Predictive Modelling of Spatial Biodiversity Data to Support Ecological Network Mapping: a Case Study in the Fens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bramshill Site of Special Scientific Interest
The Dragonflies of Bramshill Site of Special Scientific Interest Freshwater Habitats Trust Author Ken Crick Forward Bramshill Site of Special Scientific Interest (SSSI) is a Flagship Pond Site. Part of a network of the very best of Britain’s ponds; sites of exceptional importance for freshwater wildlife and some of our finest freshwater habitats. The Flagship sites can be a single special pond, or more commonly group of ponds, selected because they support rich, often irreplaceable, communities and species at risk of extinction. They represent some of the least impacted, most diverse pond habitats remaining in the country. Many of our nation’s most beautiful and biodiverse waterbodies have degraded irrevocably, and it’s critically important that the remaining sites are well protected and well managed. In 2015, with funding from the Heritage Lottery Fund, Freshwater Habitats Trust launched the Flagship Ponds project, Mats of Water Crowfoot flower on Bramshill working with land managers and community groups to ensure that the most Plantation’s Longwater. critical pond sites in Britain were protected for the long term. This book has been published with the aim of enabling people visiting this, Introduction immensely important Flagship Pond Site in Northern Hampshire, to identify the dragonflies and damselflies they encounter - by reference to a simple text This nationally important Site of managed by Forestry Commission and in places subsequent backfilling Special Scientific Interest (SSSI) England (FCE), please see the site with landfill, Bramshill SSSI has and photographs. It should also inform those visiting the site of the location is notified as such in part for its map on page 6 which depicts the through a combination of careful of the majority of freshwater habitats. -
Landscape Character Assessment
OUSE WASHES Landscape Character Assessment Kite aerial photography by Bill Blake Heritage Documentation THE OUSE WASHES CONTENTS 04 Introduction Annexes 05 Context Landscape character areas mapping at 06 Study area 1:25,000 08 Structure of the report Note: this is provided as a separate document 09 ‘Fen islands’ and roddons Evolution of the landscape adjacent to the Ouse Washes 010 Physical influences 020 Human influences 033 Biodiversity 035 Landscape change 040 Guidance for managing landscape change 047 Landscape character The pattern of arable fields, 048 Overview of landscape character types shelterbelts and dykes has a and landscape character areas striking geometry 052 Landscape character areas 053 i Denver 059 ii Nordelph to 10 Mile Bank 067 iii Old Croft River 076 iv. Pymoor 082 v Manea to Langwood Fen 089 vi Fen Isles 098 vii Meadland to Lower Delphs Reeds, wet meadows and wetlands at the Welney 105 viii Ouse Valley Wetlands Wildlife Trust Reserve 116 ix Ouse Washes 03 THE OUSE WASHES INTRODUCTION Introduction Context Sets the scene Objectives Purpose of the study Study area Rationale for the Landscape Partnership area boundary A unique archaeological landscape Structure of the report Kite aerial photography by Bill Blake Heritage Documentation THE OUSE WASHES INTRODUCTION Introduction Contains Ordnance Survey data © Crown copyright and database right 2013 Context Ouse Washes LP boundary Wisbech County boundary This landscape character assessment (LCA) was District boundary A Road commissioned in 2013 by Cambridgeshire ACRE Downham as part of the suite of documents required for B Road Market a Landscape Partnership (LP) Heritage Lottery Railway Nordelph Fund bid entitled ‘Ouse Washes: The Heart of River Denver the Fens.’ However, it is intended to be a stand- Water bodies alone report which describes the distinctive March Hilgay character of this part of the Fen Basin that Lincolnshire Whittlesea contains the Ouse Washes and supports the South Holland District Welney positive management of the area. -
Irrigation Ditches and Their Operation
Irrigation Ditches and their Operation Fact Sheet No. 6.701 Natural Resources Series|Water by R. Waskom, E. Marx, D. Wolfe, and G. Wallace* Water Laws and until its completion. Otherwise, the water Quick Facts Regulations right is forfeited. In addition to a priority date, a water right is recorded based on the • Water rights in Colorado are Current western water law originated location where the water will be diverted or considered a private property during the California gold rush in 1848. Back withdrawn, the amount to be withdrawn, and right. Water rights can be sold then miners would divert water from streams the beneficial use to which it will be put. or inherited, and prices may while mining for gold. Just like the claim on In Colorado, water rights are considered a mining stake, a rule was established stating vary according to supply and a private property right. Water rights can that the first miner to use the water had the demand. be sold or inherited and prices may vary first right to it. After the first miner’s right according to supply and demand. The • Ditch companies coordinate was established, the second miner’s right was consumptively used portion of a water the use, ensure proper recognized, and so on. Claims left abandoned right may be transferred to another area or maintenance and efficient were available to others. Miners brought this use with approval of the water court, with operation of surface water system to Colorado during the gold rush the stipulation that other water rights are of 1859. -
