Tying Together Textures, Temperatures, and Timing in the Western Tatra Mountains, Slovakia
Total Page:16
File Type:pdf, Size:1020Kb
TYING TOGETHER TEXTURES, TEMPERATURES, AND TIMING IN THE WESTERN TATRA MOUNTAINS, SLOVAKIA A thesis submitted to the Kent State University Graduate College in partial fulfillment of the requirements for the degree of Master of Science by Jenna C. Hojnowski December, 2010 Thesis written by Jenna C. Hojnowski B.A. State University of New York at Geneseo, 2008 M.S. Kent State University, 2010 Approved by , Advisor Daniel Holm , Chair, Department of Geology Daniel Holm , Dean, College of Arts and Sciences John R.D. Stalvey ii Table of Contents List of Figures ...................................................................................................................vii List of Tables, Equations, and Appendices………………………………………..…..viii Acknowledgments ..............................................................................................................x Abstract . .............................................................................................................................1 1. Introduction ...................................................................................................................3 Tectonic Background of the Western Tatra Mountains...........................................5 Structural Features……………………………………………………………….10 P-T-t Paths……………………....................................................................…….11 Geochronology Data…………………………………………………………....13 2. Petrographic Fabrics.....................................................................................................14 Optical Methodology.............................................................................................17 Mica Schists...........................................................................................................19 Migmatites……………………………………………………………………….25 Granite…………………………………………………………………………...29 Kinematice Indicators…………………………………………………………...30 Implications…………………………………………..………………….……...30 3. Titanium-in-Quartz Thermometry…….......................................................................32 Methodology.........................................................................................................35 iv Titanium-in-Quartz Results...................................................................................37 Titanium-in-Zircon Results …..............................................................................41 Implications...........................................................................................................44 4. EMPA Monazite Geochronology……........................................................................46 Methodology.........................................................................................................47 Results...................................................................................................................52 Implications...........................................................................................................53 5. Electron Backscatter Diffraction (EBSD) of Quartz …...............................................55 Methodology.........................................................................................................56 Results...................................................................................................................60 Implications...........................................................................................................64 6. Summary and Discussion……………………………..…………………………..…71 Summary................................................................................................................71 Discussion..............................................................................................................74 References…………………………………………….………………..………………80 Appendices……………………………………………...….……………………………84 v List of Figures 1. Geologic maps of Eastern Europe and Western Tatra Mountains……………..6 2. Tectonostratigrahpic column of the Tatric Unit……………………………….7 3. Variscan tectonics……………………………………………………………...9 4. P-T-t paths of upper and lower units….............................................................12 5. Geologic map and sample locations…………………………………….……15 6. Baranec Peak cross-section…………………………………….......................16 7. Rock fabrics in the field………………………………………………………16 8. Stereonet of lineations…………………………………………………….….18 9. Mica schist sample ZT-14-08…………………………………………….…..21 10. Protomylonitic mica schist sample ZT-15-08…………………………....….22 11. Mylonitic mica schist sample ZT-24-08………………………………….…23 12. Ultramylonitic mica schist sample ZT-16A-08……………………………..24 13. Migmatite sample ZT-18-08………………………………………………...25 14. Protomylonitic migmatite sample ZT-7A-08……………………………..…27 15. Mylonitic migmatite sample ZT-9-08…………………………………….....28 16. Protomylonitic granite sample ZT-5-09……………….................................29 17. Titanium-in-quartz histograms.......................................................................39 18. Optical and BSE images of TitaniQ spot analysis………………...………..40 vi 19. BSE images of detrital zircon……………………………………………….43 20. BSE images of zircon ……………………………………………………….43 21. BSE images of sample ZT-4-08 for monazite dating…………………....….47 22. BSE images of sample ZT-24-08 for monazite dating………………….......49 23. BSE images of sample ZT-14-08 and ZT-15-08 for monazite dating…...…50 24. Relative probability plot for monazite dating results……………………….52 25. Crystal orientation maps for sample ZT-24-08…………………………......58 26. Crystal orientation maps for sample ZT-15-08………………......................59 27. Flinn diagram with CPO and girdle patterns………………………………..61 28. Quartz slip systems………………………………………………………….62 29. Deformation and temperature influencing slip systems…………………….62 30. EBSD results ……………………………………………..............................65 31. Revised Variscan tectonics……………………………………………….…76 32. Enhanced Baranec Peak cross-section………………………………………78 vii List of Tables 1. Previous P-T work............................................................................................37 2. Titanium-in-quartz results…………………………………………………….38 3. Titanium-in-zircon results………………………………………………….…41 4. Summary of temperatures, textures, and timing……………………………...72 List of Equations 1. Titanium-in-quartz thermometry with pressure effect.....................................33 2. Titanium-in-zircon thermometry …………………………………………….34 3. Zirconium-in-rutile thermometry…………………………………...………..34 List of Appendices 1. Sample table…………......................................................................................85 2. Original titanium-in-quartz and titanium-in-zircon data………………..…….86 3. Electron microprobe chemical data and monazite ages……………………...91 viii Acknowledgements I owe much of my appreciation to Daniel Holm for his guidance and wisdom from the very beginning of this research. Much gratitude goes to Dave Scneider for support during fieldwork and additional advisement throughout the progression of this work. I am very grateful to the following for their time, expertise, and instruction during my visits to conduct lab work. This allowed me to establish a set of data sufficient for analysis and interpretation: Nelia Dunbar and Lynn Heizler at the New Mexico Institute of Mining and Technology for analyses of monazite for geochronological purposes; Nicholas Seaton at the University of Minnesota for Electron Backscatter Diffraction and constructive reviews; John Price in using titanium as a thermometer and providing useful comments. Many other additional thanks go to Yves Moussallam for assistance in the field and proceeding dialogues regarding our samples. Jaroslaw Majka (Jarek) for constructive discussions regarding geochronology in the Tatra Mountains. To Donald Palmer for comments during the proposal and defense phases of this thesis work and Dave Waugh during sample characterization. Of course I would not have completed this work without the love and support from family and friends. To my family, your encouragement was vital to this completion. To my friends, thank you for times of mental relief. ix Funding for this research was provided by grants from: Geological Society of America; Gamma Zeta Chapter (Kent State) of Sigma Gamma Epsilon; Kent State‟s Geology Alumni, Graduate Student Senate, and University Research Council. Parts of this work were carried out in the Institute of Technology Characterization Facility, University of Minnesota, a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org). x Abstract In the Western Tatra Mountains, the Variscan-age (~340 Ma) exhumed shear zone, reveals high-grade metamorphic rocks thrust over medium-grade metamorphic rocks, creating an unusual macroscopic rock geometry known as an inverted metamorphic sequence. Polyphase petrographic fabrics record the formation of the inverted metamorphic sequence, making it ideal for characterizing mid-crustal deformation mechanisms of large-scale tectonic processes. A combination of microstructural (optical petrography) and microanalytical (monazite EMPA, Titanium thermometry, Electron backscatter diffraction-EBSD fabric analysis) techniques reveal the dynamic processes involved in the evolution of this major crustal-scale discontinuity. The timing of the Early Variscan continent-continent collision was measured by U/Pb monazite dating at c. 370 Ma in the mica schists, with titanium-in-zircon temperatures of ~ 880 °C in the migmatite. These data reflect the peak metamorphic conditions of Early Variscan deformation.