Deregulated Expression of Fat and Muscle Genes in B-Cell Chronic Lymphocytic Leukemia with High Lipoprotein Lipase Expression

Total Page:16

File Type:pdf, Size:1020Kb

Deregulated Expression of Fat and Muscle Genes in B-Cell Chronic Lymphocytic Leukemia with High Lipoprotein Lipase Expression Leukemia (2006) 20, 1080–1088 & 2006 Nature Publishing Group All rights reserved 0887-6924/06 $30.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression M Bilban1,2,8, D Heintel3,8, T Scharl4, T Woelfel4, MM Auer2,3, E Porpaczy3, B Kainz3, A Kro¨ber5, VJ Carey6, M Shehata2,3, C Zielinski2, W Pickl7, S Stilgenbauer5, A Gaiger2,3,6, O Wagner1,2,UJa¨ger2,3 and the German CLL Study Group 1Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; 2Ludwig Boltzmann Institute for Clinical and Experimental Oncology, Vienna, Austria; 3Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna; Vienna, Austria; 4Department of Statistics and Probability Theory, Vienna University of Technology, Vienna, Austria; 5Department of Internal Medicine III, University of Ulm, Ulm, Germany; 6Department of Medicine, Harvard Medical School, Boston, MA, USA and 7Institute of Immunology, Medical University of Vienna, Vienna, Austria Lipoprotein lipase (LPL) is a prognostic marker in B-cell studies was the identification of a novel prognostic marker, the chronic lymphocytic leukemia (B-CLL) related to immunoglo- ZAP-70 protein, which has already entered routine diagnos- bulin VH gene (IgVH)mutational status. We determined gene tics.3,4,9,26–31 However, microarray analysis has identified a expression profiles using Affymetrix U133A GeneChips in two groups of B-CLLs selected for either high (‘LPL þ ’, n ¼ 10) or number of other potential prognostic or therapeutic targets that low (‘LPLÀ’, n ¼ 10) LPL mRNA expression. Selected genes have not yet been validated for their clinical importance. were verified by real-time PCR in an extended patient cohort One of the genes most closely related to IgVH mutation status (n ¼ 42). A total of 111 genes discriminated LPL þ from LPLÀ B- is lipoprotein lipase (LPL). High expression of this central CLLs. Of these, the top three genes associated with time to first enzyme of lipid metabolism was associated with unmutated B- treatment were Septin10, DMD and Gravin (Pp0.01). The CLL in almost all profiling studies, regardless of methodology or relationship of LPL þ and LPLÀ B-CLL gene expression 1,3,4,32,33 signatures to 52 tissues was statistically analyzed. The LPL þ B-cell selection process. We and others have recently B-CLL expression signature, represented by 64 genes was shown that mRNA expression of LPL predicts treatment-free as significantly related to fat, muscle and PB dendritic cells well as overall survival in B-CLL patients.32,33 High intracellular (Po0.001). Exploration of microarray data to define functional levels of LPL protein can be detected in unmutated CLL cells.32 alterations related to the biology of LPL þ CLL identified two Lipoprotein lipase is normally produced and secreted by functional modules, fatty acid degradation and MTA3 signaling, adipocytes, macrophages, cardiac and skeletal muscle cells as being altered with higher statistical significance. Our data and catalyzes the hydrolysis of the triacylglycerol component of show that LPL þ B-CLL cells have not only acquired gene 34–36 expression changes in fat and muscle-associated genes but chylomicrons and very low-density lipoproteins (VLDL). also in functional pathways related to fatty acid degradation The protein is bound to the surface of endothelial cells as well as and signaling which may ultimately influence CLL biology and B-CLL cells.37 Additional non-catalytic binding functions lead to clinical outcome. increased accumulation and cellular uptake of lipoproteins.35 Leukemia (2006) 20, 1080–1088. doi:10.1038/sj.leu.2404220; Interestingly, LPL is regulated by cytokines including tumor published online 13 April 2006 necrosis factor-alpha (TNF-a) which also plays an important role Keywords: B-CLL; lipoprotein lipase; gene expression profiling; 38–40 prognostic markers; septin10; dystrophin in the pathophysiology of B-CLL. Although the function of LPL in B-CLL is still not understood, its effects on metabolism, energy homeostasis and microenvironment suggest a consider- able biological relevance for the disease. We hypothesized that microarray analysis of two subsets of B- Introduction CLLs differing greatly in their LPL expression should reveal gene patterns not only associated with prognosis but also with Gene-expression profiling has introduced a new dimension into biology, particularly in regard to fatty acid metabolism and our understanding of biology as well as clinical behavior of adipose tissue. B-cell chronic lymphocytic leukemia (B-CLL).1–10 Initial studies Using this single gene denominator approach we were able to showed that all B-CLL cases have common features resembling identify known as well as novel genes related to IgVH mutational those of a memory B cell.1,3,11,12 Subsequently, considerable status, lipid metabolism, or both. We show that the expression differences in gene expression were linked to various