Testing Testing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollen Ontogeny Comparison of Natural Male-Fertile Diploid and Male-Sterile Triploid Lilium Lancifolium in Korea
J. AMER.SOC.HORT.SCI. 140(6):550–561. 2015. Pollen Ontogeny Comparison of Natural Male-Fertile Diploid and Male-Sterile Triploid Lilium lancifolium in Korea Gyeong Ran Do Fruit Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Nongsaengmyeong-ro, 100, Jeonju, Republic of Korea; and Environmental Horticulture, University of Seoul, Seoulsiripdaro 163, Seoul, Republic of Korea Ju Hee Rhee1 National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Nongsaengmyeong-ro, 370, Jeonju, Republic of Korea; and Bioversity International, P.O. Box 236, UPM Post Office, Serdang, Selangor Darul Ehsan 43400, Malaysia Wan Soon Kim Environmental Horticulture, University of Seoul, Seoulsiripdaro 163, Seoul, Republic of Korea Yun Im Kang Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Nongsaengmyeong-ro 100, Jeonju, Republic of Korea In Myung Choi, Jeom Hwa Han, Hyun Hee Han, Su Hyun Ryu, and Han Chan Lee Fruit Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Nongsaengmyeong-ro, 100, Jeonju, Republic of Korea ADDITIONAL INDEX WORDS. polyploidy, pollen development, fertility, abnormal tetrad ABSTRACT. Lilium lancifolium (syn. L. tigrinum) is the only polyploidy-complex species involving both diploid (2n =2x = 24) and triploid (2n =3x = 36) plants in the genus. The origin of natural triploid remains a mystery and research has been limited mainly to chromosomal studies that have overlooked research on pollen ontogeny. By spatiotemporal comparison of the development and morphology of diploid and triploid pollen grains, we study the correlations between pollen fertility and morphological development in diploid and triploid plants and propose the necessity and importance of further research on natural polyploid-ontogenetic diversity. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Yellow Admiral (Vanessa Itea)
Yellow Admiral (Vanessa itea) Wingspan ~50mm Photo: Tony Morton Note 1: The upper side of wings shown in butterfly on the left. The underside of the wings shown in the butterfly on the left. Males and females are similar. Note 2: The plant name on the bottom right refers to the plants upon which the butterfly larvae (caterpillars) feed. Other Common Names: Australian Admiral, Admiral Family of Butterflies: Nymphalidae (Browns and Nymphs) Tony Morton’s documented records of Yellow Admiral from the local area (between 2000 to 2013): Seven Date Location Notes 21-Sep-2000 Vaughan 28-Sep-2000 Irishtown Track, Irishtown 17-Oct-2003 Vaughan 5-Sep-2005 Vaughan walk fresh 1 Butterflies of the Mount Alexander Shire – A Castlemaine Field Naturalists Club publication Date Location Notes Between Jan 2005 to Oct 2006 Kalimna Park 27-Mar-2012 Kalimna Point on sap oozing from Small Sugar Gum(?) 29-Aug-2013 Vaughan garden Other documented local observations: None Distribution Across Victoria (from Field 2013): Observations from across Victoria. Larval Host Plants (Field 2013): Shade Pellitory (Parietaria debilis) and nettles, including the introduced Stinging Nettle (Urtica urens) Larval association with ants (Field 2013): None. Adult Flight Times in Victoria (from Field 2013): Adults have been recorded during all months in Victoria, with a peak from September to January. Usually one of the first spring butterflies in Victoria.F Fly fast, and close to ground. Bask with wings open. Several generations completed each year. Conservation Status: National Butterfly Action Plan (2002): No conservation status Australian Environment Protection and Biodiversity Conservation Act 1999: Not listed Victorian Flora and Fauna Guarantee Act 1988: Not listed Advisory List of Threatened Victorian Invertebrates (DSE 2009): Not listed Other Notes: Likely to be resident and moderately common the Mount Alexander Shire, particular in urban areas and wetter locations supporting nettles. -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Cross‑Reactivity Between Parietaria Judaica and Parietaria Officinalis in Immunotherapy Extracts for the Treatment of Allergy to Parietaria
