The Synovial Sarcoma–Associated SS18-SSX2 Fusion Protein Induces Epigenetic Gene (De)Regulation

Total Page:16

File Type:pdf, Size:1020Kb

The Synovial Sarcoma–Associated SS18-SSX2 Fusion Protein Induces Epigenetic Gene (De)Regulation Research Article The Synovial Sarcoma–Associated SS18-SSX2 Fusion Protein Induces Epigenetic Gene (De)Regulation Diederik R.H. de Bruijn,1 Susanne V. Allander,2 Anke H.A. van Dijk,1 Marieke P. Willemse,1 Jose Thijssen,1 Jan J.M. van Groningen,1 Paul S. Meltzer,2 and Ad Geurts van Kessel1 1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands and 2Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland Abstract The human and mouse SS18 genes and their encoded proteins are highly homologous and are expressed widely, both in Fusion of the SS18 and either one of the SSX genes is a embryonic and in adult tissues (7, 8). The SS18 protein resides in hallmark of human synovial sarcoma. The SS18 and SSX genes the nucleus, displaying a punctate pattern, distinct from nuclear encode nuclear proteins that exhibit opposite transcriptional domains such as coiled bodies, splicing factor speckles, or PML activities. The SS18 protein functions as a transcriptional oncogenic domains (9, 10). Within the SS18 protein, two functional coactivator and is associated with the SWI/SNF complex, domains have been identified, the SS18 NH -terminal homology whereas the SSX proteins function as transcriptional core- 2 (SNH) domain, and the glutamine-, proline-, glycine-, and tyrosine- pressors and are associated with the polycomb complex. The rich QPGY domain (11, 12). Previously, we found that the SS18 domains involved in these opposite transcriptional activities protein interacts directly with the AF10 protein, the fusion are retained in the SS18-SSX fusion proteins. Here, we set out partner to MLL in t(10;11)-positive acute leukemias (12). Through to determine the direct transcriptional consequences of this interaction, the SS18 protein associates with the glioma- conditional SS18-SSX2 fusion protein expression using com- amplified protein GAS41 (13) and the rhabdomyosarcoma-associated plementary DNA microarray-based profiling. By doing so, SWI/SNF protein INI1 (14). SWI/SNF proteins form multimeric we identified several clusters of SS18-SSX2–responsive complexes that activate gene transcription through ATP-dependent genes, including a group of genes involved in cholesterol chromatin remodeling mechanisms (15). Interestingly, the SS18 synthesis, which is a general characteristic of malignancy. protein also interacts and colocalizes with two SWI/SNF ATPase In addition, we identified a group of SS18-SSX2–responsive subunits, i.e., the Brahma (BRM) and Brahma-related gene 1 genes known to be specifically deregulated in primary synovial (BRG1) proteins (11, 16). In addition, the SS18 protein interacts sarcomas, including IGF2 and CD44. Furthermore, we ob- directly with the histone acetyltransferase p300 (17) and the served an uncoupling of EGR1, JUNB, and WNT signaling in histone deacetylase–associated corepressor SIN3A (18). Both latter response to SS18-SSX2 expression, suggesting that the SWI/ proteins are involved in epigenetic gene regulation through SNF-associated coactivation functions of the SS18 moiety are covalent chromatin modifications, in particular (de-)acetylation impaired. Finally, we found that SS18-SSX2 expression affects of histone tails. Because all these interactions are mediated by the histone modifications in the CD44 and IGF2 promoters and SS18 SNH domain, this domain emerges as a versatile protein- DNA methylation levels in the IGF2 imprinting control region. protein interaction domain. The SS18 QPGY domain acts as a Together, we conclude that the SS18-SSX2 fusion protein may transcriptional activation domain and is able to mediate multi- act as a so-called transcriptional ‘‘activator-repressor,’’ which merization of the SS18 protein (10, 11, 16). In addition, this domain induces downstream target gene deregulation through epige- shares structural characteristics with two SWI/SNF proteins, i.e., netic mechanisms. Our results may have implications for both ARID1A (BAF250a/SMARCF1) and ARID1B (ELD/OSA1/BAF250b; the development and clinical management of synovial ref. 14). Interestingly, the SS18-SWI/SNF association is also found in sarcomas. (Cancer Res 2006; 66(19): 9474-82) the Caenorhabditis elegans protein-protein interaction map (19), indicating that its functional significance is conserved during Introduction evolution. The lack of obvious DNA-binding domains, combined Synovial sarcomas are aggressive soft tissue tumors that account with the QPGY-mediated transcriptional activation capacities, for up to 10% of all human sarcomas (1). Cytogenetically, synovial indicate that the SS18 protein acts as a transcriptional coactivator. sarcomas are characterized by a recurring chromosomal translo- The SNH domain–mediated protein-protein interactions may serve cation, t(X;18)(p11.2;q11.2), which is found in >95% of all cases (2). to tether SS18 to its DNA targets. As a result of this translocation, the SS18 gene (previously called Currently, nine human SSX genes, encoding highly similar SYT or SSXT) on chromosome 18 is fused to one of three closely proteins, have been identified (20). The NH2-terminal moieties of related SSX genes on the X chromosome, SSX1, SSX2,orSSX4 (3–6). the SSX proteins exhibit homology to the Kru¨ppel-associated box (KRAB) domain (5), a domain that is known to be involved in transcriptional repression (21). Although SSX proteins are able to repress the transcription of reporter genes (5, 11), only part of this Note: Supplementary data for this article are available at Cancer Research Online activity has been attributed to the KRAB-like domain. Considerably (http://cancerres.aacrjournals.org/). Requests for reprints: A. Geurts van Kessel, Department of Human Genetics, 855 stronger transcriptional repression was exerted by the highly acidic Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, the COOH-terminal 34 amino acids of SSX (22). Therefore, this Netherlands. Phone: 31-24-3614107; Fax: 31-24-3540488; E-mail: a.geurtsvankessel@ sequence was designated SSX repression domain. The SSX proteins antrg.umcn.nl. I2006 American Association for Cancer Research. are localized in the nucleus, being distributed both diffusely and in doi:10.1158/0008-5472.CAN-05-3726 nuclear speckles (9, 10). These speckles were found to also harbor Cancer Res 2006; 66: (19). October 1, 2006 9474 www.aacrjournals.org Downloaded from cancerres.aacrjournals.org on October 4, 2021. © 2006 American Association for Cancer Research. Synovial Sarcoma–Associated SS18-SSX Fusion Proteins several polycomb group (PcG) proteins, i.e., HPC2, BMI1, and constituted the raw data from which differential gene expression ratio values RING1 (23, 24). PcG proteins form multimeric protein complexes were calculated. For all targets, the ratios of the red (Cy5) to green (Cy3) that induce the repression of target genes through modulation of intensities (R/G) were determined, and ratio normalizations were done chromatin structures (25). based on 88 preselected internal controls as previously described (26). Spots were included for further analyses when either the quality scores (assigned Because the wild-type SS18 and SSX proteins exhibit apparently by the DeArray software) were >0.5, or the signal-to-background ratios in opposite transcriptional activities, and because the domains both channels were >3. In addition, data were excluded when the normalized critical to these activities are retained in the synovial sarcoma– ratios between duplicate experiments varied by more than a factor of 2. associated SS18-SSX fusion proteins, we questioned