Empirical Analysis of the Effects and the Mitigation of Ipv4 Address Exhaustion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accelerating Adoption of Ipv6
Accelerating Adoption of IPv6 LUDVIG AHLINDER and ANDERS ERIKSSON KTH Information and Communication Technology Degree project in Communication Systems First level, 15.0 HEC Stockholm, Sweden Accelerating Adoption of IPv6 Ludvig Ahlinder and Anders Eriksson 2011.05.17 Mentor and Examiner: Prof. Gerald Q. Maguire Jr School of Information and Communications Technology Royal Institute of Technology (KTH) Stockholm, Sweden Abstract It has long been known that the number of unique IPv4-addresses would be exhausted because of the rapid expansion of the Internet and because countries such as China and India are becoming more and more connected to the rest of the world. IPv6 is a new version of the Internet Protocol which is supposed to succeed the old version, IPv4, in providing more addresses and new services. The biggest challenge of information and communication technology (ICT) today is to transition from IPv4 to IPv6. The purpose of this thesis is to accelerate the adoption of IPv6 by highlighting the benefits of it compared to IPv4. Although the need for more IP-addresses is the most urgent incentive for the transition to IPv6, other factors also exist. IPv6 offers many improvements to IPv4 which are necessary for the continued expansion of Internet-based applications and services. Some argue that we do not need to transition to IPv6 as the problems with IPv4, mainly the address- shortage, can be solved in other ways. One of the methods of doing this is by extending the use of Network Address Translators (NATs), but the majority of experts and specialists believe that NATs should not be seen as a long-term solution. -
INTERNET ADDRESSING: MEASURING DEPLOYMENT of Ipv6
INTERNET ADDRESSING: MEASURING DEPLOYMENT OF IPv6 APRIL 2010 2 FOREWORD FOREWORD This report provides an overview of several indicators and data sets for measuring IPv6 deployment. This report was prepared by Ms. Karine Perset of the OECD‟s Directorate for Science, Technology and Industry. The Working Party on Communication Infrastructures and Services Policy (CISP) recommended, at its meeting in December 2009, forwarding the document to the Committee for Information, Computer and Communications Policy (ICCP) for declassification. The ICCP Committee agreed to make the document publicly available in March 2010. Experts from the Internet Technical Advisory Committee to the ICCP Committee (ITAC) and the Business and Industry Advisory Committee to the OECD (BIAC) have provided comments, suggestions, and contributed significantly to the data in this report. Special thanks are to be given to Geoff Huston from APNIC and Leo Vegoda from ICANN on behalf of ITAC/the NRO, Patrick Grossetete from ArchRock, Martin Levy from Hurricane Electric, Google and the IPv6 Forum for providing data, analysis and comments for this report. This report was originally issued under the code DSTI/ICCP/CISP(2009)17/FINAL. Issued under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the OECD member countries. ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. -
Deploying Ipv6 for an African ISP
Deploying IPv6 for an African ISP By: Mathieu Paonessa How did this all started? • AfriNIC 15 meeEng held in Yaoundé, Cameroon in November 2011 • Presentaons of IPv6 deployments in Egypt, South Africa and Sudan during the African IPv6 iniEaves session. Who is Jaguar Network? • Jaguar Network is a French & Swiss network operator founded in 2001 in Marseille (France). Our main target is providing small & medium business xDSL connecEvity, IP transit, point to point transport, IP/MPLS VPN, colocaon & housing services in more than 30 faciliEes across Europe. • Jaguar Network is building a powerful and resilient opEcal fiber network in Europe to provide high speed and redundant access for all the services provided. Developing it's own label known as "THD" (Très Haute Disponibilité), Jaguar Network focus on quality and proximity with its customers in order to bring valued services to our customers. Who is Creolink? • CREOLINK is an enterprise that specialized in the provision of Telecommunicaons services. • It offers and proposes opEmal and innovave communicaons soluEons for all audiences, including access to high-speed Internet, telephony, connecon of mulple remote sites and much more… • Established in January 2001, CREOLINK has revoluEonized the management of daily business work in Cameroon with its perfect knowledge of the implementaon of new technologies of informaon and communicaon. First step: get an IPv6 allocaon • Started the discussion during the IPv6 session of Tuesday November 22nd. • Creolink was already a member of AfriNIC. • Went -
The Internet in Transition: the State of the Transition to Ipv6 in Today's
