Plants Prohibited from Sale in South Australia Plants Considered As Serious Weeds Are Banned from Being Sold in South Australia

Total Page:16

File Type:pdf, Size:1020Kb

Plants Prohibited from Sale in South Australia Plants Considered As Serious Weeds Are Banned from Being Sold in South Australia Plants prohibited from sale in South Australia Plants considered as serious weeds are banned from being sold in South Australia. Do not buy or sell any plant listed as prohibited from sale. Plants listed in this document are declared serious weeds and are prohibited from sale anywhere in South Australia pursuant to Section 188 of the Landscape South Australia Act 2019 (refer South Australian Government Gazette 60: 4024-4038, 23 July 2020). This includes the sale of nursery stock, seeds or other propagating material. However, it is not prohibited to sell or transport non-living products made from these plants, such as timber from Aleppo pine, or herbal medicines containing horehound. Such products are excluded from the definition of plant, under the Landscape South Australia (General) Regulations 2020. Section 3 of the Act defines sell as including: • barter, offer or attempt to sell • receive for sale • have in possession for sale • cause or permit to be sold or offered for sale • send, forward or deliver for sale • dispose of by any method for valuable consideration • dispose of to an agent for sale on consignment • sell for the purposes of resale How to use this list Plants are often known by many names. This list can help you to find the scientific name and other common names of a declared plant. This list is not intended to be a complete synonymy for each species, such as would be found in a taxonomic revision. The plants are listed alphabetically by the common name as used in the declaration. Each plant is listed in the following format: Common name alternative common name(s) Scientific name Author Synonym(s) Author What to do if you suspect a plant for sale is banned If you are unsure whether a plant offered for sale under a particular name is banned, please contact your regional landscape board or PIRSA Biosecurity SA. Invasive Species Unit, Biosecurity SA T 08 8429 0823 E [email protected] Plants prohibited from sale African boxthorn boksdorn, boxthorn Lycium ferocissimum Miers Lycium campanulatum E.Mey. ex C.H.Wright Lycium macrocalyx Domin African feathergrass beddinggras, Boer lovegrass, curved lovegrass, Catalina lovegrass. Cenchrus macrourus (Trin.)Morrone Gymnotrix caudata Schrad. Pennisetum angolense Rendle Pennisetum asperum Schult. Pennisetum exile Stapf & C.E.Hubbard Pennisetum giganteum A.Rich. Pennisetum macrourum Trin. Pennisetum natalense Stapf Pennisetum riparioides A.Rich. Pennisetum validum Mez African lovegrass bergsoetgras, Boer lovegrass, fyngras, weeping lovegrass Eragrostis curvula (Schrader)Nees except for the cultivar 'Consol' Poa curvula Schrader Poa capensis Steud. Poa filiformis Thunb. Eragrostis capillifolia Nees Eragrostis chloromelas Steud. Eragrostis jeffreysii Hack. Eragrostis procerior Rendle Eragrostis robusta Stent Eragrostis subulata Nees Eragrostis thunbergiana Steud. African rue Syrian rue, harmal, isband, esphand, peganum, yüzerlik, luò tuó péng shǔ (骆驼蓬属) Peganum harmala L. Harmala multifida All. Harmala peganum Crantz Harmala syriaca Bubani Aleppo pine Jerusalem pine, pino d'Aleppo, pino carrasco Pinus halepensis Mill. Pinus abasica Carrière Pinus arabica Sieber ex Spreng. Pinus carica D.Don Pinus genuensis J.Cook Pinus hispanica J.Cook Pinus loiseleuriana Carrière Pinus maritima Mill. Pinus parolinii Vis. Pinus penicillus Lapeyr. Pinus pseudohalepensis Denhardt ex Carrière Pinus saportae Rouy Alisma narrow-leaved water plantain Alisma lanceolatum With. Alisma plantago-aquatica var. lanceolatum (With.) Lej. Alisma stenophyllum Sam. Alkali sida alkali mallow, ivy-leaf sida Malvella leprosa (Ortega)Krapov. Malva leprosa Ortega Sida leprosa (Ortega)Schumann Malva hederacea Douglas ex Hook. Sida hederacea (Douglas ex Hook.) Torrey ex A.Gray Alligator weed pigweed Alternanthera philoxeroides (Mart.)Griseb. Bucholzia philoxeroides Mart. Telanthera philoxeroides (Mart.)Moq. Achyranthes philoxeroides (Mart.)Standley Alternanthera philoxerina Suess. Celosia amphibia Salzm.ex Moq. Apple of Sodom Solanum linnaeanum Hepper & P.