Butterflies of Waite Conservation Reserve & Their Larval Food Plants

Total Page:16

File Type:pdf, Size:1020Kb

Butterflies of Waite Conservation Reserve & Their Larval Food Plants BUTTERFLIES OF WAITE CONSERVATION RESERVE & THEIR LARVAL FOOD PLANTS PAPILIONIDAE (Swallowtails) Dainty Swallowtail Papilio anactus Citrus spp* (campus only) Chequered Swallowtail Papilio demoleus Cullen australasicum+ PIERIDAE (Whites & Yellows) Cabbage White* Pieris rapae Brassicaceae* Wood White Delias aganippe Amyema miquelii, Lysiana exocarpi, Exocarpos cupressiformis Caper White Belenois java Capparis mitchellii+ (arboretum only) LYCANENIDAE (Coppers & Blues) Wattle Blue Theclinesthes miskini Acacia pycnantha Saltbush Blue Theclinesthes serpentata Atriplex spp. Long-tailed Pea-blue Lampides boeticus Kennedia prostrata, Vicia sativa* Common Grass-blue Zizina labradus Medicago polymorpha*, Trifolium*, Cullen australasicum+ Icilius Blue Jalmenus icilius Acacia pycnantha Fringed Heath-blue Neolucia agricola Pultenaea largiflorens Rayed Blue Candalides heathi Plantago lanceolata* Satin Azure Ogyris amaryllis Amyema miquelii, Lysiana exocarpi Southern Purple Azure Ogyris genoveva Amyema miquellii Broad-margined Azure Ogyris olane Amyema miquellii NYMPHALIDAE (Brush foots) Marbled Xenica Geitoneura klugii Austrostipa, Brachypodium*, Ehrharta*, Poa, Themeda Common Brown Heteronympha merope Austrostipa, Brachypodium*, Ehrharta*, Poa, Themeda Tailed Emperor Polyura sempronius Brachychiton populneus* Meadow Argus Junonia villida Arctotheca*, Scabiosa*, Goodenia, Plantago lanceolata* Yellow Admiral Vanessa itea Parietaria debilis, Urtica urens* Australian Painted Lady Vanessa kershawi Arctotheca*, Chrysocephalum, Helichrysum luteoalbum Wanderer* Danaus plexippus Gomphocarpus cancellatus* Lesser Wanderer Danaus chrysippus Gomphocarpus cancellatus* HESPERIIDAE (Skippers) Phigalia Skipper Trapezites phigalia Lomandra densiflora, L. multiflora, L. nana, L. sororia Mottled Grass Skipper Anisynta cynone Brachypodium Southern Grass-dart Ocybadistes walkeri Brachypodium*, Cynodon dactylon*, Pennisetum* White-banded Grass-dart Taractrocera papyri Cynodon dactylon*, Austrodanthonia caespitosa Orange Palm-dart* Cephrenes augiades palms* (campus only) TOTAL: 20 species recorded for the Reserve or Arboretum in bold 8 additional species known for Adelaide but not from Waite + confirmed breeding on this plant species * introduced species Compiled by Peter Bird August 2013 .
Recommended publications
  • "Santalales (Including Mistletoes)"
    Santalales (Including Introductory article Mistletoes) Article Contents . Introduction Daniel L Nickrent, Southern Illinois University, Carbondale, Illinois, USA . Taxonomy and Phylogenetics . Morphology, Life Cycle and Ecology . Biogeography of Mistletoes . Importance of Mistletoes Online posting date: 15th March 2011 Mistletoes are flowering plants in the sandalwood order that produce some of their own sugars via photosynthesis (Santalales) that parasitise tree branches. They evolved to holoparasites that do not photosynthesise. Holopar- five separate times in the order and are today represented asites are thus totally dependent on their host plant for by 88 genera and nearly 1600 species. Loranthaceae nutrients. Up until recently, all members of Santalales were considered hemiparasites. Molecular phylogenetic ana- (c. 1000 species) and Viscaceae (550 species) have the lyses have shown that the holoparasite family Balano- highest species diversity. In South America Misodendrum phoraceae is part of this order (Nickrent et al., 2005; (a parasite of Nothofagus) is the first to have evolved Barkman et al., 2007), however, its relationship to other the mistletoe habit ca. 80 million years ago. The family families is yet to be determined. See also: Nutrient Amphorogynaceae is of interest because some of its Acquisition, Assimilation and Utilization; Parasitism: the members are transitional between root and stem para- Variety of Parasites sites. Many mistletoes have developed mutualistic rela- The sandalwood order is of interest from the standpoint tionships with birds that act as both pollinators and seed of the evolution of parasitism because three early diverging dispersers. Although some mistletoes are serious patho- families (comprising 12 genera and 58 species) are auto- gens of forest and commercial trees (e.g.