discri- signature of unmutated/LPL-high B-CLL is closely related to that minators between good and poor risk B-CLL: these in- of adipose tissue and muscle cells. Moreover, we determined clude cytogenetic aberrations,13,14 expression of the CD38 the prognostic power of the most prominent factors by real-time protein,15,16 the expression of microRNAs,17,18 and most PCR using RNA from a well-defined patient cohort. These importantly, immunoglobulin VH gene (IgVH) mutational sta- include novel genes as well as several genes, previously tus.15,16,19–25 The first practical result emerging from these identified by expression profiling in the context of mutational status, that have never been validated. Besides the intriguing Correspondence: Professor U Ja¨ger, Department of Internal Medicine I, biological questions regarding the origin, regulation, or plasti- Division of Hematology and Hemostaseology, Medical University of city of B-CLL cells raised in this study, we now provide evidence Vienna, Wa¨hringer Gu¨rtel 18-20, A-1090 Vienna, Austria. for the clinical importance of some of the discriminatory genes E-mail: [email protected] 8These authors contributed equally to this work. commonly found in expression profiling analysis. Received 8 September 2005; revised 21 February 2006; accepted 27 Using this approach it was possible to stratify CLL subgroups February 2006; published online 13 April 2006 by LPL-expression and to recover prognostic factors known from LPL expression profiling in B-CLL M Bilban et al 1081 the studies using IgVH mutational status as well as novel targets from the Weizmann Institute of Science (http://bioinfo.weiz- in high-risk B-CLL. mann.ac.il/bioinfo.html), and a previously published classifica- tion scheme for biological functions.44 Hierarchical clustering was performed using Pearson’s correlation coefficient as Patients, materials and methods distance measure and Ward’s optimization criterion to cluster genes and samples, respectively. To visualize relationships and cRNA synthesis and gene expression profiling to judge the clustering quality, we presented samples and genes Total RNA from peripheral mononuclear cells (PBMC) of 20 in two-dimensional principal component space of the corre- well-characterized B-CLL patients (diagnosed at the Division of sponding variance-covariance matrix. Hematology at the Medical University of Vienna) was isolated Publicly available Affymetrix U133A expression data for 32 as described. Patient characteristics are given in Table 1. 52 tissues were used from SymAtlas (http://symatlas.gnf.org/ Informed consent was obtained from all patients according to SymAtlas/) for a phenotypic analysis. GeneChip files were study protocols approved by the local ethics committee (EK nos. preprocessed as described above for CLL samples. 38/1998, 505/2002, 495/2003). Total RNA was repurified with Gene set enrichment analysis (GSEA)45 is a computational RNeasy MinElute kit as per the manufacturer’s instructions method that determines if a given set of genes (e.g. known (Qiagen Valencia, CA, USA) and checked for integrity pathways, specific areas of the genome or clusters from a cluster by agarose gel electrophoresis. A measure of 5 mg total RNA analysis) shows statistically significant differences between two was then used for GeneChip analysis. Preparation of phenotypic states (i.e. LPL þ or LPLÀ CLLs). Briefly, the GSEA cRNA, hybridization to human U133A GeneChips (Affymetrix, calculation involves three steps: calculation of an enrichment Santa Clara, CA, USA) and scanning of the arrays were carried score (ES) followed by estimation of the significance level of ES out according to the manufacturer’s protocols (https://www. and adjustment for Multiple Hypothesis Testing. All GSEA 41 affymetrix.com; Bilban et al. ). calculations were done in ‘R’. Bioinformatic analysis RNA signal extraction, normalization and filtering (to eliminate Real-time PCR genes with extremely low expression) was performed as The significance of selected genes was validated by real-time described42 (http://www.bioconductor.org/). We identified sig- PCR in 42 B-CLL PBMNC patient samples (20 mutated, 22 nificant differences between sample groups using a previously unmutated, 25 Binet A, 7 Binet B, 10 Binet C; 17 female, 25 described method:43 we calculated a t-statistic of the two groups male). Total RNA was extracted from CLL and PBM cells and of CLLs for each gene. We addressed the multiple comparisons analyzed by RT-PCR for LPL mRNA expression as described problem by estimating the false discovery rate (FDR) in a simple previously32 using RNA-Beet (Tel-Test Inc., Friendswood, TX, manner as the ratio of the expected number of false positives at a USA) and first strand cDNA synthesis kit (Amersham Pharmacia given P-value threshold to the number of positives actually Biotech, Inc., Piscataway, NJ, USA). Real-time PCR was found. Using this statistical approach comparisons of gene performed with the ABI Prism 7000 Sequence Detector (Applied expression with absolute fold changes of at least 1.5-fold Biosystems, Foster City, CA, USA) according to the manufac- (increase or decrease) were selected at qo0.01.