-M.L.Jaeger Solanum astrophorum Jan Solanum hermannii Dunal Solanum sodomaeum var. hermannii (Dunal) Dunal Arum lily calla lily, lily of the Nile, pig lily, richardia, St. Joseph's lily, trumpet lily, green goddess, white arum lily Zantedeschia aethiopica (L.)Spreng. Calla aethiopica L. Calla ambigua Salisb. Colocasia aethiopica (L.) Link Richardia aethiopica (L.) Spreng. Richardia africana Kunth Asparagus fern myrsiphyllum, climbing asparagus, snakefeather Asparagus scandens Thunb. Asparagus pectinatus DC. Asparagopsis scandens (Thunb.)Kunth Myrsiphyllum scandens (Thunb.)Oberm. Athel pine athel tree, flowering cypress, salt cedar, tamarisk Tamarix aphylla (L.)H.Karst Thuja aphylla L. Tamarix articulata Vahl Tamarix orientalis Forssk. Austrocylindropuntia cane cactus, Eve's pin cactus Austrocylindropuntia Backeb., all species, including Austrocylindropuntia cylindrica (Lam.) Backeb. Austrocylindropuntia floccosa (Salm-Dyck ex Winterfeld) F.Ritter Austrocylindropuntia subulata (Muehlenpf.) Backeb. Austrocylindropuntia vestita (Salm-Dyck) Backeb. Azarola azarola thorn, azarole, Mediterranean medlar, Neapolitan medlar, za'rur Crataegus × sinaica Boiss. Crataegus azarola L. var. sinaica (Boiss.)Lange Crataegus montesantosii Diap. Mespilus monogyna var. sinaica (Boiss.) Wenz. Bathurst burr burrweed, cat's eggs, common cocklebur, daggerweed, prickly burrweed, spiny burrweed, spiny clotburr, spiny cocklebur, sheep's burr, thorny burrweed Xanthium spinosum L. Acanthoxanthium spinosum (L.) Fourr. Xanthium ambrosioides Hook. & Arn. Xanthium canescens (Costa) Widder Xanthium catharticum Kunth Xanthium multifidum Larrañaga Xanthium xanthocarpon Wallr. Bellyache bush cotton-leaf physic nut, red physic nut, purging nut, red fig-nut flower, wild cassava, black physic nut, danmar menah, faux manioc, pinhão roxo Jatropha gossypiifolia L. Adenoropium gossypiifolium (L.) Pohl Jatropha elegans (Pohl) Klotsch Manihot gossypiifolia (L.) Crantz Berry heath berry flower heath Erica baccans L. Erica bacciformis Salisb. Erica moniliformis Salisb. Bifora carrot weed, bird’s eye, European bishop Bifora testiculata (L.)Sprengel Anidrum testiculatum (L.) Kuntze Atrema testiculatum (L.) Miq. Coriandrum testiculatum L. Corion testiculatum (L.) Hoffmanns. & Link Bifora dicocca Hoffm. Bifora flosculosa M.Bieb. Coriandrum didymum Stokes Bladder campion blue-root, rattlebox Silene vulgaris (Moench)Garcke Behen vulgaris Moench Cucubalus alpinus Lam. Cucubalus behen L. Cucubalus inflatus Salisb. Cucubalus latifolius Mill. Silene cucubalus Wibel Silene inflata (Salisb.)Sm. Silene venosa Asch. Silene wallichiana Klotzsch Silene zawadskii Fenzl Blue mustard beanpodded mustard, chorispora, crossflower, musk mustard, purple mustard, Osaka purple mustard greens, tennella mustard, Waitchie weed Chorispora tenella (Pall.) DC. Cheiranthus taraxacifolius Schrank Chorispermum tenellum R.Br. Crucifera tenella (Pall.) E.H.L.Krause Raphanus tenellus Pall. Bluebell creeeper Australian bluebell creeper, native bluebell, purple appleberry, sollya, Western Australian bluebell, Western Australian bluebell creeper Billardiera fusiformis Labill. Billardiera elongata Schnizl. Billardiera salicifolia (Marnock) F.Cels Sollya fusiformis (Labill.) Payer Sollya salicifolia Marnock Billardiera heterophylla (Lindl.) L.W. Cayzer & Crisp Sollya heterophylla Lindl. Boneseed African boneseed, bush-tick berry, Higgins' curse Chrysanthemoides monilifera (L.)T.Norlindh Osteospermum moniliferum L. Osteospermum pisiferum L. Lepisiphon dentatus Turcz. Box elder ash maple, ash-leaf maple, cutleaf