2.3 Cantor's Infinite Numbers

Total Page:16

File Type:pdf, Size:1020Kb

2.3 Cantor's Infinite Numbers 2.3 Cantor’s Infinite Numbers 75 however, concluded in Section 21 that this phenomenon was indeed intrinsic to infinite sets (it in fact leads to one possible definition of infinite set) and a more elaborate quantitative comparison of infinite sets is not precluded. In fact, a good part of the book elaborates on the apparently paradoxical relationship of infinite sets with proper subsets, and shows that it must be accorded a central role in the whole theory. Just such a comparison of sizes of infinite sets was undertaken by Georg Cantor, with considerable mathematical rigor. Exercise 2.11: In Example 1 of x20, Bolzano shows that the set of real numbers y between 0 and 12 can be put in one-to-one correspondence with a proper subset of itself, namely the numbers x between 0 and 5, by means of the equation 5y = 12x: Verify that 25y = 12x2 and 5y = 12(5 ¡ x) will also give such one-to-one correspondences. Can you give additional examples? Exercise 2.12: Show that the points of a 1 inch by 1 inch square can be put into one-to-one correspondence with the points of a 2 inch by 2 inch square and with the points of a 2 inch by 1 inch rectangle. Exercise 2.13: Give additional examples of sets that may be put in one- to-one correspondence with proper subsets of themselves. 2.3 Cantor’s Infinite Numbers On the occasion of Georg Cantor’s confirmation, his father wrote a letter to him that Cantor would always remember. It foreshadowed much that was to happen to Cantor in later years. No one knows beforehand into what unbelievably difficult conditions and occupational circumstances he will fall by chance, against what unforeseen and unforeseeable calamities and difficulties he will have to fight in the various situations of life. How often the most promising individuals are defeated after a ten- uous, weak resistance in their first serious struggle following their entry into practical affairs. Their courage broken, they atrophy com- pletely thereafter, and even in the best case they will still be nothing more than a so-called ruined genius!... But they lacked that steady heart, upon which everything depends! Now, my dear son! Believe me, your sincerest, truest and most ex- perienced friend—this sure heart, which must live in us, is: a truly religious spirit.... 76 2. Set Theory: Taming the Infinite PHOTO 2.4. Cantor. But in order to prevent as well all those other hardships and difficul- ties which inevitably rise against us through jealousy and slander of open or secret enemies in our eager aspiration for success in the ac- tivity of our own specialty or business; in order to combat these with success one needs above all to acquire and to appropriate the great- est amount possible of the most basic, diverse technical knowledge and skills. Nowadays these are an absolute necessity if the industri- ous and ambitious man does not want to see himself pushed aside by his enemies and forced to stand in the second or third rank [36, pp. 274 ff.]. By the time Cantor encountered his own great “unforeseen calamities and difficulties” he had acquired that religious spirit and steady heart that his father believed to be so indispensable. Having been irresistably drawn to mathematics, Cantor excelled in it as a student, without neglecting diversity in learning, as his father had admonished him. In 1869, at age 22, three years after he completed his dissertation at the University of Berlin, he joined the University of Halle as a lecturer. Through his colleague Eduard Heine (1821–1881), Cantor became interested in analysis, and soon drew the attention of important 2.3 Cantor’s Infinite Numbers 77 researchers, most notably Leopold Kronecker (1823–1891), a professor at the University of Berlin and a very influential figure in German math- ematics, both mathematically as well as politically. Kronecker held very strong views about the admissibility of certain mathematical techniques and approaches. To him is attributed the statement “God Himself made the whole numbers—everything else is the work of men.” As a consequence, he disliked the style of analysis done by Weierstrass, involving a concept of the real numbers that was not based on whole numbers, and which was not constructive to a high degree. As soon as Cantor began to pursue his set-theoretic research, he lost the support of Kronecker, who quickly be- came one of his strongest critics. Cantor’s desire to obtain a position in the mathematically much more stimulating environment of Berlin never materialized, and Kronecker’s opposition had much to do with it. The series of six articles on infinite linear sets that Cantor published between 1878 and 1884 contained in essence the whole of his set-theoretic discoveries. His creative period was close to an end. Shortly thereafter, in the spring of 1884, he suffered his first mental