Ajo Peak to Tinajas Altas: a Flora of Southwestern Arizona. Part 20

Total Page:16

File Type:pdf, Size:1020Kb

Ajo Peak to Tinajas Altas: a Flora of Southwestern Arizona. Part 20 Felger, R.S. and S. Rutman. 2016. Ajo Peak to Tinajas Altas: A Flora of Southwestern Arizona. Part 20. Eudicots: Solanaceae to Zygophyllaceae. Phytoneuron 2016-52: 1–66. Published 4 August 2016. ISSN 2153 733X AJO PEAK TO TINAJAS ALTAS: A FLORA OF SOUTHWESTERN ARIZONA PART 20. EUDICOTS: SOLANACEAE TO ZYGOPHYLLACEAE RICHARD STEPHEN FELGER Herbarium, University of Arizona Tucson, Arizona 85721 & International Sonoran Desert Alliance PO Box 687 Ajo, Arizona 85321 *Author for correspondence: [email protected] SUSAN RUTMAN 90 West 10th Street Ajo, Arizona 85321 [email protected] ABSTRACT A floristic account is provided for Solanaceae, Talinaceae, Tamaricaceae, Urticaceae, Verbenaceae, and Zygophyllaceae as part of the vascular plant flora of the contiguous protected areas of Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and the Tinajas Altas Region in southwestern Arizona—the heart of the Sonoran Desert. This account includes 40 taxa, of which about 10 taxa are represented by fossil specimens from packrat middens. This is the twentieth contribution for this flora, published in Phytoneuron and also posted open access on the website of the University of Arizona Herbarium: <http//cals.arizona.edu/herbarium/content/flora-sw-arizona>. Six eudicot families are included in this contribution (Table 1): Solanaceae (9 genera, 21 species), Talinaceae (1 species), Tamaricaceae (1 genus, 2 species), Urticaceae (2 genera, 2 species), Verbenaceae (4 genera, 7 species), and Zygophyllaceae (4 genera, 7 species). The flora area covers 5141 km 2 (1985 mi 2) of contiguous protected areas in the heart of the Sonoran Desert (Figure 1). The first article in this series includes maps and brief descriptions of the physical, biological, ecological, floristic, and deep history of the flora area (Felger et al. 2013a). This flora includes the modern, present-day taxa as well as fossil records from packrat middens. Explanation of the format for the flora series is provided in part 3 (Felger et al. 2013b). These contributions are also posted open access on the website of the University of Arizona Herbarium (ARIZ). Family designations follow APG III and 1V (Angiosperm Phylogeny Group 2009, 2016; also see Stevens 2012). Non- native taxa established in the flora area are marked with an asterisk (*) and non-natives not established in the flora area are marked with double asterisks (**). Present-day taxa also represented by fossil specimens are indicated with a dagger symbol (†) and the one species no longer present in the flora is marked with two dagger symbols (††). All specimens cited are at the University of Arizona Herbarium (ARIZ) unless otherwise indicated by the abbreviations for herbaria at Cabeza Prieta National Wildlife Refuge (CAB), Organ Pipe Cactus National Monument (ORPI), and the standardized abbreviations for herbaria (Index Herbariorum, Thiers 2016). All photos and scans are by Sue Rutman unless otherwise stated and botanical illustrations are by Lucretia Breazeale Hamilton (1908–1986). Descriptions and keys pertain to taxa and populations as they occur in the flora area. Felger & Rutman, Flora of SW Arizona, Solanaceae to Zygophyllaceae 2 Figure 1. Flora area in southwestern Arizona. OP = Organ Pipe Cactus National Monument; CP = Cabeza Prieta National Wildlife Refuge; TA = Tinajas Altas Region. Green shading indicates approximate boundaries of federally designated wilderness. Map by Jim Malusa. Table 1. Local distributions and growth forms of Solanaceae, Talinaceae, Tamaricaceae, Urticaceae, Verbenaceae, and Zygophyllaceae. † = Modernspecies also