • Promoter Methylation of Genes in and Around the Candidate Lung Cancer Susceptibility Locus 6Q23-25
    Research Article Promoter Methylation of Genes in and around the Candidate Lung Cancer Susceptibility Locus 6q23-25 Mathewos Tessema,1 Randy Willink,1 Kieu Do,1 Yang Y. Yu,1 Wayne Yu,3 Emi O. Machida,3 Malcolm Brock,3 Leander Van Neste,4 Christine A. Stidley,2 Stephen B. Baylin,3 and Steven A. Belinsky1 1Lung Cancer Program, Lovelace Respiratory Research Institute; 2Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico; 3Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland; and 4Department of Molecular Biotechnology, Faculty of Biosciences Engineering, Ghent University, Ghent, Belgium Abstract epithelium of smokers include loss of heterozygosity (LOH) at chromosomes 3p21, 9p21, and 17p13 (3). Within these areas of Chromosomal aberrations associated with lung cancer are allelic loss, inactivation of the remaining allele by promoter frequently observed in the long arm of chromosome 6. A hypermethylation of RASSF1A and p16 genes and by mutation of candidate susceptibility locus at 6q23-25 for lung cancer was the p53 gene is commonly seen in non–small cell lung cancers recently identified; however, no tumor suppressor genes (NSCLC) (4). Methylation of the p16 gene is one of the earliest inactivated by mutation have been identified in this locus. changes in lung cancer development, occurring in the field of Genetic, epigenetic, gene expression, and in silico screening epithelial damage induced by carcinogens within tobacco and approaches were used to select 43 genes located in 6q12-27 increasing in prevalence during histologic progression of adeno- for characterization of methylation status. Twelve (28%) genes carcinoma and squamous cell carcinoma (5–7).
    [Show full text]
  • (AKAP12) Gene and Their Effects on Growth Traits
    animals Article Exploration of Genetic Variants within the Goat A-Kinase Anchoring Protein 12 (AKAP12) Gene and Their Effects on Growth Traits Yangyang Bai 1,2,3,†, Rongrong Yuan 1,3,†, Yunyun Luo 2, Zihong Kang 2, Haijing Zhu 1,3,4, Lei Qu 1,3,4, Xianyong Lan 2,* and Xiaoyue Song 1,3,4,* 1 Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; [email protected] (Y.B.); [email protected] (R.Y.); [email protected] (H.Z.); [email protected] (L.Q.) 2 Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; [email protected] (Y.L.); [email protected] (Z.K.) 3 Life Science Research Center, Yulin University, Yulin 719000, China 4 Shaanxi Province “Four Subjects One Union” Sheep and Goat Engineering & Technology University & Enterprise Alliance Research Center, Yulin 719000, China * Correspondence: [email protected] (X.L.); [email protected] (X.S.) † These authors equally contributed to this work. Simple Summary: AKAP12, the family of A-kinase anchoring proteins (AKAPs), plays an important role in the regulation of growth and development. There have been no corresponding studies of the effect of the AKAP12 gene on growth traits in goats. In our previous study, 7 bp (intron 3) and 13 bp (30UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression. This study Citation: Bai, Y.; Yuan, R.; Luo, Y.; expected to identify the association between these two genetic variations and growth-related traits in Kang, Z.; Zhu, H.; Qu, L.; Lan, X.; 1405 Shaanbei white cashmere (SBWC) goats.
    [Show full text]
  • Expression Profiling Based on Graph-Clustering Approach to Determine and Protein Characterization of BRAF- and K-RAS-Mutated Colorectal Colon Cancer Pathway
    Original Article Xiao-qu Zhu1, Expression profiling based on Mei-lan Hu2, Feng Zhang3, graph-clustering approach to determine Yu Tao 4, Chun-ming Wu1, Shang-zhu Lin1, colon cancer pathway Fu-le He2 1Department of ABSTRACT Gastroenterology and Hepatology, Wenzhou Context: Colorectal cancer is the second leading cause of cancer deaths worldwide. DNA microarray-based technologies allow Hospital of Traditional simultaneous analysis of expression of thousands of genes. Chinese Medicine, 27 Dashimen Xinhe Road, Aim: To search for important molecular markers and pathways that hold great promise for further treatment of patients with colorectal Wenzhou, cancer. Zhejiang 325000, 2 Materials and Methods: Here, we performed a comprehensive gene-level assessment of colorectal cancer using 35 colorectal cancer Department of Traditional Chinese and 24 normal samples. Medicine, Hangzhou Results: It was shown that AURKA, MT1G, and AKAP12 had a high degree of response in colorectal cancer. Besides, we further First People’s Hospital, 261 Huansha Road, explored the underlying molecular mechanism within these different genes. Hangzhou, Conclusions: The results indicated calcium signaling pathway and vascular smooth muscle contraction pathway were the two significant Zhejiang 310006, 3 pathways, giving hope to provide insights into the development of novel therapeutic targets and pathways. Postgraduate student of 2011 grade, The First Clinical Medical College of KEY WORDS: Colon cancer, expression profiles, graph cluster, significant pathways Zhejiang Chinese
    [Show full text]