Please cite this paper as: OECD (2014-04-03), “The Internet in Transition: The State of the Transition to IPv6 in Today's Internet and Measures to Support the Continued Use of IPv4”, OECD Digital Economy Papers, No. 234, OECD Publishing, Paris. http://dx.doi.org/10.1787/5jz5sq5d7cq2-en OECD Digital Economy Papers No. 234 The Internet in Transition: The State of the Transition to IPv6 in Today's Internet and Measures to Support the Continued Use of IPv4 OECD FOREWORD This report was presented to the OECD Working Party on Communication, Infrastructures and Services Policy (CISP) in June 2013. The Committee for Information, Computer and Communications Policy (ICCP) approved this report in December 2013 and recommended that it be made available to the general public. It was prepared by Geoff Huston, Chief Scientist at the Asia Pacific Network Information Centre (APNIC). The report is published on the responsibility of the Secretary-General of the OECD. Note to Delegations: This document is also available on OLIS under reference code: DSTI/ICCP/CISP(2012)8/FINAL © OECD 2014 THE INTERNET IN TRANSITION: THE STATE OF THE TRANSITION TO IPV6 IN TODAY'S INTERNET AND MEASURES TO SUPPORT THE CONTINUED USE OF IPV4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................... 2 THE INTERNET IN TRANSITION: THE STATE OF THE TRANSITION TO IPV6 IN TODAY'S INTERNET AND MEASURES TO SUPPORT THE CONTINUED USE OF IPV4 .......................... 4 -
Ipv6 in Mobile Networks APRICOT 2016 – February 2016
IPv6 in Mobile Networks APRICOT 2016 – February 2016 Telstra Unrestricted Introduction Sunny Yeung - Senior Technology Specialist, Telstra Wireless Network Engineering Technical Lead for Wireless IPv6 deployment Wireless Mobile IP Edge/Core Architect Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 2 Agenda 1. Why IPv6 in Mobile Networks? 2. IPv6 – it’s here. Really. 3. Wireless Network Architectures 4. 464XLAT – Saviour? Or the devil in disguise? 5. Solution Testing and Results 6. Conclusion 7. Q&A Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 3 Why IPv6 in Mobile Networks? Why IPv6 in Mobile Networks? • Exponential Growth in mobile data traffic and user equipment • Network readiness for Internet-of-Things • IPv4 public address depletion • IPv4 private address depletion • Offload the NAT44 architecture • VoLTE/IMS Remember – IPv6 should be invisible to the end-user Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 5 IPv6 It’s Here. Really. IPv6 Global Traffic The world according to Google Source - https://www.google.com/intl/en/ipv6/statistics.html Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 7 Carrier Examples SP1 SP2 / SP3 SP4 Dual-Stack SS+NAT64+DNS64+CLAT SS/DS+NAT64+DNS-HD +CLAT 1. Every carrier will have a unique set of circumstances that dictates which transition method they will use. There is no standard way of doing this. 2. You must determine which is the best method for your network. In any method, remember to ensure you have a long-term strategy for the eventual deployment of native Single Stack IPv6! Telstra Unrestricted | IPv6 in Mobile Networks | Sunny Yeung | 02/2016 | 8 IPv4 reality – from a business perspective 1. -
Evolution of Mobile Networks and Ipv6
Evolution of Mobile Networks and IPv6 Miwa Fujii <[email protected]> APNIC, Senior Advisor Internet Development 25th April 2014 APEC TEL49 Yangzhou, China Issue Date: [25/04/2014] Revision: [3] Overview • Growth path of the Internet – Asia Pacific region • Evolution of mobile networks • IPv6 deployment in mobile networks: Case study • IPv6 deployment status update • IPv6 in mobile networks: way forward 2 Growth path of the Internet The next wave of Internet growth • The Internet has experienced phenomenal growth in the last 20 years – 16 million users in 1995 and 2.8 billion users in 2013 • And the Internet is still growing: Research indicates that by 2017, there will be about 3.6 billion Internet users – Over 40% of the world’s projected population (7.6 billion) • The next wave of Internet growth will have a much larger impact on the fundamental nature of the Internet – It is coming from mobile networks http://www.allaboutmarketresearch.com/internet.htm 4 Internet development in AP region: Internet users 100.00 Internet Users (per 100 inhabitants) New Zealand, 89.51 90.00 Canada, 86.77 Korea, 84.10 Australia, 82.35 80.00 United States, 81.03 Japan, 79.05 Chinese Taipei, 75.99 Singapore, 74.18 70.00 Hong Kong, China, 72.80 Malaysia, 65.80 Chile, 61.42 60.00 Brunei Darussalam, 60.27 Russia, 53.27 50.00 China, 42.30 Viet Nam, 39.49 40.00 Mexico, 38.42 Peru, 38.20 The Philippines, 36.24 30.00 Thailand, 26.50 20.00 Indonesia, 15.36 10.00 Papua New Guinea, 2.30 0.00 2005 2006 2007 2008 2009 2010 2011 2012 http://statistics.apec.org/ 5 Internet -
The Regional Internet Registry System Leslie Nobile