Recommended publications
  • Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
    BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation.
    [Show full text]
  • BCL7A As a Novel Prognostic Biomarker for Glioma Patients
    BCL7A as a novel prognostic biomarker for glioma patients Junhui Liu ( [email protected] ) Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Lun Gao Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Baowei Ji Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Rongxin Geng Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Jing Chen Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Xiang Tao Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Qiang Cai Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Zhibiao Chen Renmin Hospital of Wuhan University: Wuhan University Renmin Hospital Research Article Keywords: BCL7 family, glioma, prognosis, immune, Temozolomide Posted Date: April 21st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-390165/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Translational Medicine on August 6th, 2021. See the published version at https://doi.org/10.1186/s12967-021-03003-0. Page 1/24 Abstract Background: Glioma is the most common primary brain tumor and represents one of the most aggressive and lethal types of human cancer. BCL7 family has been found in several cancer types and could be involved in tumor progression. While the role of BCL7 family in human glioma has remained to be elucidated. Methods: Paran-embedded tumor samples were obtained to detect BCL7 expression by performing in glioma. Data (including normalized gene expression and corresponding clinical data) were obtained from Gliovis, CGGA, GEO, cBioportal and Oncomine and were used to investigate BCL7 genes expression in glioma.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence After Radical Prostatectomy
    Int. J. Mol. Sci. 2015, 16, 3856-3869; doi:10.3390/ijms16023856 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence after Radical Prostatectomy Chinyere Ibeawuchi 1, Hartmut Schmidt 2, Reinhard Voss 3, Ulf Titze 4, Mahmoud Abbas 5, Joerg Neumann 6, Elke Eltze 7, Agnes Marije Hoogland 8, Guido Jenster 9, Burkhard Brandt 10 and Axel Semjonow 1,* 1 Prostate Center, Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 2 Center for Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 3 Interdisciplinary Center for Clinical Research, University of Muenster, Albert-Schweitzer-Campus 1, Gebaeude D3, Domagkstrasse 3, Muenster D-48149, Germany; E-Mail: [email protected] 4 Pathology, Lippe Hospital Detmold, Röntgenstrasse 18, Detmold D-32756, Germany; E-Mail: [email protected] 5 Institute of Pathology, Mathias-Spital-Rheine, Frankenburg Street 31, Rheine D-48431, Germany; E-Mail: [email protected] 6 Institute of Pathology, Klinikum Osnabrueck, Am Finkenhuegel 1, Osnabrueck D-49076, Germany; E-Mail: [email protected] 7 Institute of Pathology, Saarbrücken-Rastpfuhl, Rheinstrasse 2, Saarbrücken D-66113, Germany; E-Mail: [email protected] 8 Department
    [Show full text]
  • Chromatin Dysregulation and DNA Methylation at Transcription Start Sites Associated with Transcriptional Repression in Cancers