represented by a fossil; †† = fossil taxonno longer present; * = non-natives taxa; ** = non-native species not established in the flora area. OP = Organ Pipe Cactus National Monument; CP = Cabeza Prieta National Wildlife Refuge; TA = Tinajas Altas Region. SU = Summer/warm-season ephemerals; WI = winter-spring/cool-season ephemerals; AP = facultative annuals or perennials; PR = perennials. Region Growth Form Ephemerals Facultative Taxon Organ Cabeza Tinajas Perennial Non- annual or Pipe Prieta Altas Summer Winter seasonal perennial SOLANACEAE Calibrachoa parviflora OP NS Capsicum annuum OP PR Chamaesaracha arida CP TA PR Datura discolor OP CP TA NS †† Datura wrightii (OP) (PR) Lycium andersonii OP CP TA PR Lycium berlandieri OP CP PR †Lycium cf. berlandieri (OP) PR Lycium californicum OP CP PR Felger & Rutman, Flora of SW Arizona, Solanaceae to Zygophyllaceae 3 Lycium exsertum OP PR Lycium fremontii OP CP TA PR †Lycium macrodon OP CP TA PR Lycium parishii OP CP TA PR †Lycium sp./spp. (OP) (TA) PR Nicotiana clevelandii OP CP TA WI ** Nicotiana glauca (OP) PR †Nicotiana obtusifolia OP CP TA PR *Physalis acutifolia OP CP? SU Physalis crassifolia OP CP TA PR †Physalis sp./spp. (OP) (TA) Quincula lobata OP PR *Solanum americanum OP AP †Solanum hindsianum OP (†TA) PR Solanum nigrescens OP PR Solanum umbelliferum OP PR TALINACEAE Talinum paniculatum OP PR TAMARICACEAE ** Tamarix aphylla (OP) (CP) PR *Tamarix chinensis OP CP PR URTICACEAE †Parietaria hespera OP CP TA WI Urtica gracilenta OP SU VERBENACEAE Aloysia wrightii OP CP PR Glandularia gooddingii OP CP AP Glandularia latilobata OP AP †Glandularia sp./spp. (OP) (TA) ? ** Lantana camara (OP) PR Verbena bracteata CP WI Verbena menthifolia OP CP AP Verbena xylopoda OP PR ZYGOPHYLLACEAE Fagonia laevis CP TA PR Fagonia longipes OP CP PR Fagonia pachyacantha CP TA PR Kallstroemia californica OP CP TA SU Kallstroemia grandiflora OP CP SU †Kallstroemia sp./spp. (OP) SU †Larrea tridentata OP CP TA PR *Tribulus terrestris CP SU SOLANACEAE – Nightshade or Potato Family Herbs and shrubs in the flora area (some vines and trees elsewhere). Leaves alternate (often fascicled on short shoots) or sometimes subopposite; stipules none. Flowers bisexual or sometimes unisexual, 4- or 5-merous, and often showy. Calyx 4- or 5-lobed, and persistent. Corollas 4- or 5- lobed, mostly radially symmetrical (those in the flora area), mostly plicate in bud. Stamens 4 or 5, the filament bases fused to the corolla. Ovary superior, the style 1, the stigma 2-lobed or capitate. Fruit a berry (becoming indurate in Lycium macrodon ) or a capsule; seeds few to many. Worldwide, mostly tropical and temperate, greatest diversity in Central and South America; 94 genera, 2950 species. Felger & Rutman, Flora of SW Arizona, Solanaceae to Zygophyllaceae 4 1. Herbage glabrous, or with simple or stellate hairs; anthers opening with a terminal pore (longitudinal slit in S. umbelliferum ) and longer than the filaments; fruits of berries……….. Solanum 1. Hairs, if present, not stellate; anthers opening longitudinally and shorter than the filaments (or nearly as long as the filaments in Capsicum ); fruits of berries or capsules. 2. Woody shrubs or if not especially woody then more than 1.5 m tall. 3. Widespread hardwood shrubs, the twigs thorn-tipped or bearing spines; leaves less than 5 cm long, sessile or short-petioled……………………………………………………………... Lycium 3. Scarce in the flora area, roadsides; unarmed and scarcely woody; leaves more than 7 cm long, the petiole more than 3 cm long……………………………..