“How It Works” The Regional Internet Registry System Leslie Nobile v Overview • The Regional Internet Registry System • Internet Number Resource Primer: IPv4, IPv6 and ASNs • Significant happenings at the RIR • IPv4 Depletion and IPv6 Transition • IPv4 transfer market • Increase in fraudulent activity • RIR Tools, technologies, etc. 2 The Regional Internet Registry System 3 Brief History Internet Number Resource Administration • 1980s to 1990s • Administration of names, numbers, and protocols contracted by US DoD to ISI/Jon Postel (eventually called IANA) • Registration/support of this function contracted to SRI International and then to Network Solutions • Regionalization begins - Regional Internet Registry system Jon Postel forms • IP number resource administration split off from domain name administration • US Govt separates administration of commercial Internet (InterNIC) from the military Internet (DDN NIC) 4 What is an RIR? A Regional Internet Registry (RIR) manages the allocation and registration of Internet number resources in a particular region of the world and maintains a unique registry of all IP numbers issued. *Number resources include IP addresses (IPv4 and IPv6) and autonomous system (AS) numbers 5 Who Are the RIRs? 6 Core Functions of an RIR Manage, distribute -Maintain directory -Support Internet and register Internet services including infrastructure through Number Resources Whois and routing technical coordination (IPv4 & IPv6 registries addresses and Autonomous System -Facilitate community numbers (ASNs) -Provide -
Ipv6 Allocation Policy
Internet Number Resource Status Report As of 31 March 2005 Prepared by Regional Internet Registries AFRINIC, APNIC, ARIN, LACNIC and RIPE NCC Presented by Axel Pawlik Chair, NRO Managing Director, RIPE NCC IPv4 /8 Address Space Status Allocated 94 Available IANA 73 Reserved 16 20 16 1 2 Not Available ARIN Experimental 16 APNIC LACNIC Multicast 16 RIPE NCC 1 (*) AFRINIC Private Use Public Use 1 Central Registry (*) AFRINIC block was allocated on April 11th by IANA March 2005 Internet Number Resource Report IPv4 Allocations from RIRs to LIRs/ISPs Yearly Comparison 3.0 2.5 AFRINIC APNIC 2.0 ARIN LACNIC 1.5 RIPE NCC /8s 1.0 0.5 0.0 1999 2000 2001 2002 2003 2004 2005 March 2005 Internet Number Resource Report IPv4 Allocations RIRs to LIRs/ISPs Cumulative Total (Jan 1999 – March 2005) AFRINIC RIPE NCC 0.3 10.2 0.1% 31% APNIC 11.1 33% ARIN 10.9 33% LACNIC 0.6 2% March 2005 Internet Number Resource Report ASN Assignments RIRs to LIRs/ISPs Yearly Comparison 3000 2500 AFRINIC APNIC ARIN 2000 LACNIC RIPE NCC 1500 1000 500 0 1999 2000 2001 2002 2003 2004 2005 March 2005 Internet Number Resource Report ASN Assignments RIRs to LIRs/ISPs Cumulative Total (Jan 1999 – March 2005) AFRINIC 114 1% RIPE NCC 8369 34% APNIC ARIN 2789 12331 11% 51% LACNIC 645 3% March 2005 Internet Number Resource Report IANA IPv6 Allocations to RIRs (no of /23s) 70 66 APNIC 60 ARIN 50 LACNIC RIPE NCC 40 28 30 20 10 4 1 0 APNIC ARIN LACNIC RIPE NCC March 2005 Internet Number Resource Report IPv6 Allocations RIRs to LIRs/ISPs Yearly Comparison 160 140 AFRINIC APNIC 120 ARIN 100 -
74 Network Addressin
CSC414 Communication Models Computer Network Client/Server Model System - Server Program Fundamentals Addressing - Runs on computer that has files to be shared - Web Server, Mail Server, Warcraft Server Server Client - Client Program Apache Firefox - Computer that needs to access remote files - Web Browser, Mail Client, World of Warcraft Digital Forensics Center Department of Computer Science and Statics THINK BIG WE DO Peer to Peer Model - Single program U R I - makes files on computer available Peer Peer http://www.forensics.cs.uri.edu - accesses remote files LimeWire LimeWire Addressing Data Domain Names http://www.uri.edu:80/courses/cs/index.html Hierarchical system for name creation and registration protocol computer directory file - Created so users would not have to memorize IP addresses address port - Global domain name system provides global scope for user friendly addresses OSI Model Domain Name Application Layer Country Codes Country Domain Type Common .us United States .biz Business File requested by client Presentation Layer Top Level .uk United Kingdom .com Commercial .au Australia .edu US Educational Folder or directory path on server Session Layer Maps to special directory used by Port Domains .cn China .gov US Government application .mil Military Transport Layer .ca Canada Mailbox on the machine the .de Germany .net Network server or peer is checking Top level Network Layer .org Nonprofit Organization IP Address (Logical) domains are .ru Russia What machine has the shared data .info Info Domain approved by .in India Where -
AX1800 Wifi 6 Router Model RAX15