    [Show full text]
  • Synthesizing Ecosystem Implications of Mistletoe Infection
    Environmental Research Letters LETTER • OPEN ACCESS Related content - Networks on Networks: Water transport in Mistletoe, friend and foe: synthesizing ecosystem plants A G Hunt and S Manzoni implications of mistletoe infection - Networks on Networks: Edaphic constraints: the role of the soil in vegetation growth To cite this article: Anne Griebel et al 2017 Environ. Res. Lett. 12 115012 A G Hunt and S Manzoni - Impact of mountain pine beetle induced mortality on forest carbon and water fluxes David E Reed, Brent E Ewers and Elise Pendall View the article online for updates and enhancements. This content was downloaded from IP address 137.154.212.215 on 17/12/2017 at 21:57 Environ. Res. Lett. 12 (2017) 115012 https://doi.org/10.1088/1748-9326/aa8fff LETTER Mistletoe, friend and foe: synthesizing ecosystem OPEN ACCESS implications of mistletoe infection RECEIVED 28 June 2017 Anne Griebel1,3 ,DavidWatson2 and Elise Pendall1 REVISED 1 Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia 12 September 2017 2 Institute for Land, Water and Society, Charles Sturt University, PO box 789, Albury, NSW, Australia ACCEPTED FOR PUBLICATION 3 Author to whom any correspondence should be addressed. 29 September 2017 PUBLISHED E-mail: [email protected] 16 November 2017 Keywords: mistletoe, climate change, biodiversity, parasitic plants, tree mortality, forest disturbance Original content from this work may be used Abstract under the terms of the Creative Commons Biotic disturbances are affecting a wide range of tree species in all climates, and their occurrence is Attribution 3.0 licence. contributing to increasing rates of tree mortality globally.
    [Show full text]
  • Yellow Admiral (Vanessa Itea)
    Yellow Admiral (Vanessa itea) Wingspan ~50mm Photo: Tony Morton Note 1: The upper side of wings shown in butterfly on the left. The underside of the wings shown in the butterfly on the left. Males and females are similar. Note 2: The plant name on the bottom right refers to the plants upon which the butterfly larvae (caterpillars) feed. Other Common Names: Australian Admiral, Admiral Family of Butterflies: Nymphalidae (Browns and Nymphs) Tony Morton’s documented records of Yellow Admiral from the local area (between 2000 to 2013): Seven Date Location Notes 21-Sep-2000 Vaughan 28-Sep-2000 Irishtown Track, Irishtown 17-Oct-2003 Vaughan 5-Sep-2005 Vaughan walk fresh 1 Butterflies of the Mount Alexander Shire – A Castlemaine Field Naturalists Club publication Date Location Notes Between Jan 2005 to Oct 2006 Kalimna Park 27-Mar-2012 Kalimna Point on sap oozing from Small Sugar Gum(?) 29-Aug-2013 Vaughan garden Other documented local observations: None Distribution Across Victoria (from Field 2013): Observations from across Victoria. Larval Host Plants (Field 2013): Shade Pellitory (Parietaria debilis) and nettles, including the introduced Stinging Nettle (Urtica urens) Larval association with ants (Field 2013): None. Adult Flight Times in Victoria (from Field 2013): Adults have been recorded during all months in Victoria, with a peak from September to January. Usually one of the first spring butterflies in Victoria.F Fly fast, and close to ground. Bask with wings open. Several generations completed each year. Conservation Status: National Butterfly Action Plan (2002): No conservation status Australian Environment Protection and Biodiversity Conservation Act 1999: Not listed Victorian Flora and Fauna Guarantee Act 1988: Not listed Advisory List of Threatened Victorian Invertebrates (DSE 2009): Not listed Other Notes: Likely to be resident and moderately common the Mount Alexander Shire, particular in urban areas and wetter locations supporting nettles.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Testing Testing