what the The ratio threshold values, indicating down-regulation or up-regulation of transcriptional consequences of SS18-SSX expression are. There- the genes represented by the cDNA clones on the array, were set to À0.6 and fore, we set out to assess the SS18-SSX2downstream effects using 0.6, respectively, which corresponds to a 50% difference in gene expression. an inducible cell system in conjunction with microarray-based gene Western blotting and immunoprecipitation. Protein extracts were expression profiling, chromatin immunoprecipitation (ChIP), and prepared from the HEK-FUS cells after 0, 2, 6, and 24 hours of tetracyclin global and gene-specific histone modification and DNA methyla- induction in extraction buffer containing 150 mmol/L of NaCl, 0.5% NP40, tion assays. Our data indicate that the SS18-SSX2fusion protein 50 mmol/L of HEPES (pH 7), 5 mmol/L of EDTA, 1 mmol/L of phenyl- methylsulfonyl fluoride, 0.5 mmol/L of DTT, 2mg/mL of leupeptin, and induces the deregulation of downstream target genes through 2.5 mg/mL of aprotinin. Protein extracts were analyzed on a Western blot, epigenetic mechanisms. incubated with a mouse monoclonal anti-myc antibody (9E10; Santa Cruz Biotechnology, Santa Cruz, CA) and a horseradish peroxidase–coupled rabbit Materials and Methods anti-mouse IgG antibody (Dako, Glostrup, Denmark) as a secondary antibody. Cloning and sequencing procedures. All cloning procedures were Signals were detected with the enhanced chemiluminescence system essentially as described before (7, 8, 12). The sequence of all oligos used are (Amersham, Piscataway, NJ) and X-omat R X-ray films (Kodak, New Haven, available upon request. Sequence analyses were done at the DNA CT). For the SS18-SSX2/BRG1 immunoprecipitations, fresh nuclear extracts Sequencing Facility of the Radboud University Nijmegen Medical Centre. were prepared from HEK-FUS cells, according to the Lamond lab protocol A DNA and protein databases
Recommended publications
  • SS18 (SYT) (18Q11) Gene Rearrangement by FISH Indications for Ordering Genetics
    SS18 (SYT) (18q11) Gene Rearrangement by FISH Indications for Ordering Genetics Diagnosis of synovial sarcoma in conjunction with histologic Translocations – SS18-SSX1, SS18-SSX2 and clinical information Structure/function Test Description • SS18 is located on chromosome 18 • SSX1 and SSX2 are located on the X-chromosome Fluorescence in situ hybridization • Each gene in the translocation codes for proteins that have opposite transcriptional functions Tests to Consider o SS18 – activator of oncogenes Primary test o SSX1, SSX2 – tumor suppression SS18 (SYT) (18q11) Gene Rearrangement by FISH 3001303 Test Interpretation • Molecular diagnosis of synovial sarcoma Results Related test • Positive – SS18 rearrangement is detected Chromosome FISH, Interphase 2002298 o SSX translocation partner is not identified with this • Specific probe for SS18 (SYT) rearrangement must be testing methodology requested o Synovial sarcoma likely • Fresh tissue specimens only • Negative – no SS18 rearrangement detected Disease Overview o Does not entirely exclude the presence of an SS18 rearrangement as some translocations are cryptic and Incidence – rare not evaluable by this testing methodology • Synovial sarcomas account for 8-10% of all soft tissue o Does not entirely exclude diagnosis of synovial sarcoma sarcomas Limitations Diagnostic/prognostic issues • Testing using tissue fixed in alcohol-based or non-formalin • Synovial sarcomas may resemble other neoplasms, fixatives has not been validated using this method particularly those displaying an epithelioid, spindle cell, or • SS18 fusion partners are not detected with this test combined morphology • t(X;18)(p11.2;q11.2) translocation serves as a specific marker for synovial sarcoma o SS18 (SYT) gene fuses with SSX gene . Fusion with SSX1 in ~65% of synovial sarcomas .