User Manual AX1800 WiFi 6 Router Model RAX15 NETGEAR, Inc. August 2021 350 E. Plumeria Drive 202-12029-02 San Jose, CA 95134, USA AX1800 WiFi 6 Router Support and Community Visit netgear.com/support to get your questions answered and access the latest downloads. You can also check out our NETGEAR Community for helpful advice at community.netgear.com. Regulatory and Legal Si ce produit est vendu au Canada, vous pouvez accéder à ce document en français canadien à https://www.netgear.com/support/download/. (If this product is sold in Canada, you can access this document in Canadian French at https://www.netgear.com/support/download/.) For regulatory compliance information including the EU Declaration of Conformity, visit https://www.netgear.com/about/regulatory/. See the regulatory compliance document before connecting the power supply. For NETGEAR’s Privacy Policy, visit https://www.netgear.com/about/privacy-policy. By using this device, you are agreeing to NETGEAR’s Terms and Conditions at https://www.netgear.com/about/terms-and-conditions. If you do not agree, return the device to your place of purchase within your return period. Trademarks ©NETGEAR, Inc. NETGEAR and the NETGEAR Logo are trademarks of NETGEAR, Inc. Any non-NETGEAR trademarks are used for reference purposes only. 2 Contents Chapter 1 Hardware Setup Unpack your router...............................................................................9 Front panel LEDs and buttons..........................................................10 Rear panel and side panel.................................................................12 -
Ipv6 AAAA DNS Whitelisting a BROADBAND INTERNET TECHNICAL ADVISORY GROUP TECHNICAL WORKING GROUP REPORT
IPv6 AAAA DNS Whitelisting A BROADBAND INTERNET TECHNICAL ADVISORY GROUP TECHNICAL WORKING GROUP REPORT A Near-Uniform Agreement Report (100% Consensus Achieved) Issued: September 2011 Copyright / Legal NotiCe Copyright © Broadband Internet Technical Advisory Group, Inc. 2011. All rights reserved. This document may be reproduced and distributed to others so long as such reproduction or distribution complies with Broadband Internet Technical Advisory Group, Inc.’s Intellectual Property Rights Policy, available at www.bitag.org, and any such reproduction contains the above copyright notice and the other notices contained in this section. This document may not be modified in any way without the express written consent of the Broadband Internet Technical Advisory Group, Inc. This document and the information contained herein is provided on an “AS IS” basis and BITAG AND THE CONTRIBUTORS TO THIS REPORT MAKE NO (AND HEREBY EXPRESSLY DISCLAIM ANY) WARRANTIES (EXPRESS, IMPLIED OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THIS REPORT, AND THE ENTIRE RISK OF RELYING UPON THIS REPORT OR IMPLEMENTING OR USING THE TECHNOLOGY DESCRIBED IN THIS REPORT IS ASSUMED BY THE USER OR IMPLEMENTER. The information contained in this Report was made available from contributions from various sources, including members of Broadband Internet Technical Advisory Group, Inc.’s Technical Working Group and others. Broadband Internet Technical Advisory Group, Inc. takes no position regarding the validity or scope of any intellectual property rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this Report or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. -
Fireware Configuration Example
Configuration Example Use a Branch Office VPN for Failover From a Private Network Link Example configuration files created with — WSM v11.10.1 Revised — 7/22/2015 Use Case In this configuration example, an organization has networks at two sites and uses a private network link to send traffic between the two networks. To make their network configuration more fault-tolerant, they want to set up a secondary route between the networks to use as a backup if the private network link fails, but they do not want to spend money on a second private network connection. To solve this problem, they can use a branch office VPN with dynamic routing. This configuration example provides a model of how you could set up your network to automatically fail over to a branch office VPN if a primary private network connection between two sites becomes unavailable. To use the branch office VPN connection for automatic failover, you must enable dynamic routing on the Firebox at each site. You can use any supported dynamic routing protocol (RIP v1, RIP v2, OSPF, or BGP v4). This configuration example is provided as a guide. Additional configuration settings could be necessary, or more appropriate, for your network environment. Solution Overview A routing protocol is the method routers use to communicate with each other and share information about the status of network routing tables. On the Firebox, static routes are persistent and do not change, even if the link to the next hop goes down. When you enable dynamic routing, the Firebox automatically updates the routing table based on the status of the connection.