  • Altered AKAP12 Expression in Portal Fibroblasts and Liver Sinusoids
    Lee et al. Experimental & Molecular Medicine (2018) 50:48 DOI 10.1038/s12276-018-0074-5 Experimental & Molecular Medicine ARTICLE Open Access Altered AKAP12 expression in portal fibroblasts and liver sinusoids mediates transition from hepatic fibrogenesis to fibrosis resolution Hye Shin Lee1, Jinhyeok Choi1,TaekwonSon1,Hee-JunWee1,Sung-JinBae1,JiHaeSeo2,JiHyunPark1, Soo Hyung Ryu3, Danbi Lee4,MyoungKukJang5,EunsilYu6, Young-Hwa Chung4 and Kyu-Won Kim1,7 Abstract Liver fibrosis can be reversed by removing its causative injuries; however, the molecular mechanisms mediating the resolution of liver fibrogenesis are poorly understood. We investigate the role of a scaffold protein, A-Kinase Anchoring Protein 12 (AKAP12), during liver fibrosis onset, and resolution. Biliary fibrogenesis and fibrosis resolution was induced in wild-type (WT) or AKAP12-deficient C57BL/6 mice through different feeding regimens with 0.1% 3,5- diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing chow. AKAP12 expression in portal fibroblasts (PFs) and liver sinusoidal endothelial cells (LSECs) gradually decreased as fibrosis progressed but was restored after cessation of the fibrotic challenge. Histological analysis of human liver specimens with varying degrees of fibrosis of different etiologies revealed that AKAP12 expression diminishes in hepatic fibrosis from its early stages onward. AKAP12 KO mice displayed reduced fibrosis resolution in a DDC-induced biliary fibrosis model, which was accompanied by impaired 1234567890():,; 1234567890():,; normalization of myofibroblasts and capillarized sinusoids. RNA sequencing of the liver transcriptome revealed that genes related to ECM accumulation and vascular remodeling were mostly elevated in AKAP12 KO samples. Gene ontology (GO) and bioinformatic pathway analyses identified that the differentially expressed genes were significantly enriched in GO categories and pathways, such as the adenosine 3′,5′-cyclic monophosphate (cAMP) pathway.
    [Show full text]
  • Deregulated Expression of Fat and Muscle Genes in B-Cell Chronic Lymphocytic Leukemia with High Lipoprotein Lipase Expression
    Leukemia (2006) 20, 1080–1088 & 2006 Nature Publishing Group All rights reserved 0887-6924/06 $30.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression M Bilban1,2,8, D Heintel3,8, T Scharl4, T Woelfel4, MM Auer2,3, E Porpaczy3, B Kainz3, A Kro¨ber5, VJ Carey6, M Shehata2,3, C Zielinski2, W Pickl7, S Stilgenbauer5, A Gaiger2,3,6, O Wagner1,2,UJa¨ger2,3 and the German CLL Study Group 1Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; 2Ludwig Boltzmann Institute for Clinical and Experimental Oncology, Vienna, Austria; 3Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna; Vienna, Austria; 4Department of Statistics and Probability Theory, Vienna University of Technology, Vienna, Austria; 5Department of Internal Medicine III, University of Ulm, Ulm, Germany; 6Department of Medicine, Harvard Medical School, Boston, MA, USA and 7Institute of Immunology, Medical University of Vienna, Vienna, Austria Lipoprotein lipase (LPL) is a prognostic marker in B-cell studies was the identification of a novel prognostic marker, the chronic lymphocytic leukemia (B-CLL) related to immunoglo- ZAP-70 protein, which has already entered routine diagnos- bulin VH gene (IgVH)mutational status. We determined gene tics.3,4,9,26–31 However, microarray analysis has identified a expression profiles using Affymetrix U133A GeneChips in two groups of B-CLLs selected for either high (‘LPL þ ’, n ¼ 10) or number of other potential prognostic or therapeutic targets that low (‘LPLÀ’, n ¼ 10) LPL mRNA expression.
    [Show full text]
  • Atlas Journal
    Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 11, Number 2, Apr-Jun 2007 Previous Issue / Next Issue Genes BOK (BCL2-related ovarian killer) (2q37.3). Alexander G Yakovlev. Atlas Genet Cytogenet Oncol Haematol 2007; 11 (2): 119-123. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/BOKID824ch2q37.html BIRC6 (Baculoviral IAP repeat-containing 6) (2p22). Christian Pohl, Stefan Jentsch. Atlas Genet Cytogenet Oncol Haematol 2007; 11 (2): 124-129. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/BIRC6ID798ch2p22.html AKAP12 (A kinase (PRKA) anchor protein 1) (6q25). Irwin H Gelman. Atlas Genet Cytogenet Oncol Haematol 2007; 11 (2): 130-136. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/AKAP12ID607ch6q25.html TRIM 24 (tripartite motif-containing 24) (7q34). Jean Loup Huret. Atlas Genet Cytogenet Oncol Haematol 2007; 11 (2): 137-141. [Full Text] [PDF] Atlas Genet Cytogenet Oncol Haematol 2007; 2 - I - URL : http://AtlasGeneticsOncology.org/Genes/TRIM24ID504ch7q34.html RUNX 2 (Runt-related transcription factor 2) (6p21). Athanasios G Papavassiliou, Panos Ziros. Atlas Genet Cytogenet Oncol Haematol 2007; 11 (2): 142-147. [Full Text] [PDF] URL : http://AtlasGeneticsOncology.org/Genes/RUNX2ID42183ch6p21.html PTPRG (protein tyrosine phosphatase, receptor type, G) (3p14.2). Cornelis P Tensen, Remco van Doorn.
    [Show full text]