Dragonflies Has Descriptive Nature Research, However, Has
Odonatologica 7 (3): 263-276 September I, 1978 A computermodel of the growthof larvaldragonflies C.F. Nimz Department of Biology, Idaho State University, Pocatello, Idaho 83209, United States Received August 3, 1977 / Accepted January 16, 1978 A computer model was constructed using the bioenergetics data of J.H. LAWTON (Hydrobiologia 36 1970: 33-52; J. anim. Ecol. 39 1970: 669-684, 40 1971: 395-423 ,Freshwat. Biol. 1 1971: 99-111) onPyrrhosoma nymphula. Model predictions of the growth of an individual dragonfly were compared to to test the Lawton’s data on length model. Comparisons were also made between model predictions and field, literature, and laboratory data for Deep Creek, Oneida County, Idaho, USA, dragonflies, specifically Argia vivida, to test the generality of the model. Initially the model equations could not reproduce Lawton’s data, but when production and consumption were re- duced in the winter months (temperature < 7°C), the results were within a mean 10% error of Lawton’s original data. Predictions for growth over the complete life cycle were also made with a starting date and initial length as inputs. Laboratory experiments with A. vivida, done as part of this study, data for of the model’s make short-term provided tests ability to precise pre- dictions. In all but one case presented here, the predictions were statistically different from the observed even when equations specifically for A. vivida were used. the model used for Lawton’s data did well However, as compare with the field data for the whole life cycle of A. vivida. Finally, comparisons made between were P. -
Distribution Patterns of Odonate Assemblages in Relation to Environmental Variables in Streams of South Korea
insects Article Distribution Patterns of Odonate Assemblages in Relation to Environmental Variables in Streams of South Korea Da-Yeong Lee 1, Dae-Seong Lee 1, Mi-Jung Bae 2, Soon-Jin Hwang 3 , Seong-Yu Noh 4, Jeong-Suk Moon 4 and Young-Seuk Park 1,5,* 1 Department of Biology, Kyung Hee University, Seoul 02447, Korea; [email protected] (D.-Y.L.); [email protected] (D.-S.L.) 2 Freshwater Biodiversity Research Bureau, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongsangbuk-do 37242, Korea; [email protected] 3 Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea; [email protected] 4 Water Environment Research Department, Watershed Ecology Research Team, National Institute of Environmental Research, Incheon 22689, Korea; [email protected] (S.-Y.N.); [email protected] (J.-S.M.) 5 Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0946 Received: 20 September 2018; Accepted: 25 October 2018; Published: 29 October 2018 Abstract: Odonata species are sensitive to environmental changes, particularly those caused by humans, and provide valuable ecosystem services as intermediate predators in food webs. We aimed: (i) to investigate the distribution patterns of Odonata in streams on a nationwide scale across South Korea; (ii) to evaluate the relationships between the distribution patterns of odonates and their environmental conditions; and (iii) to identify indicator species and the most significant environmental factors affecting their distributions. Samples were collected from 965 sampling sites in streams across South Korea. We also measured 34 environmental variables grouped into six categories: geography, meteorology, land use, substrate composition, hydrology, and physicochemistry. -
Dragonflies and Damselflies in Your Garden
Natural England works for people, places and nature to conserve and enhance biodiversity, landscapes and wildlife in rural, urban, coastal and marine areas. Dragonflies and www.naturalengland.org.uk © Natural England 2007 damselflies in your garden ISBN 978-1-84754-015-7 Catalogue code NE21 Written by Caroline Daguet Designed by RR Donnelley Front cover photograph: A male southern hawker dragonfly. This species is the one most commonly seen in gardens. Steve Cham. www.naturalengland.org.uk Dragonflies and damselflies in your garden Dragonflies and damselflies are Modern dragonflies are tiny by amazing insects. They have a long comparison, but are still large and history and modern species are almost spectacular enough to capture the identical to ancestors that flew over attention of anyone walking along a prehistoric forests some 300 million river bank or enjoying a sunny years ago. Some of these ancient afternoon by the garden pond. dragonflies were giants, with This booklet will tell you about the wingspans of up to 70 cm. biology and life-cycles of dragonflies and damselflies, help you to identify some common species, and tell you how you can encourage these insects to visit your garden. Male common blue damselfly. Most damselflies hold their wings against their bodies when at rest. BDS Dragonflies and damselflies belong to Dragonflies the insect order known as Odonata, Dragonflies are usually larger than meaning ‘toothed jaws’. They are often damselflies. They are stronger fliers and referred to collectively as ‘dragonflies’, can often be found well away from but dragonflies and damselflies are two water. When at rest, they hold their distinct groups. -
