Angiosperm Latin Name: Fockea Edulis Common Name: Bergbaroe

Total Page:16

File Type:pdf, Size:1020Kb

Angiosperm Latin Name: Fockea Edulis Common Name: Bergbaroe Latin Name: Fockea edulis Common Name: Bergbaroe Family: Apocynaceae Geographic Origin: South Africa Soil: This plant prefers well-draining soil. Temperature: Prefers temperatures around 75°-85°F during the day and 65°-75°F during the night. Light: This plant thrives with partial shade. Moisture: This plant should receive a thorough watering once a week during the early morning or on a cloudy day to avoid burns. Allow the soil to dry out between each watering. Fertilization: Fertilize once a year, alternating between fish and seaweed fertilizer every year. Grooming: Gangly branches can be trimmed for aesthetic reasons. This plant has large amounts of fast-growing roots so it should be repotted every year. Seasonal Care: Reduce watering and fertilization during winter months. Propagation: Propagate from seed or stem cuttings. Pests and diseases: Susceptible to whitefly, mealy bugs and scale. Angiosperm Latin Name: Orbea variegata Common Name: Carrion Cactus Family: Apocynaceae Geographic Origin: South Africa Soil: Create a well-draining, succulent soil mix with one part compost, one part sand, and a small amount of perlite. Temperature: During the day temperatures should be about 75°F and during the night temperatures should be about 65°F. Light: This plant should receive full sun to partial shade. Moisture: This plant should receive a thorough watering once a week during the early morning or on a cloudy day to avoid burns. Allow the soil to dry out between each watering. Fertilization: Fertilize once a year, alternating between fish and seaweed fertilizer every year. Grooming: Repot once every year. Seasonal Care: Watering and fertilizing should be reduced during the winter months. Propagation: Propagate from stem cuttings or seeds. Pests and diseases: This plant is susceptible to scale and mealy bugs. Latin Name: Orbeanthus hardyi Common Name: Orbeanthus Angiosperm Family: Asclepiadaceae Geographic Origin: South Africa Soil: Create a well-draining, succulent soil mix with one part compost, one part sand, and a small amount of perlite. Temperature: During the day temperatures should be about 75°F and during the night temperatures should be about 65°F. Light: This plant likes to receive full sun to partial shade. Moisture: This plant should receive a thorough watering once a week during the early morning or on a cloudy day to avoid burns. Allow the soil to dry out between each watering. Fertilization: Fertilize once a year, alternating between fish and seaweed fertilizer every year. Grooming: Repot once every year. Seasonal Care: Reduce watering and fertilizing during winter months. Propagation: Propagate from stem cuttings or seeds. Pests and diseases: Susceptible to root rot and mealy bugs. Latin Name: Pachypodium saundersii Angiosperm Common Name: Kudu Lily Family: Apocynaceae Geographic Origin: South Africa Soil: Create a well-draining, succulent soil mix with one part compost, one part sand, and a small amount of perlite. Temperature: During the day temperatures should be about 75°F and during the night temperatures should be about 65°F. Light: This plant prefers full sun. Moisture: This plant should receive a thorough watering once a week during the early morning or on a cloudy day to avoid burns. Allow the soil to dry out between each watering. Fertilization: Fertilize once a year, alternating between fish and seaweed fertilizer every year. Grooming: Repot once a year and cut back extending branches when needed. Seasonal Care: Reduce watering and fertilizing during winter months. Propagation: Propagate from seed or stem cuttings. Pests and diseases: This plant is susceptible to mealy bugs, whitefly, and scale. Latin Name: Schlecterella africana (Schltr.) K. Schum. Angiosperm Common Name: Tacazzea Family: Apocynaceae Geographic Origin: South Africa Soil: Create a well-draining, succulent soil mix with one part compost, one part sand, and a small amount of perlite. Temperature: During the day temperatures should be about 75°F and during the night temperatures should be about 65°F. Light: This plant prefers full sun to partial shade Moisture: This plant should receive a thorough watering once a week during the early morning or on a cloudy day to avoid burns. Allow the soil to dry out between each watering. Fertilization: Fertilize once a year, alternating between fish and seaweed fertilizer every year. Grooming: This plant can be repotted once a year and the vines and extended branches can be cut back when needed. Seasonal Care: Reduce watering and fertilizing during winter months. Propagation: Propagate from stem cuttings or seed. Pests and diseases: This plant is susceptible to mealy bugs, whitefly, and scale. Angiosperm .