    Corrected: Publisher correction ARTICLE https://doi.org/10.1038/s41467-019-09937-w OPEN Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers Mizuo Ando 1,2, Yuki Saito1,2, Guorong Xu3, Nam Q. Bui 4,5, Kate Medetgul-Ernar1, Minya Pu1, Kathleen Fisch 3, Shuling Ren1, Akihiro Sakai1, Takahito Fukusumi1, Chao Liu1, Sunny Haft1, John Pang1, Adam Mark3, Daria A. Gaykalova6, Theresa Guo6, Alexander V. Favorov 7,8, Srinivasan Yegnasubramanian7, Elana J. Fertig7, Patrick Ha 9, Pablo Tamayo 1, Tatsuya Yamasoba 2, Trey Ideker4, Karen Messer1 & Joseph A. Califano1,10 1234567890():,; Although promoter-associated CpG islands have been established as targets of DNA methylation changes in cancer, previous studies suggest that epigenetic dysregulation out- side the promoter region may be more closely associated with transcriptional changes. Here we examine DNA methylation, chromatin marks, and transcriptional alterations to define the relationship between transcriptional modulation and spatial changes in chromatin structure. Using human papillomavirus-related oropharyngeal carcinoma as a model, we show aberrant enrichment of repressive H3K9me3 at the transcriptional start site (TSS) with methylation- associated, tumor-specific gene silencing. Further analysis identifies a hypermethylated subtype which shows a functional convergence on MYC targets and association with CREBBP/EP300 mutation. The tumor-specific shift to transcriptional repression associated with DNA methylation at TSSs was confirmed in multiple tumor types. Our data may show a common underlying epigenetic dysregulation in cancer associated with broad enrichment of repressive chromatin marks and aberrant DNA hypermethylation at TSSs in combination with MYC network activation. 1 Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92093, USA.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis
    cells Article Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis Han-Yu Wang 1,2, Chun-Hsiang Lin 1, Yi-Ru Shen 1, Ting-Yu Chen 2,3, Chia-Yih Wang 2,3,* and Pao-Lin Kuo 1,2,4,* 1 Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; [email protected] (H.-Y.W.); [email protected] (C.-H.L.); [email protected] (Y.-R.S.) 2 Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; [email protected] 3 Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan 4 Department of Obstetrics and Gynecology, National Cheng-Kung University Hospital, Tainan 704, Taiwan * Correspondence: [email protected] (C.-Y.W.); [email protected] (P.-L.K.); Tel.: +886-6-2353535 (ext. 5338); (C.-Y.W.)+886-6-2353535 (ext. 5262) (P.-L.K.) Abstract: Septins are GTP-binding proteins that form heteromeric filaments for proper cell growth and migration. Among the septins, septin7 (SEPT7) is an important component of all septin filaments. Here we show that protein kinase A (PKA) phosphorylates SEPT7 at Thr197, thus disrupting septin filament dynamics and ciliogenesis. The Thr197 residue of SEPT7, a PKA phosphorylating site, was conserved among different species. Treatment with cAMP or overexpression of PKA catalytic subunit (PKACA2) induced SEPT7 phosphorylation, followed by disruption of septin filament formation. Constitutive phosphorylation of SEPT7 at Thr197 reduced SEPT7-SEPT7 interaction, but did not affect SEPT7-SEPT6-SEPT2 or SEPT4 interaction.