maple, elf maple, ghost maple, negundo maple, Manitoba maple, maple ash, red river maple, sugar ash, three-leaved maple Acer negundo L. excluding the cultivar ‘Sensation’. Acer fauriei H.Lév. & Vaniot Acer fraxinifolium Nutt. Acer lobatum Raf. Acer nuttallii (Nieuwl.) Lyon Acer trifoliatum Raf. Acer violaceum (Booth ex G.Kirchn.) Simonkai Negundo aceroides (L.) Moench Negundo negundo (L.) H.Karst. Negundo texanum (Pax) Rydb. Bridal creeper florists' smilax, false smilax, gnarboola, krulkransie, narba, smilax, smilax asparagus Asparagus asparagoides (L.)Wight Medeola asparagoides L. Myrsiphyllum asparagoides (L.)Willd. Dracaena medeoloides L.f. Asparagus medioloides (L.f.)Thunb. Asparagus kuisibensis Dinter Asparagus multituberosus R.A.Dyer Luzuriaga sewelliae (F.Muell.)K.Krause Myrsiphyllum krausianum Kunth. Bridal veil krulkransie, bridal veil asparagus, bridal veil creeper Asparagus declinatus L. Myrsiphyllum declinatum (L.)Obermeyer Asparagus decumbens Jacq. Asparagus crispus Lam. Asparagus flexuosus Thunb. Broad-kernel espartillo spear grass, Chilean ricegrass, puna grass Amelichloa caudata (Trin.) Arriaga & Barkworth Stipa caudata Trin. Achnatherum caudatum (Trin.) S.W.L. Jacobs & J. Everett Jarava caudata (Trin.) Peñail. Stipa bertrandii Phil. Stipa litoralis Phil. Broomrapes Orobanche, all species except the native Orobanche cernua Loefl. var. australiana (F.Muell. ex Tate) J.M. Black ex G.Beck.); the following introduced broomrapes are known in S.A.: clover broomrape, common broomrape, devil's root, lesser broomrape, small broomrape Orobanche minor Smith branched broomrape, hemp broomrape, tobacco broomrape Orobanche crithmi Bertol. Orobanche maritima Pugsley branched broomrape Orobanche ramosa L. Phelipanche ramosa Pomel Phelypaea ramosa (L.)C.A.Mey. Kopsia ramosa (L.)Dumort. Orobanche mutelii F.W.Schultz, Orobanche brassicae (Novopokrovsky) Novopokrovsky Orobanche ramosa subsp. mutelii (F.W.Schultz) Cout. Kopsia ramosa
Recommended publications
  • Supplementary Materialsupplementary Material
    10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell.
    [Show full text]
  • CATALOGUE of the GRASSES of CUBA by A. S. Hitchcock
    CATALOGUE OF THE GRASSES OF CUBA By A. S. Hitchcock. INTRODUCTION. The following list of Cuban grasses is based primarily upon the collections at the Estaci6n Central Agron6mica de Cuba, situated at Santiago de las Vegas, a suburb of Habana. The herbarium includes the collections made by the members of the staff, particularly Mr. C. F. Baker, formerly head of the department of botany, and also the Sauvalle Herbarium deposited by the Habana Academy of Sciences, These specimens were examined by the writer during a short stay upon the island in the spring of 1906, and were later kindly loaned by the station authorities for a more critical study at Washington. The Sauvalle Herbarium contains a fairly complete set of the grasses col- lected by Charles Wright, the most important collection thus far obtained from Cuba. In addition to the collections at the Cuba Experiment Station, the National Herbarium furnished important material for study, including collections made by A. H. Curtiss, W. Palmer and J. H. Riley, A. Taylor (from the Isle of Pines), S. M. Tracy, Brother Leon (De la Salle College, Habana), and the writer. The earlier collections of Wright were sent to Grisebach for study. These were reported upon by Grisebach in his work entitled "Cata- logus Plant arum Cubensium," published in 1866, though preliminary reports appeared earlier in the two parts of Plantae Wrightianae. * During the spring of 1907 I had the opportunity of examining the grasses in the herbarium of Grisebach in Gottingen.6 In the present article I have, with few exceptions, accounted for the grasses listed by Grisebach in his catalogue of Cuban plants, and have appended a list of these with references to the pages in the body of this article upon which the species are considered.