Recommended publications
  • Plants Prohibited from Sale in South Australia Plants Considered As Serious Weeds Are Banned from Being Sold in South Australia
    Plants prohibited from sale in South Australia Plants considered as serious weeds are banned from being sold in South Australia. Do not buy or sell any plant listed as prohibited from sale. Plants listed in this document are declared serious weeds and are prohibited from sale anywhere in South Australia pursuant to Section 188 of the Landscape South Australia Act 2019 (refer South Australian Government Gazette 60: 4024-4038, 23 July 2020). This includes the sale of nursery stock, seeds or other propagating material. However, it is not prohibited to sell or transport non-living products made from these plants, such as timber from Aleppo pine, or herbal medicines containing horehound. Such products are excluded from the definition of plant, under the Landscape South Australia (General) Regulations 2020. Section 3 of the Act defines sell as including: • barter, offer or attempt to sell • receive for sale • have in possession for sale • cause or permit to be sold or offered for sale • send, forward or deliver for sale • dispose of by any method for valuable consideration • dispose of to an agent for sale on consignment • sell for the purposes of resale How to use this list Plants are often known by many names. This list can help you to find the scientific name and other common names of a declared plant. This list is not intended to be a complete synonymy for each species, such as would be found in a taxonomic revision. The plants are listed alphabetically by the common name as used in the declaration. Each plant is listed in the following format: Common name alternative common name(s) Scientific name Author Synonym(s) Author What to do if you suspect a plant for sale is banned If you are unsure whether a plant offered for sale under a particular name is banned, please contact your regional landscape board or PIRSA Biosecurity SA.
    [Show full text]
  • Stapeliads, Morphology and Pollination, Welwitchia 5
    Morfologija in opra{evanje stapelijevk Stapeliads, morphology and pollination Iztok Mulej Matija Strli~ Stapelijevke so so~nice s ~udovitimi cvetovi in Stapeliads are succulents with beautiful flowers vonjem, ki ga taki cvetovi ne zaslu`ijo. Raz{irjene with a smell that does not match their beauty at so ve~inoma v Afriki, dotikajo se Evrope, v Aziji all. Distributed mainly in Africa, a few species can pa imajo tudi precej predstavnikov. Cvetovi so also be found in Europe, and quite a few in Asia. nekaj posebnega, ne samo po bizarni lepoti am- Their flowers are unique, not only due to the pak tudi po zgradbi. Prav tako je tudi opra{itev bizarre beauty, but also due to the unusual repro- samosvoja, saj podobne ne najdemo nikjer drug- ductive structures. Even the pollination mecha- je v rastlinskem svetu. nism has no parallel in the plant kingdom. Klju~ne besede: Keywords: stapelijevke, Apocynaceae, Asclepiadoideae, Stapeliads, Apocynaceae, Asclepiadoideae, mor- morfologija, opra{evanje. fology, pollination. Stapeliads, which are stem succulents, belong World" is the title of the web pages of Jerry to the family Apocynaceae and subfamily As- Barad from New Jersey, USA. The title says clepiadoideae. Until recently, they were everything. The flowers have a beauty and placed into the Asclepiadaceae family. The colour that can only be compared with or- stem shapes are very similar in most genera, chids. And they also share another character- but when they bloom, the beauty of the flow- istic. The pollen mass is fused in a wax pollen ers is striking as well as their unpleasant sack - pollinium, which is transferred by pol- smell! "Stapeliads, Orchids of the Succulent linators to the style.