    [Show full text]
  • Integrating Genomic Alterations in Diffuse Large B-Cell Lymphoma Identifies New Relevant Pathways and Potential Therapeutic Targets
    OPEN Leukemia (2018) 32, 675–684 www.nature.com/leu ORIGINAL ARTICLE Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets K Karube1,2, A Enjuanes1,3, I Dlouhy1, P Jares1,3, D Martin-Garcia1,3, F Nadeu1,3, GR Ordóñez4, J Rovira1, G Clot1,3, C Royo1, A Navarro1,3, B Gonzalez-Farre1,3, A Vaghefi1, G Castellano1, C Rubio-Perez5, D Tamborero5, J Briones6, A Salar7, JM Sancho8, S Mercadal9, E Gonzalez-Barca9, L Escoda10, H Miyoshi11, K Ohshima11, K Miyawaki12, K Kato12, K Akashi12, A Mozos13, L Colomo1,7, M Alcoceba3,14, A Valera1, A Carrió1,3, D Costa1,3, N Lopez-Bigas5,15, R Schmitz16, LM Staudt16, I Salaverria1,3, A López-Guillermo1,3 and E Campo1,3 Genome studies of diffuse large B-cell lymphoma (DLBCL) have revealed a large number of somatic mutations and structural alterations. However, the clinical significance of these alterations is still not well defined. In this study, we have integrated the analysis of targeted next-generation sequencing of 106 genes and genomic copy number alterations (CNA) in 150 DLBCL. The clinically significant findings were validated in an independent cohort of 111 patients. Germinal center B-cell and activated B-cell DLBCL had a differential profile of mutations, altered pathogenic pathways and CNA. Mutations in genes of the NOTCH pathway and tumor suppressor genes (TP53/CDKN2A), but not individual genes, conferred an unfavorable prognosis, confirmed in the independent validation cohort. A gene expression profiling analysis showed that tumors with NOTCH pathway mutations had a significant modulation of downstream target genes, emphasizing the relevance of this pathway in DLBCL.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Pathognomonic and Epistatic Genetic Alterations in B-Cell Non-Hodgkin
    bioRxiv preprint doi: https://doi.org/10.1101/674259; this version posted June 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Pathognomonic and epistatic genetic alterations in 2 B-cell non-Hodgkin lymphoma 3 4 Man Chun John Ma1¥, Saber Tadros1¥, Alyssa Bouska2, Tayla B. Heavican2, Haopeng Yang1, 5 Qing Deng1, Dalia Moore3, Ariz Akhter4, Keenan Hartert3, Neeraj Jain1, Jordan Showell1, 6 Sreejoyee Ghosh1, Lesley Street5, Marta Davidson5, Christopher Carey6, Joshua Tobin7, 7 Deepak Perumal8, Julie M. Vose9, Matthew A. Lunning9, Aliyah R. Sohani10, Benjamin J. 8 Chen11, Shannon Buckley12, Loretta J. Nastoupil1, R. Eric Davis1, Jason R. Westin1, Nathan H. 9 Fowler1, Samir Parekh8, Maher K. Gandhi7, Sattva S. Neelapu1, Douglas Stewart5, Javeed 10 Iqbal2, Timothy Greiner2, Scott J. Rodig13, Adnan Mansoor5, Michael R. Green1,14,15* 11 1Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD 12 Anderson Cancer Center, Houston, TX, USA; 2Department of Pathology and Microbiology, University of 13 Nebraska Medical Center, Omaha, NE, USA; 3Eppley Institute for Research in Cancer and Allied 14 Diseases, University of Nebraska Medical Center, Omaha, NE, USA; 4Department of Pathology and 15 Laboratory Medicine, University of Calgary, Calgary, AB, Canada; 5Section of Hematology, Department of 16 Medicine, University
    [Show full text]
  • Consequences of Mitotic Loss of Heterozygosity on Genomic Imprinting in Mouse Embryonic Stem Cells
    CONSEQUENCES OF MITOTIC LOSS OF HETEROZYGOSITY ON GENOMIC IMPRINTING IN MOUSE EMBRYONIC STEM CELLS by RACHEL LEIGH ELVES B.Sc., University of British Columbia, 2004 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 © Rachel Leigh Elves, 2008 Abstract Epigenetic differences between maternally inherited and paternally inherited chromosomes, such as CpG methylation, render the maternal and paternal genome functionally inequivalent, a phenomenon called genomic imprinting. This functional inequivalence is exemplified with imprinted genes, whose expression is parent-of-origin specific. The dosage of imprinted gene expression is disrupted in cells with uniparental disomy (UPD), which is an unequal parental contribution to the genome. I have derived mouse embryonic stem (ES) cell sub-lines with maternal UPD (mUPD) for mouse chromosome 6 (MMU6) to characterize regulation and maintenance of imprinted gene expression. The main finding from this study is that maintenance of imprinting in mitotic UPD is extremely variable. Imprint maintenance was shown to vary from gene to gene, and to vary between ES cell lines depending on the mechanism of loss of heterozygosity (LOH) in that cell line. Certain genes analyzed, such as Peg10 , Sgce , Peg1 , and Mit1 showed abnormal expression in ES cell lines for which they were mUPD. These abnormal expression levels are similar to that observed in ES cells with meiotically-derived full genome mUPD (parthenogenetic ES cells). Imprinted CpG methylation at the Peg1 promoter was found to be abnormal in all sub-lines with mUPD for Peg1 .
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]