    [Show full text]
  • Seasonal Diets of Sheep in the Steppe Region of Tierra Del Fuego, Argentina
    J. Range Manage. 49: 24-30 January 1996 Seasonal diets of sheep in the steppe region of Tierra del Fuego, Argentina GABRIELA POSSE, JUAN ANCHORENA, AND MARTA B. COLLANTES Authors are range ecologists, Centro de Ecojisiologia Vegetal (CEVEG-CONICET), Serrano 669, (1414) Buenos Aires. Argentina. Abstract with large flocks roaming yearlong in paddocks of 2,000 to more than 4,000 ha. Grazing management is empirical and several Sheep diets were determined seasonally for large flocks grazing problems such as low reproduction rates and high winter mortali- year-round in 2 landscape types of the Magellanic steppe of ty of lambs were ascribed to nutritional causes. Nutritional prob- Argentina. A tussock-grasssteppe of Festuca gracillima Hooker f. lems could result from historical overgrazing, a situation that was dominates the uplands of the whole area. On acid soils established in several places of the area (Baetti et al. unpub- (Quaternary landscape), woody variants of the steppe prevail; on lished). As in other regions of unimproved natural pastures, neutral soils (Tertiary landscape), woody plants are almost knowledge of plant preferences in relation to resource availability ahsent and short grassesand forbs are abundant. Principal tasa is especially needed to develop sustainable management systems. consumed throughout the year were: Poa L., Deschampsia This is the first study of the foraging behavior of sheep in this P.Beauv., and “sedges & rushes”. Consumption of woody species area. and of the dominant tussock-grass Festuca gracillima increased notably in winter. Despite the large proportion of speciesin com- Our interest was to study sheep dietary habits in 2 different mon, diets differed significantly between landscapes.
    [Show full text]
  • A Review of Pharmacological Activities of Acacia Nilotica (Linn) Willd W.S.R to Osteoporosis Kamini Kaushal 1 Abstract
    Review Article A Review of Pharmacological Activities of Acacia nilotica (Linn) willd W.S.R to Osteoporosis Kamini Kaushal 1 Abstract Medicinal plants have been utilized for the treatment of diseases since creation of earth or before it; in traditional medicine, they still play an important role as effective and have natural origin. Acacia nilotica commonly known as babul belongs to the family Fabaceae and is widely distributed all over India, SriLanka, and Sudan; Egypt is the native country of this plant. Useful parts such as root, bark, leaves, flower, gum, pods, etc., are used in medicines. Different parts of the plant like leaves and fruit contain tannin; flower contains stearic acid, kaempferol-3-glucoside, isoquercetin, leucocyanidin; pod contains tannin, polyphenolic compounds, gum Contains arabic acid combined with calcium, magnesium and potassium. In traditional medicine, it is used for bleeding diseases, prolapsed, leucorrhoea, antihypertensive, antispasmodic, antibacterial, antifungal, antioxidant activity, etc. The present review is an attempt to explore and comprehensively highlight use for osteoporosis, phytochemical properties and pharmacological uses of A. nilotica reported till date. Keywords: Acacia arabica; Acacia nilotica , Pharmacological study, Tannin, Arabic acid, Uses Introduction More than 30% healthcare industry from all over the world relies on medicinal plants. In India, traditional system of medicine such as Ayurveda since ancient times is root of medicine. About 750 species are being utilized in Ayurveda system of medicine and in modern medicine around 30 species only.1 Medicinal plants are playing continuously essential part of Indian system of medicine. Acacia genus belongs to shrubs and trees, subfamily Mimosoideae, 2,3 of the family Fabaceae (Leguminosae).4,5 The species name is nilotica/arebica/scorpioides.
    [Show full text]
  • Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
    Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F.