    [Show full text]
  • Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
    NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica.
    [Show full text]
  • Planting a Dry Rock Garden in Miam1
    Succulents in Miam i-D ade: Planting a D ry Rock Garden John McLaughlin1 Introduction The aim of this publication is twofold: to promote the use of succulent and semi-succulent plants in Miami-Dade landscapes, and the construction of a modified rock garden (dry rock garden) as a means of achieving this goal. Plants that have evolved tactics for surviving in areas of low rainfall are collectively known as xerophytes. Succulents are probably the best known of such plants, all of them having in common tissues adapted to storing/conserving water (swollen stems, thickened roots, or fleshy and waxy/hairy leaves). Many succulent plants have evolved metabolic pathways that serve to reduce water loss. Whereas most plants release carbon dioxide (CO2) at night (produced as an end product of respiration), many succulents chemically ‘fix’ CO2 in the form of malic acid. During daylight this fixed CO2 is used to form carbohydrates through photosynthesis. This reduces the need for external (free) CO2, enabling the plant to close specialized pores (stomata) that control gas exchange. With the stomata closed water loss due to transpiration is greatly reduced. Crassulacean acid metabolism (CAM), as this metabolic sequence is known, is not as productive as normal plant metabolism and is one reason many succulents are slow growing. Apart from cacti there are thirty to forty other plant families that contain succulents, with those of most horticultural interest being found in the Agavaceae, Asphodelaceae (= Aloacaeae), Apocynaceae (now including asclepids), Aizoaceae, Crassulaceae, Euphorbiaceae and scattered in other families such as the Passifloraceae, Pedaliaceae, Bromeliaceae and Liliaceae.
    [Show full text]
  • Convergent Evolution of Carrion and Faecal Scent Mimicry in Fly-Pollinated Angiosperm Flowers and a Stinkhorn Fungus ⁎ S.D
    South African Journal of Botany 76 (2010) 796–807 www.elsevier.com/locate/sajb Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus ⁎ S.D. Johnson , A. Jürgens School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa Received 1 June 2010; received in revised form 24 July 2010; accepted 26 July 2010 Abstract Flowers of many angiosperms attract fly pollinators through mimicry of animal carrion and faeces. This phenomenon of “sapromyiophily” is also evident in the sporophytes of some mosses and fruiting bodies of “stinkhorn” fungi, both of which use flies as agents of spore dispersal. We studied the scent chemistry of a stinkhorn fungus (Clathrus archeri) and seven fly-pollinated plant species with foetid odours to determine the degree to which these organisms mimic the scent of carrion and faeces (reference scent samples were collected from rotting meat, a rat carcass and horse and dog faeces), as well as the degree of convergent evolution between the fungus and angiosperm flowers. We found that scents of both the fungus and angiosperms tended to contain compounds typical of carrion, such as oligosulphides, and of faeces, such as phenol, indole and p- cresol. This study provides compelling new evidence for mimicry of carrion and faeces, as well as a striking pattern of convergence in the putrid scents of the fungus and the angiosperms, relative to those of confamilial species. The syndrome of sapromyiophily thus encompasses at least two kingdoms (Plantae and Fungi) and provides an effective means of exploiting flies as agents of pollen and spore dispersal.