Extrapolating Demography with Climate, Proximity and Phylogeny: Approach with Caution
! ∀#∀#∃ %& ∋(∀∀!∃ ∀)∗+∋ ,+−, ./ ∃ ∋∃ 0∋∀ /∋0 0 ∃0 . ∃0 1##23%−34 ∃−5 6 Extrapolating demography with climate, proximity and phylogeny: approach with caution Shaun R. Coutts1,2,3, Roberto Salguero-Gómez1,2,3,4, Anna M. Csergő3, Yvonne M. Buckley1,3 October 31, 2016 1. School of Biological Sciences. Centre for Biodiversity and Conservation Science. The University of Queensland, St Lucia, QLD 4072, Australia. 2. Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK. 3. School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland. 4. Evolutionary Demography Laboratory. Max Planck Institute for Demographic Research. Rostock, DE-18057, Germany. Keywords: COMPADRE Plant Matrix Database, comparative demography, damping ratio, elasticity, matrix population model, phylogenetic analysis, population growth rate (λ), spatially lagged models Author statement: SRC developed the initial concept, performed the statistical analysis and wrote the first draft of the manuscript. RSG helped develop the initial concept, provided code for deriving de- mographic metrics and phylogenetic analysis, and provided the matrix selection criteria. YMB helped develop the initial concept and advised on analysis. All authors made substantial contributions to editing the manuscript and further refining ideas and interpretations. 1 Distance and ancestry predict demography 2 ABSTRACT Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict pop- ulation performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance. -
Ophir Pass Fen), San Juan Mountains, Colorado
Restoration plan for a rare high elevation sloping fen (Ophir Pass fen), San Juan Mountains, Colorado. By Rod Chimner, Ph.D. (Michigan Technological University) Project Summary and Objectives: We will restore 0.65 ha (1.6 acres) of a unique iron fen in the San Juan Mountains, Colorado. This large and very steep fen (up to 21% slope) has six ditches (a total combined length ~700 ft) that are having a severe impact on the fen by lowering the water table, eliminated plant cover from a large area, and is causing a reversal of peat accumulation. This site is also undergoing severe frost heave and erosion that is preventing colonization of plants, and allowing direct runoff of large amounts of sediments directly into the Middle Fork of Mineral Creek. Therefore, our objective is to restore natural hydrological and vegetation conditions by filling and blocking 6 ditches, replanting the large bare area, and eliminating sediment runoff into the stream. We will restore the Ophir Pass fen by plugging and filling all six ditches, planting Sphagnum and sedges in the restored ditches and bare areas, stabilize steep slopes with coir matting, straw wattles, and excelsior mulch, and conducting pre and post vegetation and hydrologic monitoring. Community and student volunteers will assist with vegetation planting and post monitoring. This project is a collaboration of Mountain Studies Institute, U.S. Forest Service, Michigan Technological University, and Durango Mountain Resort. Project Description and Need: Fens have been thought to be rare in the continental Western U.S. because of the hot and dry climate. However, it has recently become apparent that fens are numerous in the higher elevations of the Rocky Mountains and they support endemic and widely disjunct taxa and unique communities (Cooper and Andrus 1994, Chimner et al. -
Fenland Drainage Ditches
FENLAND DRAINAGE DITCHES LOCAL HABITAT ACTION PLAN FOR CAMBRIDGESHIRE AND PETERBOROUGH Last Updated: April 2009 1 CURRENT STATUS 1.1 Context This Habitat Action Plan is intended to cover drainage ditch habitats within the Fenlands of Cambridgeshire – these are characterised by supporting aquatic and marginal habitats and by forming a network which, by virtue of strategic pumping stations, have been traditionally used to drain the fenland and make it suitable for cultivation and habitation. The area or indeed the total length of ditches in the county is not accurately known but it is clearly a large resource. The Action Plan can also be used as guidance for other drainage ditches outside the fenland area. In East Anglia, drainage ditches have been vital to the maintenance of high quality agricultural land and in the Fenland Landscape Area of Cambridgeshire are still a dominant and highly characteristic landscape feature. Drainage ditches can vary in size from small roadside cuts to 30m wide agricultural drains which, connected together, comprise a large linear, mainly freshwater system. The flow of water in Fenland Landscape Area ditches is typically slow moving and is artificially regulated. However, some smaller drains can be dry, especially in summer. The drainage ditch network connects with streams and rivers which are covered by a separate Rivers and Streams LHAP. 1.2 Biological status Although an artificial habitat, drainage ditches and their associated banks are of high value for a broad range of wildlife. There are many plants -