    [Show full text]
  • Restricted Invasive Plants of Queensland
    Restricted invasive plants Restricted invasive plants of Queensland Restricted invasive plants of Queensland Hudson pear (Cylindropuntia rosea syn. Cylindropuntia pallida) Fireweed (Senecio madagascariensis) Mother-of-millions (Kalanchoe delagoense) Bunny ears (Opuntia microdasys) The new Biosecurity Act The Biosecurity Act 2014 protects Queensland’s economy, Species not listed as restricted may be listed as prohibited biodiversity and people’s lifestyles from the threats posed under the Act or may be listed by a local government level by invasive pests and diseases under local laws. Under the Act, certain species of invasive plants are listed Australian Government legislation administered by the as ‘restricted’ biosecurity matter. Australian Department of Agriculture also applies to the import of all plants into Australia. What is restricted matter? • Mexican bean tree (Cecropia pachystachya, C. palmata and C. peltata) Restricted matter is listed in the Act and includes a range • Mexican feather grass (Nassella tenuissima) of invasive plants that are present in Queensland. These invasive plants are having significant adverse impacts • miconia (M. calvescens, M. cionotricha, M. nervosa in Queensland and it is desirable to manage them and and M. racemosa) prevent their spread, thereby protecting un-infested • mikania vine (Mikania micrantha) parts of the State. • mimosa pigra (Mimosa pigra) The Act requires everyone to take all reasonable and practical measures to minimise the biosecurity risks • bunny ears (Opuntia microdasys) associated with invasive plants and animals under • riverina prickly pear (Opunita elata) their control. This is called a general biosecurity obligation (GBO). • water mimosa (Neptunia oleracea and N. plena). The specific restriction requirements also apply to a Restricted invasive plants that are person when dealing with restricted invasive matter.
    [Show full text]
  • Early Growth and Survival of Different Woody Plant Species Established Through Direct Sowing in a Degraded Land, Southern Ethiopia
    JOURNAL OF DEGRADED AND MINING LANDS MANAGEMENT ISSN: 2339-076X (p); 2502-2458 (e), Volume 6, Number 4 (July 2019):1861-1873 DOI:10.15243/jdmlm.2019.064.1861 Research Article Early growth and survival of different woody plant species established through direct sowing in a degraded land, Southern Ethiopia Shiferaw Alem*, Hana Habrova Department of Forest Botany, Dendrology and Geo-biocenology, Mendel University in Brno, Zemedelska 3/61300, Brno, Czech Republic *corresponding author: [email protected] Received 2 May 2019, Accepted 30 May 2019 Abstract: In addition to tree planting activities, finding an alternative method to restore degraded land in semi-arid areas is necessary, and direct seeding of woody plants might be an alternative option. The objectives of this study paper were (1) evaluate the growth, biomass and survival of different woody plant species established through direct seeding in a semi-arid degraded land; (2) identify woody plant species that could be further used for restoration of degraded lands. To achieve the objectives eight woody plant species seeds were gathered, their seeds were sown in a degraded land, in a randomized complete block design (RCBD) (n=4). Data on germination, growth and survival of the different woody plants were collected at regular intervals during an eleven-month period. At the end of the study period, the remaining woody plants' dry biomasses were assessed. One-way analysis of variance (ANOVA) was used for the data analysis and mean separation was performed using Fisher’s least significant difference (LSD) test (p=0.05). The result revealed significant differences on the mean heights, root length, root collar diameters, root to shoot ratio, dry root biomasses and dry shoot biomasses of the different species (p < 0.05).