    [Show full text]
  • Unwelcome Guests: a Selective History of Weed Introductions to Arid and Semi-Arid Australia
    CSIRO PUBLISHING Australian Journal of Botany, 2020, 68,75–99 Turner Review No. 24 https://doi.org/10.1071/BT20030 Unwelcome guests: a selective history of weed introductions to arid and semi-arid Australia M. H. Friedel A,B AResearch Institute for the Environment and Livelihoods, Charles Darwin University, Grevillea Drive, Alice Springs, NT 0870, Australia. Email: [email protected] BFormerly CSIRO Land and Water, Alice Springs, NT 0870, Australia. Abstract. Following European settlement of Australia, numerous plant species were deliberately introduced for use in crops, pastures, gardens and horticulture, and others arrived by chance. Many subsequently escaped and became weedy. Of the 54 weed species of natural environments of arid and semi-arid Australia that are considered here, 27 were apparently accidentally introduced, 20 were intentionally introduced and 7 were probably introduced both accidentally and intentionally. Livestock including camels and their harness, and contaminated seed and hay were the most common vectors for accidental introduction. Amongst intentional introductions, rather more ornamental species appear to have invaded successfully than pasture species, but the former generally occupy niche habitats. Recent new introductions are few due to pre-border, border and post-border protections, but many current arid zone weeds continue to spread. Understanding the history of weed invasions can help to guide current and future management by clarifying pathways for introduction. Additional keywords: camel harness, contaminants
    [Show full text]
  • Flora Ornamental Española, VI. Araliaceae
    Flora Ornamental Flora Ornamental Española Española Tomo I Magnoliaceae • Casuarinaceae Tomo II Cactaceae • Cucurbitaceae Tomo III Salicaceae • Chrysobalanaceae Tomo IV Papilionaceae • Proteaceae Tomo V Flora Ornamental Española Santalaceae • Polygalaceae Tomo VI VI Araliaceae • Boraginaceae Tomo VII Verbenaceae • Rubiaceae Tomo VIII Caprifoliaceae • Asteraceae Tomo IX Limnocharitaceae • Pandanaceae Tomo X Lemnaceae • Orchidaceae Tomo XI Selaginellaceae • Ephedraceae Araliaceae • Boraginaceae Tomo XII VI Clave de familias adenda e índices generales Araliaceae • Boraginaceae ASOCIACIÓN ESPAÑOLA DE PARQUES Y Mundi-Prensa Libros, s.a. JARDINES PÚBLICOS flora 6_fam_1_2.qxp 27/4/10 08:56 Página 2 flora 6_fam_1_2.qxp 27/4/10 08:56 Página 3 FLORA ORNAMENTAL ESPAÑOLA Las plantas cultivadas en la España peninsular e insular Tomo VI Araliaceae • Boraginaceae Coordinador José Manuel Sánchez de Lorenzo Cáceres Coedición Junta de Andalucía Consejería de Agricultura y Pesca Ediciones Mundi-Prensa Madrid - Barcelona - México Asociación Española de Parques y Jardines Públicos flora 6_fam_1_2.qxp 27/4/10 08:56 Página 4 JUNTA DE ANDALUCÍA Consejería de Agricultura y Pesca Viceconsejería Servicio de Publicaciones y Divulgación C/ Tabladilla, s/n. 41071 SEVILLA Tlf.: 955 032 081 - Fax: 955 032 528 GRUPO MUNDI-PRENSA Mundi-Prensa Libros, S.A. Castelló, 37 - 28001 MADRID Tlf.: +34 914 363 700 - Fax: +34 915 753 998 E-mail: [email protected] Internet: www.mundiprensa.com Mundi-Prensa Barcelona Editorial Aedos, S.A. Aptdo. de Correos 33388 - 08009 BARCELONA Tlf.: +34 629 262 328 - Fax: +34 933 116 881 E-mail: [email protected] Mundi-Prensa México, S.A. de C.V. Río Pánuco, 141 - Col. Cuauhtémoc 06500 MÉXICO, D.F. Tlf.: 00 525 55 533 56 58 - Fax: 00 525 55 514 67 99 E-mail: [email protected] ASOCIACIÓN ESPAÑOLA DE PARQUES Y JARDINES PÚBLICOS C/ Madrid s/n, esquina c/ Río Humera 28223 Pozuelo de Alarcón, MADRID Tlf.: 917 990 394 - Fax: 917 990 362 www.aepjp.es © Textos y fotografías de los autores.