    [Show full text]
  • The Impact of Chromosomal Translocation Locus and Fusion Oncogene Coding Sequence in Synovial Sarcomagenesis
    Oncogene (2016) 35, 5021–5032 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-9232/16 www.nature.com/onc ORIGINAL ARTICLE The impact of chromosomal translocation locus and fusion oncogene coding sequence in synovial sarcomagenesis KB Jones1,2,3, JJ Barrott1,2,3, M Xie4, M Haldar5, H Jin1,2,3, J-F Zhu1,2,3, MJ Monument1,3, TL Mosbruger3,6, EM Langer5, RL Randall1,3, RK Wilson4,7,8,9, BR Cairns2,3,10, L Ding4,7,8,9 and MR Capecchi5 Synovial sarcomas are aggressive soft-tissue malignancies that express chromosomal translocation-generated fusion genes, SS18-SSX1 or SS18-SSX2 in most cases. Here, we report a mouse sarcoma model expressing SS18-SSX1, complementing our prior model expressing SS18-SSX2. Exome sequencing identified no recurrent secondary mutations in tumors of either genotype. Most of the few mutations identified in single tumors were present in genes that were minimally or not expressed in any of the tumors. Chromosome 6, either entirely or around the fusion gene expression locus, demonstrated a copy number gain in a majority of tumors of both genotypes. Thus, by fusion oncogene coding sequence alone, SS18-SSX1 and SS18-SSX2 can each drive comparable synovial sarcomagenesis, independent from other genetic drivers. SS18-SSX1 and SS18-SSX2 tumor transcriptomes demonstrated very few consistent differences overall. In direct tumorigenesis comparisons, SS18-SSX2 was slightly more sarcomagenic than SS18-SSX1, but equivalent in its generation of biphasic histologic features. Meta-analysis of human synovial sarcoma patient series identified two tumor–gentoype–phenotype correlations that were not modeled by the mice, namely a scarcity of male hosts and biphasic histologic features among SS18-SSX2 tumors.
    [Show full text]
  • SYT-SSX1 and SYT-SSX2 Interfere with Repression of E-Cadherin by Snail and Slug
    Research Article SYT-SSX1 and SYT-SSX2 Interfere with Repression of E-Cadherin by Snail and Slug: A Potential Mechanism for Aberrant Mesenchymal to Epithelial Transition in Human Synovial Sarcoma Tsuyoshi Saito, Makoto Nagai, and Marc Ladanyi Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York Abstract open spaces [i.e., glandular epithelial differentiation (GED)] in a Synovial sarcoma is a primitive mesenchymal neoplasm background of spindle cells (Supplementary Fig. S1). Both the characterized in almost all cases by a t(X;18) fusing the SYT spindle and epithelial elements of synovial sarcoma contain transcriptional coactivator gene with either SSX1 or SSX2, the t(X;18) and are thus clonally related (2, 3). The GED in synovial with the resulting fusion gene encoding an aberrant tran- sarcoma has the hallmarks of a genuine mesenchymal to epithelial scriptional regulator.A subset of synovial sarcoma, predom- transition (MET) akin to those seen in embryonic development inantly cases with the SYT-SSX1 fusion, shows foci of (e.g., in developing kidney). Thus, the epithelial cells in synovial h morphologic epithelial differentiation in the form of nests of sarcoma express E-cadherin, keratins, a-catenin, -catenin, and glandular epithelium.The striking spontaneous mesenchymal g-catenin, whereas the spindle cells express vimentin and, focally, to epithelial differentiation in this cancer is reminiscent of a N-cadherin (4, 5). Epithelial differentiation in synovial sarcoma is developmental switch, but the only
    [Show full text]
  • A Novel Type of SYT/SSX Fusion
    A Novel Type of SYT/SSX Fusion: Methodological and Biological Implications Maria Törnkvist, M.Sc., Bertha Brodin, Ph.D., Armando Bartolazzi, M.D., Ph.D., Olle Larsson, M.D., Ph.D. Department of Cellular and Molecular Tumor Pathology, Cancer Centrum Karolinska, Karolinska Hospital (MT, BB, AB, OL), Stockholm, Sweden; and Department of Pathology, Regina Elena Cancer Institute (AB), Rome, Italy the presence of SYT/SSX transcripts in two cases Synovial sarcoma (SS) is a rare soft-tissue tumor using the proposed RT-PCR approach. Applications that affects children and young adults. It is charac- of optimized RT-PCR can contribute to reduce false- terized by the chromosomal translocation t(X; negative SYT/SSX SS cases reported in literature. 18)(p11.2;q11.2), which results in the fusion of the SYT gene on chromosome 18 with a SSX gene on KEY WORDS: RT-PCR, Synovial sarcoma, SYT/SSX chromosome X. In the majority of cases, SYT is fusion gene, SYT/SSX variants. fused to exon 5 of SSX1 (64%), SSX2 (36%), or, Mod Pathol 2002;15(6):679–685 rarely, SSX4. A novel fusion transcript variant deriv- ing from the fusion of SYT to exon 6 of SSX4 gene Synovial sarcomas (SS) account for 7 to 10% of all (SYT/SSX4v) was found coexpressed in one of the human soft-tissue sarcomas and are mainly located previously reported SYT/SSX4 cases. In the present in the extremities in the vicinity of large joints (1). investigation, we describe a new SS case that was Depending on histomorphological appearance, SSs previously shown to be negative for SYT/SSX1 and are usually subdivided into two major forms, bipha- SYT/SSX2 expression by conventional reverse tran- sic and monophasic.