………………….. Nicotiana glauca 2. Plants herbaceous, mostly less than 1–1.5 m tall, annuals or herbaceous perennials, or sometimes scarcely woody at the base. 4. Plants prostrate and rooting at nodes; leaves 0.5–1.5 (2) cm long, nearly sessile to short petioled (petiole much shorter than the blade)……………………………………...... Calibrachoa 4. Plants not both prostrate and rooting at nodes; leaves 2.5–15 cm long, or if less than 2.5 cm in length then the petiole about as long as or longer than the blade. 5. Corollas more than 10 cm long; fruits prickly-spinescent………………..…………… Datura 5. Corollas less than 4 cm long; fruits not prickly-spinescent. 6. Corollas tubular; fruit a capsule (dry)…………………………………..………... Nicotiana 6. Corollas as broad as or broader than long or deep (not tubular); fruit a berry (fleshy). 7. Fruiting calyx not inflated, not growing around fruit; fruits bright red when ripe. ……………………………………………………………………………………. Capsicum 7. Fruiting calyx enlarging to partially or fully surround fruit; fruits green. 8. Fruiting calyx partially growing around and tightly enclosing the berry; corollas greenish yellow with a woolly pad at center……………………………. Chamaesaracha 8. Fruiting calyx completely and loosely growing around the berry like a bag; corollas various colors, without a woolly pad. 9. Roots not thickened; stems or branches held aloft; corollas yellow or white; herbage with short, straight, glandular hairs about the same color as the herbage.…….. Physalis 9. Perennials from a thickened root; stems spreading to decumbent; corollas lavender; herbage scurfy with rounded white “hairs” (vesicular trichomes) especially on young growth and young calyces…………………………………………………….. Quincula Calibrachoa Annual and perennial herbs. South America and one also in North America; 25 species. A genus segregated from Petunia . Horticultural selections of Calibrachoa and Calibrachoa –Petunia hybrids, known as ×Petchoa , with brightly-colored flowers, are grown as garden plants. Calibrachoa parviflora (de Jussieu) D'Arcy [Petunia parviflora de Jussieu] Small-flowered petunia. Figure 2. Ephemerals, probably non-seasonal, and glandular-viscid. Stems spreading-prostrate, rooting at nodes, reaching 50 cm long. Leaves alternate, 5–20 mm long, mostly linear to spatulate or Felger & Rutman, Flora of SW Arizona, Solanaceae to Zygophyllaceae 5 oblanceolate, often semi-succulent; margins entire or nearly so. Calyx
Recommended publications
  • California Vegetation Map in Support of the DRECP
    CALIFORNIA VEGETATION MAP IN SUPPORT OF THE DESERT RENEWABLE ENERGY CONSERVATION PLAN (2014-2016 ADDITIONS) John Menke, Edward Reyes, Anne Hepburn, Deborah Johnson, and Janet Reyes Aerial Information Systems, Inc. Prepared for the California Department of Fish and Wildlife Renewable Energy Program and the California Energy Commission Final Report May 2016 Prepared by: Primary Authors John Menke Edward Reyes Anne Hepburn Deborah Johnson Janet Reyes Report Graphics Ben Johnson Cover Page Photo Credits: Joshua Tree: John Fulton Blue Palo Verde: Ed Reyes Mojave Yucca: John Fulton Kingston Range, Pinyon: Arin Glass Aerial Information Systems, Inc. 112 First Street Redlands, CA 92373 (909) 793-9493 [email protected] in collaboration with California Department of Fish and Wildlife Vegetation Classification and Mapping Program 1807 13th Street, Suite 202 Sacramento, CA 95811 and California Native Plant Society 2707 K Street, Suite 1 Sacramento, CA 95816 i ACKNOWLEDGEMENTS Funding for this project was provided by: California Energy Commission US Bureau of Land Management California Wildlife Conservation Board California Department of Fish and Wildlife Personnel involved in developing the methodology and implementing this project included: Aerial Information Systems: Lisa Cotterman, Mark Fox, John Fulton, Arin Glass, Anne Hepburn, Ben Johnson, Debbie Johnson, John Menke, Lisa Morse, Mike Nelson, Ed Reyes, Janet Reyes, Patrick Yiu California Department of Fish and Wildlife: Diana Hickson, Todd Keeler‐Wolf, Anne Klein, Aicha Ougzin, Rosalie Yacoub California