    Testing…testing… Background information Summary Students perform an experiment Most weeds have a variety of natural to determine the feeding enemies. Not all of these enemies make preferences of yellow admiral good biocontrol agents. A good biocontrol caterpillars. agent should feed only on the target weed. It should not harm crops, natives, Learning Objectives or other desirable plants, and it must not Students will be able to: become a pest itself. With this in mind, • Explain why biocontrol agents when scientists look for biocontrol agents, are tested before release. they look for “picky eaters”. • Describe how biocontrol agents are tested before Ideally, a biocontrol agent will be release. monophagous—eating only the target weed. Sometimes, however, an organism Suggested prior lessons that is oligophagous—eating a small What is a weed? number of related plants—is also a good Cultivating weeds agent, particularly when the closely related plants are also weeds. Curriculum Connections Science Levels 5 & 6 In order to test the safety of a potential biocontrol agent, scientists offer a variety Vocabulary/concepts of plants to the agent in the laboratory Choice test, no choice test, and/or in the field. They choose plants repeated trials, control, economic that are closely related to the target threshold weed, as these are the most likely plants to be attacked. The non-target plants Time tested may be crops, native plants, 30-45 minutes pre-experiment ornamentals, or even other weeds. The discussion and set-up tests are designed to answer two main 30-45 minutes data collection questions: and discussion 1.
    [Show full text]
  • Exhibition Catalogue Natural History Illustrations by Erin Forsyth, 2018
    A Few Exhibition catalogue Natural history illustrations by Erin Forsyth, 2018 TABLE OF CONTENTS ABOUT THE WORKS 5 About the artist 7 How to use this catalogue 9 TERMS AND CONDITIONS OF SALE 10 Korimako, makomako, bellbird 13 Kākāriki, Red-crowned parakeet, (Cyanoramphus novaezelandiae) 15 Moko kākāriki, Auckland green gecko (Naultinus elegans) 17 Pekapeka-tou-roa, long-tailed bat (Chalinolobus tuberculatus) 19 Pekapeka-tou-roa, long-tailed bat (Chalinolobus tuberculatus) 21 Pekapeka-tou-roa, long-tailed bat (Chalinolobus tuberculatus) 23 Ngirungiru, miromiro, South Island tomtit (Petroica macrocephala macrocephala) male 25 Kakaruwai, South Island Robin (Petroica australis) 27 Tōrea pango, variable oystercatcher (Haematopus unicolor) 29 Kererū, NZ wood pigeon (Hemiphaga novaeseelandiae) 31 Kōtare, sacred kingfisher (Todiramphus sanctus) 33 Ruru, morepork (Ninox novaeseelandiae) 35 TŪī, parsons bird (Prosthemadera novaeseelandiae) 37 Kōkako, blue-wattled crow (Callaeas wilsoni) 41 Takahe, South Island Takahe (Porphyrio hochstetteri) 43 Tūturiwhatu, NZ Dotteral (Charadrius obscurus) 45 Whio, blue duck (Hymenolaimus malacorhynchos) 47 Kahukōwhai, yellow admiral (Vanessa itea) 49 Wētāpunga, Little Barrier (Hauturu-o-Toi) giant weta (Deinacrida heteracantha) 51 Kārearea, NZ falcon (Falco novaeseelandiae) 53 Common evening brown (Melanitis leda bankia) 55 Pepe pouri, Helms' butterfly or forest ringlet (Dodonidia helmsii) 59 Kahukōwhai, yellow admiral (Vanessa itea) & Kahukura, NZ red admiral (V. gonerilla gonerilla) 63 Pepe pouri, Butler's ringlet (Erebiola butleri) & pepe pouri, black mountain ringlet (Percnodaimon merula) 67 Pīwakawaka, fantail (Rhipidura fuliginosa) 73 Weka, woodhen (Gallirallus australis) 75 Carnivorous land snail (Powelliphanta superba) 77 MYRTACEAE Studies I & II (Diptych) 79 ABOUT THE WORKS These original works are from the exhibition ‘A Few’ - the third installment in an ongoing series of natural history illustrations depicting native and resident species of Aotearoa by Erin Forsyth.