breakdown. But by the fall he was back working on the Continuum Hypothesis. An important supporter of Cantor in those years was the Swedish mathematician G¨ostaMittag-Leffler (1846–1927). A student of Weierstrass, Mittag-Leffler became professor at the University of Stockholm in 1881. Shortly afterwards he founded the new mathematics journal Acta Mathematica, which quickly became very influential, with articles by the most eminent researchers. His relationship with Cantor was close, and Mittag-Leffler offered to publish Cantor’s pa- pers when other journals were rather reluctant to do so. In 1885, Cantor was about to publish two short articles in the Acta Mathematica contain- ing some new ideas on ordinal numbers. While the first article was being typeset, Cantor received the following letter from Mittag-Leffler, requesting that Cantor withdraw the article: I am convinced that the publication of your new work, before you have been able to explain new positive results, will greatly damage your reputation among mathematicians. I know very well that basi- cally this is all the same to you. But if your theory is once discredited in this way, it will be a long time before it will again command the attention of the mathematical world. It may well be that you and your theory will never be given the justice you deserve in your life- time. Then the theory will be rediscovered in a hundred years or so by someone else, and then it will subsequently be found out that you already had it all. Then, at least, you will be given justice. But in this way [by publishing the article], you will exercise no significant influence, which you naturally desire as does everyone who carries out scientific research [36, p. 138]. The effect on Cantor was devastating. Disillusioned and without friends in the mathematical community, he decided by the end of 1885 to abandon 78 2. Set Theory: Taming the Infinite mathematics. Instead, he turned to philosophy, theology, and history. To his surprise, he found more support for his work among theologians than he had ever received from mathematicians. Soon, however, he was back at work on an extension and generalization of his earlier work. As his last major set-theoretic work, he published a grand summary of his set theory between 1895 and 1897, his Beitr¨agezur Begr¨undungder Transfiniten Mengenlehre (Contributions to the Founding of Transfinite Set Theory) [28, 282–351]. The following excerpt from this work concerns the arithmetic of cardinal numbers. The English translation is taken from [26], pp. 85–97, 103–108. In the wake of this publication, his work was finally recognized for its full significance, and while controversy continued to surround set theory, Cantor was not alone anymore to defend it. Set theory was here to stay. His mathematical career had reached its zenith, and he was able to see that he had indeed created something of lasting significance. Georg Cantor, from Contributions to the Founding of the Theory of Transfinite Numbers x1 The Conception of Power or Cardinal Number By an “aggregate”4 we are to understand any collection into a whole M of definite and separate objects m of our intuition or our thought. These objects are called the “elements” of M. In signs we express this thus: (1) M = fmg: We denote the uniting of many aggregates M; N; P; : : : ; which have no common elements, into a single aggregate by (2) (M; N; P; : : : ): The elements of this aggregate are, therefore, the elements of M, of N, or P; : : : , taken together. We will call by the name “part” or “partial aggregate” of an aggregate M any other aggregate M1 whose elements are also elements of M. If M2 is a part of M1 and M1 is a part of M, then M2 is part of M. Every aggregate M has a definite “power,” which we will also call its “cardinal number.” We will call by the name “power” or “cardinal number” of M the general concept which, by means of our active faculty of thought, arises from the 4The modern terminology is “set.” 2.3 Cantor’s Infinite Numbers 79 aggregate M when we make abstraction of the nature of its various elements m and of the order in which they are given. We denote the result of this double act of abstraction, the cardinal number or power of M, by (3) M: Since every single element m, if we abstract from its nature, becomes a “unit,” the cardinal number M is a definite aggregate composed of units, and this number has existence in our mind as an intellectual image or projection of the given aggregate M. We say that two aggregates M and N are “equivalent,” in signs (4) M » N or N » M; if it is possible to put them, by some law, in such a relation to one another that to every element of each one of them corresponds one and only one element of the other.
Recommended publications
  • Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
    BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi­ nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a.