    [Show full text]
  • Synovial Sarcoma: Recent Discoveries As a Roadmap to New Avenues for Therapy
    Published OnlineFirst January 22, 2015; DOI: 10.1158/2159-8290.CD-14-1246 REVIEW Synovial Sarcoma: Recent Discoveries as a Roadmap to New Avenues for Therapy Torsten O. Nielsen 1 , Neal M. Poulin 1 , and Marc Ladanyi 2 ABSTRACT Oncogenesis in synovial sarcoma is driven by the chromosomal translocation t(X,18; p11,q11), which generates an in-frame fusion of the SWI/SNF subunit SS18 to the C-terminal repression domains of SSX1 or SSX2. Proteomic studies have identifi ed an integral role of SS18–SSX in the SWI/SNF complex, and provide new evidence for mistargeting of polycomb repression in synovial sarcoma. Two recent in vivo studies are highlighted, providing additional support for the importance of WNT signaling in synovial sarcoma: One used a conditional mouse model in which knock- out of β-catenin prevents tumor formation, and the other used a small-molecule inhibitor of β-catenin in xenograft models. Signifi cance: Synovial sarcoma appears to arise from still poorly characterized immature mesenchymal progenitor cells through the action of its primary oncogenic driver, the SS18–SSX fusion gene, which encodes a multifaceted disruptor of epigenetic control. The effects of SS18–SSX on polycomb-mediated gene repression and SWI/SNF chromatin remodeling have recently come into focus and may offer new insights into the basic function of these processes. A central role for deregulation of WNT–β-catenin sig- naling in synovial sarcoma has also been strengthened by recent in vivo studies. These new insights into the the biology of synovial sarcoma are guiding novel preclinical and clinical studies in this aggressive cancer.
    [Show full text]
  • A Novel FISH Assay for SS18–SSX Fusion Type in Synovial Sarcoma
    Laboratory Investigation (2004) 84, 1185–1192 & 2004 USCAP, Inc All rights reserved 0023-6837/04 $30.00 www.laboratoryinvestigation.org A novel FISH assay for SS18–SSX fusion type in synovial sarcoma Cecilia Surace1,2, Ioannis Panagopoulos1, Eva Pa˚lsson1, Mariano Rocchi2, Nils Mandahl1 and Fredrik Mertens1 1Department of Clinical Genetics, Lund University Hospital, Lund, Sweden and 2DAPEG, Section of Genetics, University of Bari, Bari, Italy Synovial sarcoma is a morphologically, clinically and genetically distinct entity that accounts for 5–10% of all soft tissue sarcomas. The t(X;18)(p11.2;q11.2) is the cytogenetic hallmark of synovial sarcoma and is present in more than 90% of the cases. It produces three types of fusion gene formed in part by SS18 from chromosome 18 and by SSX1, SSX2 or, rarely, SSX4 from the X chromosome. The SS18–SSX fusions do not seem to occur in other tumor types, and it has been shown that in synovial sarcoma a clear correlation exists between the type of fusion gene and histologic subtype and, more importantly, clinical outcome. Previous analyses regarding the type of fusion genes have been based on PCR amplification of the fusion transcript, requiring access to good- quality RNA. In order to obtain an alternative tool to diagnose and follow this malignancy, we developed a fluorescence in situ hybridization (FISH) assay that could distinguish between the two most common fusion genes, that is, SS18–SSX1 and SS18–SSX2. The specificity of the selected bacterial artificial chromosome clones used in the detection of these fusion genes, as well as the sensitivity of the analysis in metaphase and interphase cells, was examined in a series of 28 synovial sarcoma samples with known fusion gene status.