    [Show full text]
  • Yellow Admiral Vanessa Itea
    YellowAdmiral to 2 days head-down in a 'J' position on a leaf with Vanessa itea their anal prolegs attached to a silken pad. Grows up to 40mm when fully grown. Description A native butterfly that also occurs in Australia, Norfolk Island & Loyalty Island. The Maori name means Yellow Cloak. This is a long-lived butterfly with individuals known to live over a year. Has larger numbers in years when Painted Lady's are recorded in New Zealand as both species are strong migrants & vagrants. Also, there is no sub-species in its range, which suggests that migration is common throughout the range. Attracting Yellow Admirals to your garden is fairly easy, just grow some nettles & a plant a few nectar plants. They are Pupa the next easiest to raise after the Monarch, but Shades of grey, brown, grey-brown with the odd beware, like Monarch larvae, they have big gold spot, they sometimes have a more golden stomachs & will stripe a plant bear in days. yellow colouration, but this usually indicates the presence of the parasite Echthromorpha intricatoria. Ovum (Egg) The variation in colouration provides camouflage Usually laid in pairs or trios, but rarely singularly with their immediate environment & lighting on the foodplant near the tip of the stem where the conditions. The shape is angular, with a roughened growth is fresh. Fairly often on the side of one of surface. They are approx 20mm in length. They are the stinging hairs & occasionally laid adjacent to attached head down by cremaster to some nearby the foodplant. Initially pale green, turning to green sheltered spot.
    [Show full text]
  • Plant-Animal Interactions Student Activities [Recommended Year 9 - 12]
    Plant-Animal Interactions Student Activities [Recommended year 9 - 12] Education @ Adelaide Botanic Garden Map Acknowledgments A publication by: Education @ Adelaide Botanic Garden and Flinders University. And developed by: Kieren Beaumont, Molly Whalen and Duncan Mackay. In collaboration with: Steve Meredith, Michael Yeo, Catherine Stone and Tony Kanellos. Photos: Kieren Beaumont, Duncan Mackay, Molly Whalen and Adelaide Botanic Gardens unless otherwise indicated. Student information & activities 1. Brazil nut tree (Bertholletia excelsa) Large rodents called agoutis are essential for the survival of Brazilnut Guess What trees.Even though they eat Brazil nuts, they help to grow new trees by burying Brazil nuts are the only seed crop seeds. harvested from natural forests and sold all around the world. Pollination Brazilnut trees grow in the tropical forest of South America. They can reach 50 meters tall and can live for more than 650 years. Brazilnut trees rely on large bees to pollinate their flowers. The large bees are strong enough to force their way between the Agoutis help Brazil nut trees petals of the flower into a chamber, http://upload.wikimedia.org/wikipedia/co where they are provided with nectar mmons/7/73/Agouti_.jpg and pollinate the flower. Once a flower has been pollinated, it grows into a large woody fruit. Lost seeds become new trees. Interactions under threat. Most Brazil nuts traded today are collected from natural forests and the multi-million dollar industry provides many locals with an income. The ongoing success of the industry depends on healthy forests that support the animals that Brazilnut trees need and on the sustainable harvesting of the nuts.