    [Show full text]
  • Mathematics 144 Set Theory Fall 2012 Version
    MATHEMATICS 144 SET THEORY FALL 2012 VERSION Table of Contents I. General considerations.……………………………………………………………………………………………………….1 1. Overview of the course…………………………………………………………………………………………………1 2. Historical background and motivation………………………………………………………….………………4 3. Selected problems………………………………………………………………………………………………………13 I I. Basic concepts. ………………………………………………………………………………………………………………….15 1. Topics from logic…………………………………………………………………………………………………………16 2. Notation and first steps………………………………………………………………………………………………26 3. Simple examples…………………………………………………………………………………………………………30 I I I. Constructions in set theory.………………………………………………………………………………..……….34 1. Boolean algebra operations.……………………………………………………………………………………….34 2. Ordered pairs and Cartesian products……………………………………………………………………… ….40 3. Larger constructions………………………………………………………………………………………………..….42 4. A convenient assumption………………………………………………………………………………………… ….45 I V. Relations and functions ……………………………………………………………………………………………….49 1.Binary relations………………………………………………………………………………………………………… ….49 2. Partial and linear orderings……………………………..………………………………………………… ………… 56 3. Functions…………………………………………………………………………………………………………… ….…….. 61 4. Composite and inverse function.…………………………………………………………………………… …….. 70 5. Constructions involving functions ………………………………………………………………………… ……… 77 6. Order types……………………………………………………………………………………………………… …………… 80 i V. Number systems and set theory …………………………………………………………………………………. 84 1. The Natural Numbers and Integers…………………………………………………………………………….83 2. Finite induction
    [Show full text]
  • 641 1. P. Erdös and A. H. Stone, Some Remarks on Almost Periodic
    1946] DENSITY CHARACTERS 641 BIBLIOGRAPHY 1. P. Erdös and A. H. Stone, Some remarks on almost periodic transformations, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 126-130. 2. W. H. Gottschalk, Powers of homeomorphisms with almost periodic propertiesf Bull. Amer. Math. Soc. vol. 50 (1944) pp. 222-227. UNIVERSITY OF PENNSYLVANIA AND UNIVERSITY OF VIRGINIA A REMARK ON DENSITY CHARACTERS EDWIN HEWITT1 Let X be an arbitrary topological space satisfying the TVseparation axiom [l, Chap. 1, §4, p. 58].2 We recall the following definition [3, p. 329]. DEFINITION 1. The least cardinal number of a dense subset of the space X is said to be the density character of X. It is denoted by the symbol %{X). We denote the cardinal number of a set A by | A |. Pospisil has pointed out [4] that if X is a Hausdorff space, then (1) |X| g 22SW. This inequality is easily established. Let D be a dense subset of the Hausdorff space X such that \D\ =S(-X'). For an arbitrary point pÇ^X and an arbitrary complete neighborhood system Vp at p, let Vp be the family of all sets UC\D, where U^VP. Thus to every point of X, a certain family of subsets of D is assigned. Since X is a Haus­ dorff space, VpT^Vq whenever p j*£q, and the correspondence assigning each point p to the family <DP is one-to-one. Since X is in one-to-one correspondence with a sub-hierarchy of the hierarchy of all families of subsets of D, the inequality (1) follows.
    [Show full text]
  • Cantor on Infinity in Nature, Number, and the Divine Mind
    Cantor on Infinity in Nature, Number, and the Divine Mind Anne Newstead Abstract. The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristote- lian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian volunta- rist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Can- tor’s thought with reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspec- tives on the Actual Infinite”) (1885). I. he Philosophical Reception of Cantor’s Ideas. Georg Cantor’s dis- covery of transfinite numbers was revolutionary. Bertrand Russell Tdescribed it thus: The mathematical theory of infinity may almost be said to begin with Cantor. The infinitesimal Calculus, though it cannot wholly dispense with infinity, has as few dealings with it as possible, and contrives to hide it away before facing the world Cantor has abandoned this cowardly policy, and has brought the skeleton out of its cupboard. He has been emboldened on this course by denying that it is a skeleton. Indeed, like many other skeletons, it was wholly dependent on its cupboard, and vanished in the light of day.1 1Bertrand Russell, The Principles of Mathematics (London: Routledge, 1992 [1903]), 304.