326 BIOMEDICAL REPORTS 12: 326-332, 2020 Cross‑reactivity between Parietaria judaica and Parietaria officinalis in immunotherapy extracts for the treatment of allergy to Parietaria NatalY CANCELLIERE1, IRENE IGLESIAS2, ÁNGEL AYUGA1 and Ernesto ENRIQUE MIRANDA2 1Medical Department, MERCK SLU, 28006 Madrid; 2Department of Allergology, Hospital of Sagunto, 46520 Valencia, Spain Received July 11, 2019; Accepted January 2, 2020 DOI: 10.3892/br.2020.1297 Abstract. Parietaria judaica and P. officinalis are the two Introduction most common subspecies of the Parietaria genus. P. judaica and P. officinalis have exhibited cross-reactivity in previous Allergic rhinitis (AR) is a symptomatic disorder of the nose studies. P. judaica pollen is the main cause of allergy in the induced by an IgE‑mediated inflammation following allergen Mediterranean area. It has been shown that a high percentage exposure of the membranes lining the nose (1). Due to its of patients sensitized to P. judaica with allergic rhinitis (AR) increasing prevalence worldwide (2,3), including up to 22% have an increased risk of developing asthma. The present study in Spain (3,4), and the burden of symptoms impacting on the aimed to confirm the cross‑reactivity between P. judaica and general well-being and health-related quality of life of patients P. officinalis and to evaluate the use of a single P. officinalis suffering from this condition, AR represents a serious global extract in patients allergic to both subspecies as a preferable health problem (5). AR and asthma frequently coexist, sharing option for the diagnosis and treatment of allergy in a highly a number of physiopathologic links and risk factors, including pollinated area of the Spanish Mediterranean coast. -
Comparative, Evaluation Parameter for Toothpaste: a Review
INTERNATIONAL EDUCATIONAL APPLIED RESEARCH JOURNAL (IEARJ) Volume 03, Issue 06, June 2019 E-ISSN: 2456-6713 Comparative, Evaluation Parameter for Toothpaste: A Review *Nisha Devi1, Dr. Bharat Parashar2, Rahul Thakur3 1Assistant Professor IEC School of Pharmacy, IEC University Baddi, Solan, H.P, India. 2Dean IEC School of Pharmacy, IEC University Baddi, Solan, H.P, India. 3StudentIEC School of Pharmacy, IEC University Baddi, Solan, H.P, India. Abstract: We everyday use toothpaste for cleaning of teeth to protect it from germs and prevent bad odour and foul smell. Toothpaste is a gel to be used with a toothbrush to maintain and improve oral health. There are so many marketed toothpaste are available in Indian market, so many brands represent their toothpaste is best than other and they advertise their brand to catch the population towards them. In this review article we focus on the best marketed toothpaste by doing comparison study on so popular two marketed brands of India one is Colgate and other is Dant Kanti from Patanjali. The Colgate and Dantkanti toothpaste during stability study those the study show that, the formulation of toothpaste containing herbal extract can be possible which is used as good toothpaste. Keywords: Introduction, Material & method, Result & Conclusion. Introduction: whiten teeth, flavours for the purpose of teeth freshening and dyes for better visual appeal. Effective toothpastes are Toothpaste is a gel to be used with a tooth brush to those that are formulated for maximum bioavailability of maintain and improve oral health and aesthetics. Since their actives. This however, can be challenging as their introduction several thousand years ago, toothpaste compromises will have to be made when several different formulation have evolved cosiderably from suspension of actives are formulated in one phase. -
Novel Habitats, Rare Plants and Root Traits