The Impacts of Urbanisation on the Ecology and Evolution of Dragonflies and Damselflies (Insecta: Odonata)
The impacts of urbanisation on the ecology and evolution of dragonflies and damselflies (Insecta: Odonata) Giovanna de Jesús Villalobos Jiménez Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Ph.D.) The University of Leeds School of Biology September 2017 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 1 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G., Dunn, A.M. & Hassall, C., 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol, 113(1): 217–232. I was responsible for the collection and analysis of the data with advice from co- authors, and was solely responsible for the literature review, interpretation of the results, and for writing the manuscript. All co-authors provided comments on draft manuscripts. The work in Chapter 2 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G. & Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61(7): 1337–1346. I was responsible for the data analysis, interpretation of results, and for writing and structuring the manuscript. Data was provided by the British Dragonfly Society (BDS). The co-author provided advice on the data analysis, and also provided comments on draft manuscripts. -
Dragonflies of La Brenne & Vienne
Dragonflies of La Brenne & Vienne Naturetrek Tour Report 13 - 20 June 2018 Dainty White-faced Darter (Leucorrhinia caudalis) male Yellow-spotted Emerald (Somatochlora flavomaculata) male Report and images by Nick Ransdale Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Dragonflies of La Brenne & Vienne Tour participants: Nick Ransdale (leader) with six Naturetrek clients Summary This two-centre holiday in central-western France gave an excellent insight into not only the dragonflies but also the abundant butterflies, birds and other wildlife of the region. The first two days were spent in the southern Vienne before we moved to the bizarre landscape of the Pinail reserve, and finally to Mezieres where we spent three days in the Brenne - ‘land of a thousand lakes’. This year's tour started on the cool side at 17-18°C, but settled into a pattern that proved to be ideal for finding and photographing odonata. Due to the sharp eyes, flexibility and optimism of group members, the tour was a resounding success, scoring a total of 44 species (tour average 41), equalling the tour record. The emphasis here is always on getting good, diagnostic views for all participants, something we achieved for all but one species. It was a good year for 'sets' of species this year, with both pincertails, four emerald dragonflies and both whiteface species. Added to this were five fritillary butterfly species, both Emperors (Purple and Lesser Purple), and an outstanding two clearwing moths – both Hornet and Firey. -
Catchment Evidence Summary Old Bedford Including the Middle Level January 2014 Old Bedford Including the Middle Level Management Catchment
Unclassified Catchment Evidence Summary Old Bedford including the Middle Level January 2014 Old Bedford including the Middle Level Management Catchment The Old Bedford including the Middle Level Catchment is one of Defra’s 100 Water Framework Directive (WFD) Management Catchments within England and Wales. This map shows the first River Basin Management Plan Waterbody names with correct or locally ‘known as names’ in brackets. We are the Environment Agency. It's our job to look after your environment and make it a better place - for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are making your environment cleaner and healthier. The Environment Agency, out there, making your environment a better place. Contact address for queries regarding this document: Michael Nunns (Catchment Delivery Manager) Teresa Brown (Catchment Co-ordinator) Environment Agency Bromholme Lane Brampton Huntingdon Cambridgeshire PE28 4NE Email: [email protected] © Environment Agency 2014 All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Environment Agency Catchment Evidence – Old Bedford including the Middle Level, Jan 2014. Unclassified 2 Contents 1 Introduction .............................................................................................. 4 1.1 Purpose and scope of the document ....................................................................... 4 1.2 What is Water Framework Directive? ...................................................................... 4 1.3 Baseline from the first River Basin Management Plan.................................................5 Map 1 Status of the waterbodies in the first River Basin Management Plan, December 2009 showing the ecological classification and morphology designation by waterbody area, name and number (ID) ........................................................................................