    [Show full text]
  • Cardinal Invariants Concerning Functions Whose Sum Is Almost Continuous Krzysztof Ciesielski West Virginia University, [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The Research Repository @ WVU (West Virginia University) Faculty Scholarship 1995 Cardinal Invariants Concerning Functions Whose Sum Is Almost Continuous Krzysztof Ciesielski West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Part of the Mathematics Commons Digital Commons Citation Ciesielski, Krzysztof, "Cardinal Invariants Concerning Functions Whose Sum Is Almost Continuous" (1995). Faculty Scholarship. 822. https://researchrepository.wvu.edu/faculty_publications/822 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Cardinal invariants concerning functions whose sum is almost continuous. Krzysztof Ciesielski1, Department of Mathematics, West Virginia University, Mor- gantown, WV 26506-6310 ([email protected]) Arnold W. Miller1, York University, Department of Mathematics, North York, Ontario M3J 1P3, Canada, Permanent address: University of Wisconsin-Madison, Department of Mathematics, Van Vleck Hall, 480 Lincoln Drive, Madison, Wis- consin 53706-1388, USA ([email protected]) Abstract Let A stand for the class of all almost continuous functions from R to R and let A(A) be the smallest cardinality of a family F ⊆ RR for which there is no g: R → R with the property that f + g ∈ A for all f ∈ F . We define cardinal number A(D) for the class D of all real functions with the Darboux property similarly.
    [Show full text]
  • Elements of Set Theory
    Elements of set theory April 1, 2014 ii Contents 1 Zermelo{Fraenkel axiomatization 1 1.1 Historical context . 1 1.2 The language of the theory . 3 1.3 The most basic axioms . 4 1.4 Axiom of Infinity . 4 1.5 Axiom schema of Comprehension . 5 1.6 Functions . 6 1.7 Axiom of Choice . 7 1.8 Axiom schema of Replacement . 9 1.9 Axiom of Regularity . 9 2 Basic notions 11 2.1 Transitive sets . 11 2.2 Von Neumann's natural numbers . 11 2.3 Finite and infinite sets . 15 2.4 Cardinality . 17 2.5 Countable and uncountable sets . 19 3 Ordinals 21 3.1 Basic definitions . 21 3.2 Transfinite induction and recursion . 25 3.3 Applications with choice . 26 3.4 Applications without choice . 29 3.5 Cardinal numbers . 31 4 Descriptive set theory 35 4.1 Rational and real numbers . 35 4.2 Topological spaces . 37 4.3 Polish spaces . 39 4.4 Borel sets . 43 4.5 Analytic sets . 46 4.6 Lebesgue's mistake . 48 iii iv CONTENTS 5 Formal logic 51 5.1 Propositional logic . 51 5.1.1 Propositional logic: syntax . 51 5.1.2 Propositional logic: semantics . 52 5.1.3 Propositional logic: completeness . 53 5.2 First order logic . 56 5.2.1 First order logic: syntax . 56 5.2.2 First order logic: semantics . 59 5.2.3 Completeness theorem . 60 6 Model theory 67 6.1 Basic notions . 67 6.2 Ultraproducts and nonstandard analysis . 68 6.3 Quantifier elimination and the real closed fields .
    [Show full text]
  • 21 Cardinal and Ordinal Numbers. by W. Sierpióski. Monografie Mate
    BOOK REVIEWS 21 Cardinal and ordinal numbers. By W. Sierpióski. Monografie Mate- matyczne, vol. 34. Warszawa, Panstwowe Wydawnictwo Naukowe, 1958. 487 pp. Not since the publication in 1928 of his Leçons sur les nombres transfinis has Sierpióski written a book on transfinite numbers. The present book, embodying the fruits of a lifetime of research and ex­ perience in teaching the subject, is therefore most welcome. Although generally similar in outline to the earlier work, it is an entirely new book, and more than twice as long. The exposition is leisurely and thickly interspersed with illuminating discussion and examples. The result is a book which is highly instructive and eminently readable. Whether one takes the chapters in order or dips in at random he is almost sure to find something interesting. Many examples and ap­ plications are included in the form of exercises, nearly all accom­ panied by solutions. The exposition is from the standpoint of naive set theory. No axioms, other than the axiom of choice, are ever stated explicitly, although Zermelo's system is occasionally referred to. But the role of the axiom of choice is a central theme throughout the book. For a student who wishes to learn just when and how this axiom is needed this is the best book yet written. There is an excellent chapter de­ voted to theorems equivalent to the axiom of choice. These include not only well-ordering, trichotomy, and Zorn's principle, but also several less familiar propositions: Lindenbaum's theorem that of any two nonempty sets one is equivalent to a partition of the other; Vaught's theorem that every family of nonempty sets contains a maximal disjoint family; Tarski's theorem that every cardinal has a successor, and other propositions of cardinal arithmetic; Kurepa's theorem that the proposition that every partially ordered set con­ tains a maximal family of incomparable elements is an equivalent when joined with the ordering principle, i.e., the proposition that every set can be ordered.