    [Show full text]
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Allopolyploidy and Root Nodule Symbiosis in Glycine
    TWO TO TANGO: ALLOPOLYPLOIDY AND ROOT NODULE SYMBIOSIS IN GLYCINE SUBGENUS GLYCINE A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Adrian Federico Powell January 2017 © 2017 Adrian Federico Powell TWO TO TANGO: ALLOPOLYPLOIDY AND ROOT NODULE SYMBIOSIS IN GLYCINE SUBGENUS GLYCINE Adrian Federico Powell, Ph.D. Cornell University 2017 Polyploidy (or whole genome duplication) and root nodule symbioses with bacteria (termed ‘rhizobia’) have both been important phenomena in the evolutionary history of the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the development or refinement of nodulation. Given the varied potential impacts of polyploidy, effects on biotic interactions are plausible. However, direct studies of the interactions between these phenomena in symbiotic, nodule-forming species are lacking. In this dissertation, using a complex of recently formed allopolyploids in Glycine subgenus Glycine, the perennial relatives of soybean, we examined (1) the root metabolites and symbiotic signaling capacity of multiple allopolyploid species relative to the diploid progenitor species that hybridized to form each allopolyploid, (2) the nodulation-related responses of allopolyploids and diploid progenitors to rhizobia and (3) the transcriptome-level responses to inoculation in allopolyploid G. dolichocarpa (T2) and its diploid progenitors. These objectives were pursued using a variety of approaches including root metabolite profiling, inoculation trials, and RNA sequencing. We found that, while there were no common transgressive patterns in the root metabolite profiles of allopolyploids in the complex, one of the progenitors of T2 had distinctive root metabolite and exudate profiles; profiles of symbiotic signaling metabolites were also altered in the allopolyploid.
    [Show full text]
  • The Plant Press the ARIZONA NATIVE PLANT SOCIETY
    The Plant Press THE ARIZONA NATIVE PLANT SOCIETY Volume 36, Number 1 Summer 2013 In this Issue: Plants of the Madrean Archipelago 1-4 Floras in the Madrean Archipelago Conference 5-8 Abstracts of Botanical Papers Presented in the Madrean Archipelago Conference Southwest Coralbean (Erythrina flabelliformis). Plus 11-19 Conservation Priority Floras in the Madrean Archipelago Setting for Arizona G1 Conference and G2 Plant Species: A Regional Assessment by Thomas R. Van Devender1. Photos courtesy the author. & Our Regular Features Today the term ‘bioblitz’ is popular, meaning an intensive effort in a short period to document the diversity of animals and plants in an area. The first bioblitz in the southwestern 2 President’s Note United States was the 1848-1855 survey of the new boundary between the United States and Mexico after the Treaty of Guadalupe Hidalgo of 1848 ended the Mexican-American War. 8 Who’s Who at AZNPS The border between El Paso, Texas and the Colorado River in Arizona was surveyed in 1855- 9 & 17 Book Reviews 1856, following the Gadsden Purchase in 1853. Besides surveying and marking the border with monuments, these were expeditions that made extensive animal and plant collections, 10 Spotlight on a Native often by U.S. Army physicians. Botanists John M. Bigelow (Charphochaete bigelovii), Charles Plant C. Parry (Agave parryi), Arthur C. V. Schott (Stephanomeria schotti), Edmund K. Smith (Rhamnus smithii), George Thurber (Stenocereus thurberi), and Charles Wright (Cheilanthes wrightii) made the first systematic plant collection in the Arizona-Sonora borderlands. ©2013 Arizona Native Plant In 1892-94, Edgar A. Mearns collected 30,000 animal and plant specimens on the second Society.