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review SSX2 (Synovial Sarcoma, X breakpoint 2) Josiane Eid, Christina Garcia, Andrea Frump Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA (JE, CG, AF) Published in Atlas Database: April 2008 Online updated version: http://AtlasGeneticsOncology.org/Genes/SSX2ID42406chXp11.html DOI: 10.4267/2042/44431 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology detected in liver, testis, skin melanoma, endometrium, Identity choriocarcinoma, placenta, spleen of Hodgkins Other names: CT5.2; HD21; HOM-MEL-40; lymphoma. MGC119055; MGC15364; MGC3884; RP11-552J9.2; SSX; SSX2A; SSX2B Protein HGNC (Hugo): SSX2 Location: Xp11.22 Description So far, two SSX2 protein isoforms (a and b) are known DNA/RNA to exist. Their mRNAs correspond to SV1 (1466 bases) and SV3 (1322 bases) splice variants, respectively. The Description start codon for both isoforms is located in Exon 2. The SSX2 gene locus encompasses 9 exons and 10,304 SSX2 isoform a is 233 amino acids (26.5 kD) and bp (Xp11; 52,752,974-52,742,671). SSX2 isoform b 188 amino acids (21.6 kD). Of both isoforms, SSX2 isoform b is the most commonly seen Transcription and so far the best studied. The SSX2 gene is transcribed on the minus strand. 7 SSX2 mRNA splice variants (SV1-SV7) have been SSX2 Locus and mRNA Splice Variants. Note: Exons are drawn to scale. Atlas Genet Cytogenet Oncol Haematol.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Li Et Al. 1 Genetic Interactions Between Mediator and the Late G1
    Genetics: Published Articles Ahead of Print, published on July 5, 2005 as 10.1534/genetics.105.043893 Li et al. Genetic interactions between mediator and the late G1-specific transcription factor Swi6 in Saccharomyces cerevisiae. Lihong Li* Tina Quinton*1 Shawna Miles* Linda L. Breeden*2 *Division of Basic Sciences Fred Hutchinson Cancer Research Center Seattle, WA 98109-1024 1Present address: Christensen, O’Connor, Johnson, KindnessPLLC, Seattle, WA 98101 1 Li et al. Running head: Interactions between Swi6 and mediator Key words: Swi6, mediator, transcription, G1, suppressor 2Corresponding author: Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N. Mail stop A2-168, Seattle, WA 98109-1024 telephone (206) 667 4484, fax (206) 667 6526, Email [email protected] 2 Li et al. ABSTRACT Swi6 associates with Swi4 to activate HO and many other late G1-specific transcripts in budding yeast. Genetic screens for suppressors of SWI6 mutants have been carried out. 112 of these mutants have been identified and most fall into seven complementation groups. Six of these genes have been cloned and identified and they all encode subunits of the mediator complex. These mutants restore transcription to the HO-lacZ reporter in the absence of Swi6 and have variable effects on other Swi6 target genes. Deletions of other non- essential mediator components have been tested directly for suppression of, or genetic interaction with swi6. Mutations in half of the known subunits of mediator show suppression and/or growth defects in combination with swi6. These phenotypes are highly variable and do not identify a specific module of the mediator as critical for repression in the absence of Swi6.
    [Show full text]
  • SSX4 Antibody Cat
    SSX4 Antibody Cat. No.: 56-923 SSX4 Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human This SSX4 antibody is generated from rabbits immunized with a KLH conjugated synthetic IMMUNOGEN: peptide between 63-91 amino acids from the Central region of human SSX4. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 22 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid September 25, 2021 1 https://www.prosci-inc.com/ssx4-antibody-56-923.html BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: SSX4 ALTERNATE NAMES: Protein SSX4, Cancer/testis antigen 54, CT54, SSX4, SSX4A ACCESSION NO.: O60224 GENE ID: 548313, 6759 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References The product of this gene belongs to the family of highly homologous synovial sarcoma X (SSX) breakpoint proteins. These proteins may function as transcriptional repressors. They are also capable of eliciting spontaneously humoral and cellular immune responses in cancer patients, and are potentially useful targets in cancer vaccine-based immunotherapy. SSX1, SSX2 and SSX4 genes have been involved in the t(X;18) BACKGROUND: translocation characteristically found in all synovial sarcomas.