    [Show full text]
  • Cantor's Discovery of Transfinite Numbers
    HISTORIA MATHEMATICA 22 (1995), 33-42 "What Fermented in Me for Years": Cantor's Discovery of Transfinite Numbers Jos~ FERREIROS History of Science and Technology, 543 Stephens Hall, Unioersity of California at Berkeley, Berkeley, California 94720 Transfinite (ordinal) numbers were a crucial step in the development of Cantor's set theory. The new concept depended in various ways on previous problems and results, and especially on two questions that were at the center of Cantor's attention in September 1882, when he was about to make his discovery. First, the proof of the Cantor-Bendixson theorem motivated the introduction of transfinite numbers, and at the same time suggested the "principle of limitation," which is the key to the connection between transfinite numbers and infinite powers. Second, Dedekind's ideas, which Cantor discussed in September 1882, seem to have played an important heuristic role in his decision to consider the "symbols of infinity" that he had been using as true numbers, i.e., as autonomous objects; to this end Cantor introduced in his work, for the first time, ideas on (well) ordered sets. © 1995 Academic Press, Inc. Los ntimeros (ordinales) transfinitos constituyeron un paso clave en el desarrollo de la teorfa de conjuntos de Cantor. La nueva idea dependi6 en varias formas de resultados y problemas previos, pero especialmente de dos cuestiones que ocuparon a Cantor en septiem- bre de 1882, estando a punto de realizar su descubrimiento. En primer lugar, el teorema de Cantor-Bendixson, cuya demostraci6n motiv6 la introducci6n de los ntimeros transfinitos, y a la vez sugiri6 el "principio de limitaci6n" que constituye la clave de la conexi6n entre ntimeros transfinitos y potencias infinitas.
    [Show full text]
  • Applications of Ultrafilters in Ergodic Theory and Combinatorial Number
    Vrije Universiteit Amsterdam Jagiellonian University Master Thesis Applications of Ultrafilters in Ergodic Theory and Combinatorial Number Theory Supervisors: Author: Dr. Tanja Eisner Jakub Konieczny Prof. Dr. Ale Jan Homburg Dr Piotr Niemiec A thesis submitted in fulfilment of the requirements for the degree of Master of Mathematics in the Department of Mathematics, Vrije Universiteit Amsterdam Instytut Matematyki, Jagiellonian University arXiv:1310.1056v2 [math.DS] 16 Oct 2013 October 2013 Declaration of Authorship I, Jakub Konieczny, declare that this thesis titled “Applications of Ultrafilters in Ergodic Theory and Combinatorial Number Theory” is my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at these Universities. Where I have consulted the published work of others, this is always clearly at- tributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Signed: Date: i “Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism." Dave Barry VRIJE UNIVERSITEIT AMSTERDAM JAGIELLONIAN UNIVERSITY Abstract Faculty of Sciences, Department of Mathematics Wydział Matematyki i Informatyki, Instytut Matematyki Master of Mathematics Applications of Ultrafilters in Ergodic Theory and Combinatorial Number Theory by Jakub Konieczny Ultrafilters are very useful and versatile objects with applications throughout mathemat- ics: in topology, analysis, combinarotics, model theory, and even theory of social choice. Proofs based on ultrafilters tend to be shorter and more elegant than their classical coun- terparts.