    [Show full text]
  • Stapeliads, Morphology and Pollination, Welwitchia 5
    Morfologija in opra{evanje stapelijevk Stapeliads, morphology and pollination Iztok Mulej Matija Strli~ Stapelijevke so so~nice s ~udovitimi cvetovi in Stapeliads are succulents with beautiful flowers vonjem, ki ga taki cvetovi ne zaslu`ijo. Raz{irjene with a smell that does not match their beauty at so ve~inoma v Afriki, dotikajo se Evrope, v Aziji all. Distributed mainly in Africa, a few species can pa imajo tudi precej predstavnikov. Cvetovi so also be found in Europe, and quite a few in Asia. nekaj posebnega, ne samo po bizarni lepoti am- Their flowers are unique, not only due to the pak tudi po zgradbi. Prav tako je tudi opra{itev bizarre beauty, but also due to the unusual repro- samosvoja, saj podobne ne najdemo nikjer drug- ductive structures. Even the pollination mecha- je v rastlinskem svetu. nism has no parallel in the plant kingdom. Klju~ne besede: Keywords: stapelijevke, Apocynaceae, Asclepiadoideae, Stapeliads, Apocynaceae, Asclepiadoideae, mor- morfologija, opra{evanje. fology, pollination. Stapeliads, which are stem succulents, belong World" is the title of the web pages of Jerry to the family Apocynaceae and subfamily As- Barad from New Jersey, USA. The title says clepiadoideae. Until recently, they were everything. The flowers have a beauty and placed into the Asclepiadaceae family. The colour that can only be compared with or- stem shapes are very similar in most genera, chids. And they also share another character- but when they bloom, the beauty of the flow- istic. The pollen mass is fused in a wax pollen ers is striking as well as their unpleasant sack - pollinium, which is transferred by pol- smell! "Stapeliads, Orchids of the Succulent linators to the style.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • TUSSOCK GRASSLAND ASSOCIATIONS One Hundred ‘Years of Farmin,G Have Resulted in Some Marked Changes in the Tussock Grassland Associa- Tions
    TUSSOCK GRASSLAND ASS,OCIATIONS S. H. Saxby, Agrostologist, Department of Agriculture,. Wellington. DISTRIBUTION OF THE; TUSSOCK GRAS’SLANDS At the time colonisation commenced in New Zea- land, about one hundred years ago, there were two main and distinct types of ve,getation. First, there was the tall-growing association of forest trees, shrubs, and fern, which was confined in the main to the North Island and to the higher rainfall areas of the South Island. Second, there was the xerophytic grass-dom- inated association, which was present in the lower rainfall areas on the eastern side of the main divide of the South Island. This association was able to survive under the conditions of low rainfall, high summer temperatures, and low winter temperatures, and the constant desiccating winds. This grass as- sociation extended from high altitudes to sea level and was, in general, present in all areas where forest was unable to survive. A similar association was also present in the high altitudes of the central plateau of the North Island. NATURE OF THE TUSSOCK GRASSLANDS Though the tussock grasslands represent a dis- tinct over-all vegetative association, they are very variable in composition, this variation depending on factors such as moisture, aspect, and soil fertility. There are, however, four grasses the dominance of which can divide the tussock country into as many fairly distinct types. 1. Snow grass (Danthonia flavescens). This tall growing .grass thrives chiefly in the high altitudes, but in the southern parts of the South Island it des- cends to sea level. When allowed to grow unhindered snow grass forms almost pure associations in many areas.
    [Show full text]
  • Effect of Fire Regime on the Grass Community of the Humid Savanna Of
    Journal of Tropical Ecology Effect of fire regime on the grass community of www.cambridge.org/tro the humid savanna of Lamto, Ivory Coast Kouamé Fulgence Koffi1,2,*, Aya Brigitte N’Dri1, Jean-Christophe Lata2,3, Souleymane Konaté1, Tharaniya Srikanthasamy2, Marcel Konan1 and Research Article Sébastien Barot2 Cite this article: Koffi KF, N’Dri AB, Lata J-C, 1UFR des Sciences de la Nature, Station d’Ecologie de Lamto/CRE, Pôle de Recherche Environnement et Konaté S, Srikanthasamy T, Konan M, and Développement Durable, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire; 2Sorbonne Barot S. Effect of fire regime on the grass Université, UMR 7618 IEES-Paris (IRD, CNRS, Université Paris Diderot, UPEC, INRA), 6 Place Jussieu, 75005, Paris, community of the humid savanna of Lamto, France and 3Department of Geoecology and Geochemistry, Institute of Natural Resources, Tomsk Polytechnic Ivory Coast. Journal of Tropical Ecology University, 30, Lenin Street, 634050, Tomsk, Russia https://doi.org/10.1017/S0266467418000391 Received: 6 December 2017 Abstract Revised: 10 November 2018 This study assesses the impact of four fire treatments applied yearly over 3 y, i.e. early fire, mid- Accepted: 11 November 2018 season fire, late fire and no fire treatments, on the grass communities of Lamto savanna, Ivory Keywords: Coast. We describe communities of perennial tussock grasses on three replicated 5 × 5-m or 10 × Fire regimes; humid savanna; perennial grass; 5-m plots of each fire treatment. Tussock density did not vary with fire treatment. The relative savanna fire; tussock circumference; tussock abundance of grass species, the circumference of grass tussocks and the probability of having a density tussock with a central die-back, varied with fire treatment.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]