    [Show full text]
  • Appendix F3 Rare Plant Survey Report
    Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
    APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G).
    [Show full text]
  • World Journal of Pharmaceutical Research Mishra
    World Journal of Pharmaceutical Research Mishra. World Journal of Pharmaceutical SJIF ImpactResearch Factor 8.074 Volume 7, Issue 12, 1011-1019. Review Article ISSN 2277– 7105 DATURA STRAMONIUM (COMMON NAME: JIMSON WEED) MEDICINAL USES, SIDE EFFECTS AND BENEFITS *Dr. Shaival Mishra Lecturer Govt. Auto Ayurvedic College Jabalpur M.P. ABSTRACT Article Received on 03 May 2018, It is small shrub growing 4 to 5 feet height and belong to family Revised on 23 May 2018, solanaceae. It’s having active principles – Hyoscine, hyoscyamine Accepted on 13 June 2018 atropine. It is used as mydriate, antispasmodic, antidote, pre anesthetic DOI: 10.20959/wjpr201812-12710 and medication, bronchial, asthma mode of action – peripheral effects are predominant and result from anticholinergic action. Central effects *Corresponding Author involve initial stimulations of the C.N.S with excitement and Dr. Shaival Mishra restlessness followed by subsequent depression delirium and coma. It Lecturer Govt. Auto Ayurvedic College Jabalpur is mainly used for robbery & other type of crime. M.P. KEYWORDS: Atropine, antidot, delirium. INTRODUCTION It is small shrub growing 4 to 5 feet height and belong to family solanaceae. Datura is an herbaceous perennial plant, which is grown in temperate and tropical region of the globe. All the species of Datura are poisonous in nature. Some are aphrodisiac too. The seeds and flowers are more poisonous in nature. Sometimes, datura is termed as witches weeds and shows properties like deadly nightshade and henbane. Datura use is known for feverish state and even death. However, in Ayurveda, it is used as medicine and ritual as well as prayers has also place this.
    [Show full text]
  • Special Status Species List
    APPENDIX J SPECIAL STATUS SPECIES LIST SPECIAL STATUS SPECIES LIST APPENDIX J SPECIAL STATUS SPECIES LIST Common Name Scientific Name State Class Status1 A Caddisfly Farula constricta OR Insect BS Adder’s-tongue Ophioglossum pusillum OR Plant BS Agave, Arizona Agave arizonica AZ Plant FE Agave, Murphey Agave murpheyi AZ Plant BS Agave, Santa Cruz Striped Agave parviflora AZ Plant BS Agoseris, Pink Agoseris lackschewitzii ID Plant BS Albatross, Short-tailed Phoebastris albatrus AK, CA Bird FE Alkaligrass, Howell’s Puccinellia howelli CA Plant BS Alkaligrass, Lemon’s Puccinellia lemmonii CA Plant BS Alkaligrass, Parish’s Puccinellia parishii CA, MT Plant BS Alpine-aster, Tall Oreostemma elatum CA Plant BS Alpine-parsley, Trotter’s Oreoxis trotteri UT Plant BS Alumroot, Duran’s Heuchera duranii CA Plant BS Amaranth, California Amaranthus californicus MT Plant BS Ambersnail, Kanab Oxyloma haydeni kanabensis AZ, UT Snail FE Ambrosia, San Diego Ambrosia pumila CA Plant FE Chlorogalum purpureum var. Amole, Purple CA Plant FT purpureum Amphipod, Malheur Cave Stygobromus hubbsi OR Crustacean BS Amphipod, Noel’s Gammarus desperatus NM Crustacean PE Angelica, King’s Angelica kingii ID Plant BS Angelica, Rough Angelica scabrida NV Plant BS Apachebush Apacheria chircahuensis NM Plant BS Apple, Indian Peraphyllum ramosissimum ID Plant BS Arrowhead, Sanford’s Sagittaria sanfordii CA Plant BS Aster, Gorman’s Eucephalus gormanii OR Plant BS Aster, Pygmy Eurybia pygmaea AK Plant BS Aster, Red Rock Canyon Ionactis caelestis NV Plant BS Avens, Mountain Senecio moresbiensis AK Plant BS Baccharis, Encinitis Baccharis vanessae CA Plant FT Balloonvine Cardiospermum corindum AZ Plant BS Balsamorhiza macrolepis var. Balsamroot, Big-scale CA Plant BS macrolepis Balsamroot, Large-leaved Balsamorhiza macrophylla MT Plant BS Balsamroot, Silky Balsamorhiza sericea CA Plant BS Balsamroot, Woolly Balsamorhiza hookeri var.