    [Show full text]
  • SSX2 Is Differentially Expressed in Models of MERS Coronavirus-PDF 042820
    1 SSX2 is differentially expressed in models of MERS coronavirus infection. 2 Shahan Mamoor, MS1 1Thomas Jefferson School of Law 3 San Diego, CA 92101 4 [email protected] 5 The coronavirus COVID19 pandemic is an emerging biosafety threat to the nation and the 6 world (1). There are no treatments approved for coronavirus infection in humans (2) and there is a lack of information available regarding the basic transcriptional behavior of human cells 7 and mammalian tissues following coronavirus infection. We mined multiple independent public 8 (3) or published datasets (4-8) containing transcriptome data from infection models of human coronavirus 229E, the severe acute respiratory syndrome (SARS) coronavirus and Middle East 9 respiratory syndrome (MERS) coronavirus to discover genes whose differential expression was conserved across the coronavirus family. We identified SSX2 (9) as a differentially expressed 10 gene following infection of human cells specifically with two types of MERS coronaviruses. and not after infection of human cells with human coronavirus 229E, or and in the lungs of mice 11 and ferrets infected with SARS coronavirus. An SSX2 interacting protein, SSX2IP, was among the genes most differentially expressed in the ferret blood after infection with SARS 12 coronavirus. The expression of SSX2 is modulated to a degree unlike most any other gene 13 following infection with MERS coronaviruses. 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Keywords: SSX2, coronavirus, MERS coronavirus, SARS coronavirus, human coronavirus 28 229E, SARS-CoV-2, COVID19, systems biology of viral infection. 1 1 Viruses are classified according to a system known as the “Baltimore” classification of 2 viruses (10) wherein the characteristics of the viral genome - whether it is positive-sense or 3 negative-sense, whether it is single-stranded or double-stranded, whether it is composed or 4 RNA or DNA - are used to group viruses into families.
    [Show full text]
  • Product Sheet CA1235
    SSX2 Antibody Applications: WB, IHC Detected MW: 25 kDa Cat. No. CA1235 Species & Reactivity: Human, Mouse, Rat Isotype: Rabbit IgG BACKGROUND SSX2 belongs to the family of highly homologous based immunotherapy.4 Two transcript variants synovial sarcoma X (SSX) breakpoint proteins. encoding distinct isoforms have been identified for The SSX gene family is composed of at least 9 SSX2 gene. SSX2 is thought to function in functional and highly homologous members and development and germ line cells as a repressive shown to be located on chromosome X. The gene regulator. Its control of gene expression is normal testis expresses SSX1, 2, 3, 4, 5, and 7, believed to be epigenetic in nature and to involve but not 6, 8, or 9. In tumors, SSX1, 2, and 4 are chromatin modification and remodeling. It is most expressed at varying frequencies, whereas SSX3, likely mediated by the association of SSX2 with the 5, and 6 are rarely expressed. In addition, no Polycomb gene silencing complex at the SSXRD expression of SSX8, or 9 has been observed. SSX1 domain. Polycomb silencing involves chromatin to SSX5 are also normally expressed in thyroid.1 compaction, DNA methylation, repressive histone The SSX family shares nucleotide homology modifications and inaccessibility of promoter ranging from 88% to 95%, and amino acid regions to transcription machineries. Other SSX2- homology ranging from 77% to 91%. The NH2- interacting partners include the LIM homeobox terminal moieties of the SSX proteins exhibit protein LHX4, a Ras-like GTPase Interactor, homology to the Krüppel-associated box (KRAB) RAB3IP thought to be involved in vesicular domain, a domain that is known to be involved in transport, and SSX2IP, a putative cell transcriptional repression.
    [Show full text]