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Novel Habitats, Rare Plants and Roots Traits A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science at Lincoln University by Paula Ann Greer Lincoln University 2017 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of Applied Science. Abstract Novel habitats, rare plants and root traits. by Paula Ann Greer The loss of native plant species through habitat loss has been happening in NZ since the arrival of humans. This is especially true in Canterbury where less than 1% of the lowland plains are believed to be covered in remnant native vegetation. Rural land uses are changing and farm intensification is creating novel habitats, including farm irrigation earth dams. Dam engineers prefer not to have plants growing on dams. Earth dams are consented for 100 years, they could be used to support threatened native plants. Within the farm conversion of the present study dams have created an average of 1.7 hectares of ‘new land’ on their outside slope alone, which is the area of my research. -
Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear. -
Set 3 Plains Plant List AA
Food for native birds: AKEAKE – riroriro – ngaio, F = Fruit S = Bird Seed N = Nectar old dune ecosystem B = Bud/foliage I = Insects For lizards: L = fruit Plant Tolerances ■ = tolerates or needs □ = intolerant ½ = tolerant of some * = to establish, protect from frost t = toxic for toddlers Plants keyed to landform units, as shown in diagram: (F) = Foredune; (M) = Mid-dune; (B) = Back dune; (S) = Sand flats/plains; (H) = Swampy hollow; (E) / (O) = edge plants of back and old dunes PLANT LISTS Selected from vegetation natural to these droughty Waikuku soils Tolerances TREES & TALL SHRUBS Food sun shade wet dry wind Coprosma robusta karamu (B, O) F ■ ■ ■ ½ ½ Cordyline australis ti kouka, cabbage tree (B, S, H, O) F,N,I ■ ½ ■ ■ ■ Discaria toumatou matagouri (M, B, S, O) I ■ □ □ ■ ■ Dodonaea viscosa akeake (M, B, O)* ■ ½ □ ■ ■ Griselinia littoralis broadleaf, kapuka (B, O) F,N,I ■ ■ ½ ■ ■ Hoheria angustifolia houhere, narrow-leaved lacebark (O) I ■ ½ ½ ■ ■ Kunzea ericoides kanuka (O) N,I ■ □ □ ■ ■ Leptospermum scoparium manuka, tea tree (B, S, H) N,I ■ □ ■ ■ ■ Melicytus ramiflorus mahoe, whiteywood (B, O)* N,B,I ½ ■ ½ ½ ½ Myoporum laetum ngaio (M, B, O)* F,N ■ ½ □ ■ ■ t Myrsine australis mapau, red matipo (B, O)* F,L,I ■ ■ □ ½ ½ Olearia avicenniifolia akiraho, a tree daisy (B,O) S,I ■ ½ □ ■ ■ Olearia paniculata akiraho, golden akeake (B,O) S,I ■ ½ □ ■ ■ Pittosporum eugenioides tarata, lemonwood (O) F,I ■ ■ ½ ■ ½ Pittosporum tenuifolium kohuhu, black matipo, tawhari (B, O) F,I ■ ■ ½ ■ ■ Pseudopanax crassifolius lancewood, horoeka (O) F,N,I -
Flora and Fauna
ENVIRONMENTAL ASSESSMENT Volume 2 Technical Papers MUNMORAH GAS TURBINE FACILITY MUNMORAH POWER STATION.indd 3 21/12/05 2:27:29 PM Contents Technical Papers (Volume 2) Technical Paper No.1 Flora and Fauna Assessment Technical Paper No.2 Heritage Assessment Technical Paper No.3 Noise Assessment Technical Paper No.4 Air Quality Impact Assessment Technical Paper No 5 Photochemical Pollution Assessment Technical Paper No 6 Preliminary Hazard Analysis FLORA AND FAUNA ASSESSMENT TECHNICAL PAPER DIVIDERS.indd 30 121/12/05 3:44:33 PM Technical Paper 1 Flora and Fauna Assessment of Munmorah Gas Turbine Facility December 2005 Delta Electricity Parsons Brinckerhoff Australia Pty Limited ACN 078 004 798 and Parsons Brinckerhoff International (Australia) Pty Limited ACN 006 475 056 trading as Parsons Brinckerhoff ABN 84 797 323 433 Level 27 Ernst & Young Centre 680 George Street Sydney NSW 2000 GPO Box 5394 Australia Telephone +61 2 9272 5100 Facsimile +61 2 9272 5101 Email [email protected] ABN 84 797 323 433 NCSI Certified Quality System ISO 9001 2116541A Parsons Brinckerhoff supports the Environment by PR_2467.doc printing on 100per cent A4 recycled paper ©Parsons Brinckerhoff Australia Pty Limited and Parsons Brinckerhoff International (Australia) Pty Limited trading as Parsons Brinckerhoff (“PB”). [2005] Copyright in the drawings, information and data recorded in this document (“the information”) is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PB. -
Exhibition Catalogue Natural History Illustrations by Erin Forsyth, 2018