    [Show full text]
  • Set Theory: Taming the Infinite
    This is page 54 Printer: Opaque this CHAPTER 2 Set Theory: Taming the Infinite 2.1 Introduction “I see it, but I don’t believe it!” This disbelief of Georg Cantor in his own creations exemplifies the great skepticism that his work on infinite sets in- spired in the mathematical community of the late nineteenth century. With his discoveries he single-handedly set in motion a tremendous mathematical earthquake that shook the whole discipline to its core, enriched it immea- surably, and transformed it forever. Besides disbelief, Cantor encountered fierce opposition among a considerable number of his peers, who rejected his discoveries about infinite sets on philosophical as well as mathematical grounds. Beginning with Aristotle (384–322 b.c.e.), two thousand years of West- ern doctrine had decreed that actually existing collections of infinitely many objects of any kind were not to be part of our reasoning in philosophy and mathematics, since they would lead directly into a quagmire of logical con- tradictions and absurd conclusions. Aristotle’s thinking on the infinite was in part inspired by the paradoxes of Zeno of Elea during the fifth century b.c.e. The most famous of these asserts that Achilles, the fastest runner in ancient Greece, would be unable to surpass a much slower runner, provided that the slower runner got a bit of a head start. Namely, Achilles would then first have to cover the distance between the starting positions, dur- ing which time the slower runner could advance a certain distance. Then Achilles would have to cover that distance, while the slower runner would again advance, and so on.
    [Show full text]
  • Cardinals and the Size of Infinite Sets 1 Review of Bijections
    Cardinals and the size of infinite sets These notes revise some lectured material and have some questions for you to complete yourself. (You might find that some of the boxes are too small|just staple extra sheets at the back.) Note that these are not complete lecture notes|they cover most but not all things mentioned in the lectures|and they do not replace the notes you take in lectures. 1 Review of bijections Question 1 Recall the definition of a bijection between two sets. Question 2 (a) Find a bijection between the natural numbers N and the set of even natural numbers f2n j n 2 Ng. (b) Do the same for N and the set of integers Z. Question 3 Find a bijection (0; 1) ! R between the open interval (0; 1) (which is a subset of R) and R itself. [Hint: the function tan(x) can help by giving a bijection from some interval to R|that's not quite the right interval, but you'll be able to fix that problem somehow.] 1 2 The size of finite sets A set A is finite with n elements if A = fa1; : : : ; ang where the elements ai are all distinct. We often denote the number of elements of such sets A by jAj = n. It is clear in this case that there is a bijection f1; 2; : : : ; ng ! A given by i 7! ai: For finite sets, this is a simple observation. But for infinite sets, it will be used as a definition that will provide the starting point of our study.
    [Show full text]
  • The Arithmetic of Cardinal Numbers
    The arithmetic of cardinal numbers We wish to extend the familiar operations of addition, multiplication and expo- nentiation of the natural numbers so as to apply to all cardinal numbers. We start with addition and multiplication, then go on consider the unary exponen- tiation function assigning 2 n to each number n and finally the general binary exponentiation operation assigning mn to numbers n, m . Addition and Multiplication Lemma 2 For finite sets A, B , (i) If A ∩ B = ∅ then A ∪ B is finite and |A ∪ B| = |A| + |B|, (ii) A × B is finite and |A × B| = |A| · | B|. Proof see Example 1.9. For sets A, B let A + B = ( {0} × A) ∪ ({1} × B). We call this the disjoint union of A and B. Lemma 3 If A ∼ C and B ∼ D then (i) A + B ∼ C + D, (ii) A × B ∼ C × D. Proof Let f : A ∼ C, g : B ∼ D. Then h : A + B → C + D and e : A × B → C × D defined by h(0 , a ) = (0 , f (a)) for a ∈ A, h (1 , b ) = (1 , g (b)) for b ∈ B e(a, b ) = ( f(a), g (b)) for a ∈ A, b ∈ B are bijections so the result follows. Definition 10 For cardinal numbers n, m let (i) n + m = |A + B| for some/any sets A, B such that n = |A| and m = |B|, (ii) n · m = |A × B| for some/any sets A, B such that n = |A| and m = |B|, Note that the previous lemma ensures that these definitions make sense. Proposition 21 For cardinal numbers n, m and any sets A, B such that A ∩ B = ∅ and n = |A| and m = |B| we have n + m = |A ∪ B|.
    [Show full text]