    [Show full text]
  • Catalogo De Especies 2011
    Catálogo de especies Colecciones botánicas Real Jardín Botánico Juan Carlos I Universidad de Alcalá Actualización enero 2011 2 Catálogo de especies 3 Edita Real Jardín Botánico Juan Carlos I, Oficina Técnica. Director Rosendo Elvira Palacio. Biólogo Autores Rosendo Elvira Palacio. Biólogo Inmaculada Porras Castillo. Conservadora Jardín Botánico. Bióloga Colaboración Silvia Rivas Gutierrez Diseño y maquetación Montserrat Orive Felipes Año 2011 4 ÍNDICE Introducción Pág. 7 Abreviaturas empleadas Pág. 9 Resumen Pág. 11 1ª parte Listado alfabético Pág. 11 2ª parte Listado por colecciones Arboreto de coníferas Pág. 145 Arboreto de exóticas Pág. 149 Arboreto ibérico Pág. 155 Área educativa (Ajard. Aula Medioamb.) Pág. 157 Crassuletum Pág. 159 Escuela Taxonómica (Flora Regional) Pág. 189 Formaciones Parque de Flora Regional Pág. 195 Huerta ecológica Pág. 199 Jardín Taxonómico (Flora Mundial) Pág. 203 Rosaleda Pág. 215 Tropicarium Pág. 219 5 6 Introducción Se incluyen los 7.518 taxones que constituyen las diferentes colecciones del Jardín Botánico el 1 de enero de 2011. Se aporta también información botánica de las especies, subespecies, formas, variedades y cultivares, así como datos de los ejemplares que se encuentran en nuestras instalaciones. El catálogo consta de 2 partes: 1ª parte.- Un listado alfabético , en el que las especies y los taxones de rango inferior se ordenan de forma alfabética. El género y la especie se destaca en negrita, seguido de las iniciales del autor, la subsp . en negrita, seguido del autor de la subespecie, del nombre vulgar –si es conocido- en cursiva, de la familia en versales y su distribución geográfica. 2ª parte.- Un listado por colecciones numerado.
    [Show full text]
  • Plants Prohibited from Sale in South Australia
    Thursday, 27 July 2017 NRM Biosecurity Plants prohibited from sale in South Australia The plants in the attached list are recognised as serious weeds and are banned from sale in South Australia pursuant to Section 177 of the Natural Resources Management Act 2004 (refer South Australian Government Gazette 7: 368-382, 9 February 2017). There is a prohibition, throughout South Australia, on selling any plant that appears on this list. This includes the sale of nursery stock, seeds or other propagating material. However, there is no prohibition on selling or transporting a non-living product made from these plants, such as timber from Aleppo pine, herbal medicines containing horehound, or baskets woven from bulbil watsonia leaves. This list can help you to find the scientific name of a declared plant that may be known by other names. If you are unsure whether a plant offered for sale under a particular name is banned, please contact your regional NRM or Biosecurity SA. The plants are listed alphabetically by the common name as used in the declaration. Each plant is listed in the following format: Common name alternative common name(s) Scientific name Author Synonym(s) Author The synonyms listed are some of the commoner ones that may have been in use at one time or another. However, this is not intended as a complete synonymy for each species, such as would be found in a taxonomic revision. African boxthorn boksdorn, boxthorn Lycium ferocissimum Miers Lycium campanulatum E.Mey. ex C.H.Wright Lycium macrocalyx Domin African feathergrass beddinggras, Boer lovegrass, curved lovegrass, Catalina lovegrass.