    [Show full text]
  • African Butterfly News, All Came from the ABRI Collection in Nairobi
    SEPTEMBER 2019 EDITION: AFRICAN ABN 2019 - 5 (JULY AND AUGUST 2019) BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to September’s newsletter! A reminder that this year’s LepSoc Africa Conference will be held in Knysna on Sat 16 and Sun 17 November. Please contact Dave Edge ([email protected]) to confirm your attendance. For those of you looking for accommodation in Knysna, Dave forwarded the flowing link: Places to stay in Knysna We have found, at recent LepSoc Africa Conferences, that presentation of the annual reports of various LSA officers takes up most, if not all, of the three-hours that have traditionally been allocated to the Annual General Meeting. At last year’s conference in Hermannsburg, there was dissatisfaction about the time available for general discussion among members present at the meeting. This year, we are going to do it differently! Using the approach that has been adopted by the Entomological Society of Southern Africa (Entsocsa), the reports of office bearers will be circulated to the entire LepSoc Africa membership at least two weeks before the AGM. At the AGM, a condensed summary of the various reports will be presented for ratification, following which there will be a brief discussion. Significant issues, that require resolution at the AGM, should be raised by LSA members prior to the meeting and the salient points submitted for discussion under Matters Arising. Missing Links… A few people pointed out that a couple of the links in July’s newsletter didn’t work. I’ve corrected this below: Colotis ungemachi Arnold Schultze Steve Collins noted that, in July’s newsletter, I’d correctly captioned a photo from Sudheer Kommana as Baliochila hildegarda, but that this species is not found in Ghana as I’d indicated.
    [Show full text]
  • PACIFIC INSECTS MONOGRAPH Ll
    PACIFIC INSECTS MONOGRAPH ll Lepidoptera of American Samoa with particular reference to biology and ecology By John Adams Comstock Published by Entomology Department, Bernice P. Bishop Museum Honolulu, Hawaii, U. S. A. 1966 PACIFIC INSECTS MONOGRAPHS Published by Entomology Department, Bernice P. Bishop Museum, Honolulu, Hawaii, 96819, U. S. A. Editorial Committee: J. L. Gressitt, Editor (Honolulu), S. Asahina (Tokyo), R. G. Fennah (London), R. A. Harrison (Christchurch), T. C. Maa (Honolulu & Taipei), C. W. Sabrosky (Washington, D. C), R. L. Usinger (Berkeley), J. van der Vecht (Leiden), K. Yasumatsu (Fukuoka), E. C. Zimmerman (New Hampshire). Assistant Editors: P. D. Ashlock (Honolulu), Carol Higa (Honolulu), Naoko Kunimori (Fukuoka), Setsuko Nakata (Honolulu), Toshi Takata (Fukuoka). Business Manager: C. M. Yoshimoto (Honolulu). Business Assistant: Doris Anbe (Honolulu). Business Agent in Japan: K. Yasumatsu (Fukuoka). Entomological staff, Bishop Museum, 1966: Doris Anbe, Hatsuko Arakaki, P. D. Ashlock, S. Azuma, Madaline Boyes, Candida Cardenas, Ann Cutting, M. L. Goff, J. L. Gressitt (Chairman), J. Harrell, Carol Higa, Y. Hirashima, Shirley Hokama, E. Holzapfel, Dorothy Hoxie, Helen Hurd, June Ibara, Naoko Kuni­ mori, T. C. Maa, Grace Nakahashi, Setsuko Nakata (Adm. Asst.), Tulene Nonomura, Carol Okuma, Ka­ tharine Pigue, Linda Reineccius, T. Saigusa, I. Sakakibara, Judy Sakamoto, G. A. Samuelson, Sybil Seto, W. A. Steffan, Amy Suehiro, Grace Thompson, Clara Uchida, J. R. Vockeroth, Nixon Wilson, Mabel Ya- tsuoka, C. M. Yoshimoto, E. C. Zimmermann. Field associates: M. J. Fitzsimons, E. E. Gless, G. E. Lip- pert, V. Peckham, D. S. Rabor, J. Sedlacek, M. Sedlacek, P. Shanahan, R. Straatman, J. Strong, H. M. Tor- revillas, A.