A Few Exhibition catalogue Natural history illustrations by Erin Forsyth, 2018 TABLE OF CONTENTS ABOUT THE WORKS 5 About the artist 7 How to use this catalogue 9 TERMS AND CONDITIONS OF SALE 10 Korimako, makomako, bellbird 13 Kākāriki, Red-crowned parakeet, (Cyanoramphus novaezelandiae) 15 Moko kākāriki, Auckland green gecko (Naultinus elegans) 17 Pekapeka-tou-roa, long-tailed bat (Chalinolobus tuberculatus) 19 Pekapeka-tou-roa, long-tailed bat (Chalinolobus tuberculatus) 21 Pekapeka-tou-roa, long-tailed bat (Chalinolobus tuberculatus) 23 Ngirungiru, miromiro, South Island tomtit (Petroica macrocephala macrocephala) male 25 Kakaruwai, South Island Robin (Petroica australis) 27 Tōrea pango, variable oystercatcher (Haematopus unicolor) 29 Kererū, NZ wood pigeon (Hemiphaga novaeseelandiae) 31 Kōtare, sacred kingfisher (Todiramphus sanctus) 33 Ruru, morepork (Ninox novaeseelandiae) 35 TŪī, parsons bird (Prosthemadera novaeseelandiae) 37 Kōkako, blue-wattled crow (Callaeas wilsoni) 41 Takahe, South Island Takahe (Porphyrio hochstetteri) 43 Tūturiwhatu, NZ Dotteral (Charadrius obscurus) 45 Whio, blue duck (Hymenolaimus malacorhynchos) 47 Kahukōwhai, yellow admiral (Vanessa itea) 49 Wētāpunga, Little Barrier (Hauturu-o-Toi) giant weta (Deinacrida heteracantha) 51 Kārearea, NZ falcon (Falco novaeseelandiae) 53 Common evening brown (Melanitis leda bankia) 55 Pepe pouri, Helms' butterfly or forest ringlet (Dodonidia helmsii) 59 Kahukōwhai, yellow admiral (Vanessa itea) & Kahukura, NZ red admiral (V. gonerilla gonerilla) 63 Pepe pouri, Butler's ringlet (Erebiola butleri) & pepe pouri, black mountain ringlet (Percnodaimon merula) 67 Pīwakawaka, fantail (Rhipidura fuliginosa) 73 Weka, woodhen (Gallirallus australis) 75 Carnivorous land snail (Powelliphanta superba) 77 MYRTACEAE Studies I & II (Diptych) 79 ABOUT THE WORKS These original works are from the exhibition ‘A Few’ - the third installment in an ongoing series of natural history illustrations depicting native and resident species of Aotearoa by Erin Forsyth. -
European Standards and North American Practice Parameters for Skin Prick Testing Panels in Allergic Rhinitis and Asthma
Romanian Journal of Rhinology, Vol. 5, No. 17, January-March 2015 DOI: 10.1515/rjr-2015-0002 LITERATURE REVIEW European standards and North American practice parameters for skin prick testing panels in allergic rhinitis and asthma Florin-Dan Popescu Department of Allergology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania ABSTRACT According to the Global Allergy and Asthma European Network (GA²LEN), a pan-European skin prick test panel for the diag- nosis of allergic rhinitis and asthma includes 18 aeroallergen extracts, supplemented if necessary for regional or for particular patient needs, while the Allergen Subcommittee and Immunotherapy Committee of the American Academy of Allergy, Asthma and Immunology (AAAAI) selected 36 major clinically relevant aeroallergens for North America. KEYWORDS: aeroallergen extracts, skin prick tests, allergic rhinitis and asthma INTRODUCTION PARAMETERS FOR SKIN PRICK TESTING PANELS Skin prick testing is an important reliable method to diagnose IgE-mediated allergic rhinitis, rhinocon- The aeroallergen extracts included in the Euro- junctivitis and asthma. This widely used in vivo assess- pean standards and North American practice param- ment, indicated, performed and interpreted by al- eters skin prick panels are of plant, fungal and ani- lergy practitioners, is minimally invasive, has immedi- mal origins, as described below1-8. ately available and reproducible results, and provides Aeroallergen extracts of animal origin included in evidence for aeroallergen sensitization. Skin prick these standards belong to Arthropoda phylum, Astig- tests are highly specific and sensitive for the diagnosis mata order (house dust mites from the Pyroglyphidae of respiratory allergies. The positive predictive value family), Blattodea order (Ectobiidea family from the to diagnose allergic rhinitis increases to 97-99% if al- Insecta class), and Carnivora order pet animals (Felidae lergy skin prick testing is utilized1,2.