    [Show full text]
  • Stapeliads: Six That Are Easy
    Six Easy Stapeliads Leo A. Martin This group fascinates many because of the weird stem shapes, star-shaped flowers, and difficulty of growth of some species. I still remember my excitement at age 10 seeing a one for the first time: the large bed of Stapelia gigantea in the desert dome at Mitchell Park in Milwaukee, blooming crazily and stinkily. I knew then that I wanted to grow this plant, and I still grow cuttings from my original plant, bought for me in Milwaukee by my grandfather when I was 13. (I am just out of my teens now.) They are in the milkweed family, which can be told from the five-pointed flowers, the complicated reproductive structures at the centers of the flowers, the paired seed pods, and the round tan seeds with silky parachutes. In nature, the pods open, and the seeds drift away on the breezes, to be deposited in the litter accumulating at the base of a shrub or tree. There, where conditions are shadier and more moist than out in the open, seeds sprout and grow on., In habitat, these plants are almost always found growing out from the trunk as a skirt. They rarely have the purplish tones found in sun-grown plants in pots. To my knowledge, their only sun-loving relatives are hoodia and pseudolithos. I have grown and flowered over 50 different stapeliads since then, both easy and hard ones. For anybody wanting to grow them, I would recommend the following six as being easy to grow, and representative of the group.
    [Show full text]
  • Stapelia Catalog
    SucculentShop.co.za Page: 2 MAROON CUP STARFISH - AASBLOM - STAPELIA LEENDERTZIAE The Stapelia family is a genus of low-growing, spineless, stem succulent plants, predominantly from South Africa. The flowers of certain species, most notably Stapelia gigantea, can reach 41 cm (16 inches) in diameter when fully open. Most Stapelia flowers are visibly hairy and generate the odour of rotten flesh when they bloom; a notable exception is the sweetly scented Stapelia flavopurpurea. Such odours serve to attract various specialist pollinators including, in the case of carrion-scented blooms, blow flies of the dipteran family Calliphoridae. They frequently lay eggs around the coronae of Stapelia flowers, convinced by the plants' deception. The hairy, oddly textured and coloured appearance of many Stapelia flowers has been claimed to resemble that of rotting meat, and this, coupled with their odour, has earned the most commonly grown members of the genus Stapelia the common name of carrion flowers. A handful of species are commonly cultivated as pot plants and are even used as rockery plants in countries where the climate permits. Stapelia are good container plants and can grow well under full sun and light to moderate watering. They should be planted in well-drained compost as the stems are prone to rotting if kept moist for long. Source: Wikipedia Read More SucculentShop.co.za Page: 3 ORBEA MELANANTHA The Stapelia family is a genus of low-growing, spineless, stem succulent plants, predominantly from South Africa. The flowers of certain species, most notably Stapelia gigantea, can reach 41 cm (16 inches) in diameter when fully open.
    [Show full text]
  • Pollination Ecology and the Functional Significance of Unusual Floral Traits in Two South African Stapeliads
    Pollination ecology and the functional significance of unusual floral traits in two South African stapeliads Marc du Plessis Submitted in fulfilment of the academic requirements for the degree of Master of Science in the Discipline of Ecological Sciences School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg Supervisor: Dr Adam Shuttleworth [email protected] Co-supervisor: Prof. Steve Johnson [email protected] Co-supervisor: Prof. Sue Nicolson [email protected] ABSTRACT Carrion and dung mimicking plants often exhibit unusual floral traits which are believed to attract necro- and coprophagous insects as pollinators. Our understanding of these unusual traits and their functions is very limited. Stapeliads (Apocynaceae: Asclepiadoideae: Stapeliinae) are a monophyletic group of some 400 species of stem-succulent plants, many of which emit foul odours and exhibit unusual morphological traits that have anecdotally been assumed to represent adaptations to enhance the flowers’ resemblance to carrion or dung. This study looked at the pollination biology of two stapeliads, Orbea variegata and Stapelia hirsuta var. hirsuta, and explored the functional significance of some of the floral traits commonly associated with carrion or dung mimicking flowers. Further, odours emitted by both species were compared to the odours of putative models to explore the chemical basis for the assumed mimicry. Orbea variegata attracted flies from the families Muscidae, Calliphoridae and Sarcophagidae (at sites near Scarborough and Clifton, Western Cape) and individuals from each of these families were found carrying pollinia. The scent of O. variegata flowers was found to be dominated by dimethyl disulphide, dimethyl trisulphide as well as phenol.
    [Show full text]