    [Show full text]
  • Molecular Phylogeny and Systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher Classification and Biogeography
    Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 147? 239275 Original Article PHYLOGENY AND SYSTEMATICS OF THE PIERIDAEM. F. BRABY ET AL. Zoological Journal of the Linnean Society, 2006, 147, 239–275. With 8 figures Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/147/2/239/2631026 by Harvard Library user on 21 November 2018 biogeography MICHAEL F. BRABY1,2*, ROGER VILA1 and NAOMI E. PIERCE1 1Museum of Comparative Zoology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2School of Botany and Zoology, The Australian National University, Canberra, ACT 0200, Australia Received May 2004; accepted for publication October 2005 The systematic relationships of the butterfly family Pieridae are poorly understood. Much of our current under- standing is based primarily on detailed morphological observations made 50–70 years ago. However, the family and its putative four subfamilies and two tribes, have rarely been subjected to rigorous phylogenetic analysis. Here we present results based on an analysis of molecular characters used to reconstruct the phylogeny of the Pieridae in order to infer higher-level classification above the generic level and patterns of historical biogeography. Our sample contained 90 taxa representing 74 genera and six subgenera, or 89% of all genera recognized in the family. Three complementary approaches were
    [Show full text]
  • Barbed Wire Vine
    Butterflies of Mt Gravatt Conservation Reserve Compiled by Michael Fox www.megoutlook.wordpress.com/flora-fauna/butterflies/ © 2015 Creative Commons – free use with attribution to Mt Gravatt Environment Group Hesperiidae Hesperilla ornata Spotted Sedge-skipper Wingspan: Male 30mm Female 35mm Caterpillar food plants: Saw Sedge Gahnia aspera Males hilltop Hesperiidae Ocybadistes walkeri Greenish Grass-dart Wingspan: Male 20mm Female 20mm Caterpillar food plants: Grasses Blady Grass Imperata cylindrica Guinea Grass Panicum maximum (Weed) Male sex brands 12 March 2016 Butterflies - ver 3.0 Page 1 of 30 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Butterflies of Mt Gravatt Conservation Reserve Hesperiidae Trapezites iacchus Brown Ochre Wingspan: Male 33mm Female 34mm Caterpillar food plants: Wattle Mat-rush Lomandra filiformis Creek Mat-rush Lomandra hystrix Spiny Headed Mat-rush Lomandra longifolia Males hilltop Hesperiidae Trapezites symmomus Splendid Ochre Wingspan: Male 42mm Female 46mm Caterpillar food plants: Wattle Mat-rush Lomandra filiformis Creek Mat-rush Lomandra hystrix Spiny Headed Mat-rush Lomandra longifolia 12 March 2016 Butterflies - ver 3.0 Page 2 of 30 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Butterflies of Mt Gravatt Conservation Reserve Lycaenidae Candalides absimilis Common Pencil-blue Wingspan: Male 30mm Female 31mm Caterpillar food plants: Tuckeroo Cupaniopsis anacardioides Easter Cassia Senna pendula (Weed) Golden Rain Koelreuteria elegans (Weed) Female (left) Lycaenidae Candalides erinus Small Dusky-blue Wingspan: Male 22mm Female 22mm Caterpillar food plants: Dodder Laurel Cassytha pubescens 12 March 2016 Butterflies - ver 3.0 Page 3 of 30 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Butterflies of Mt Gravatt Conservation Reserve Lycaenidae Catopyrops florinda Speckled Line-blue Wingspan: Male 22mm Female 22mm Caterpillar food plants: Poison Peach Trema tomentose Native Mulberry Pipturus argenteus Speckled Line-blue from top side.
    [Show full text]