    [Show full text]
  • To: Environmental Evaluation Committee Requested
    TO: ENVIRONMENTAL EVALUATION AGENDA DATE: September 26, 2019 COMMITTEE FROM: PLANNING & DEVELOPMENT SERVICES AGENDA TIME 1:30 PM / No. 1 PROJECT TYPE: Orni 5-Truckhaven Geothermal Exploratory Wells & Seismic Testing Project - Initial Study #18-0025 SUPERVISOR DIST # 4 LOCATION: Salton Sea & Truck-haven Geothermal areas, APN: 017-340-003-, et.al Salton Sea Areas, CA PARCEL SIZE: various GENERAL PLAN (existing) Open Space / Salton Sea Urban Area Plan/ various GENERAL PLAN (proposed) ZONE (existing) S-1 Open Space/ State Lands/Parks/ Govt. /Federal ZONE (proposed) N/A GENERAL PLAN FINDINGS CONSISTENT INCONSISTENT MAY BE/FINDINGS PLANNING COMMISSION DECISION: HEARING DATE: APPROVED DENIED OTHER PLANNING DIRECTORS DECISION: HEARING DATE: APPROVED DENIED OTHER ENVIROMENTAL EVALUATION COMMITTEE DECISION: HEARING DATE: 09/26/2019 INITIAL STUDY: 18-0025 NEGATIVE DECLARATION MITIGATED NEG. DECLARATION EIR DEPARTMENTAL REPORTS / APPROVALS: PUBLIC WORKS NONE ATTACHED AG NONE ATTACHED APCD NONE ATTACHED E.H.S. NONE ATTACHED FIRE / OES NONE ATTACHED SHERIFF NONE ATTACHED OTHER NAHC, REQUESTED ACTION: (See Attached) Planning & Development Services 801 MAIN ST., EL CENTRO, CA.., 92243 442-265-1736 (Jim Minnick, Director) Db\017\340\003\EEC hearing\projrep MITIGATED NEGATIVE DECLARATION Initial Study & Environmental Analysis For: Truckhaven Geothermal Exploration Well Project Prepared By: COUNTY OF IMPERIAL Planning & Development Services Department 801 Main Street El Centro, CA 92243 (442) 265-1736 www.icpds.com September 2019 TABLE OF CONTENTS PAGE
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Flora of the San Pedro Riparian National Conservation Area, Cochise County, Arizona
    Flora of the San Pedro Riparian National Conservation Area, Cochise County, Arizona Elizabeth Makings School of Life Sciences, Arizona State University, Tempe, AZ Abstract—The flora of the San Pedro Riparian National Conservation Area (SPRNCA) consists of 618 taxa from 92 families, including a new species of Eriogonum and four new State records. The vegetation communities include Chihuahuan Desertscrub, cottonwood-willow riparian cor- ridors, mesquite terraces, sacaton grasslands, rocky outcrops, and cienegas. Species richness is enhanced by factors such as perennial surface water, unregulated flood regimes, influences from surrounding floristic provinces, and variety in habitat types. The SPRNCA represents a fragile and rare ecosystem that is threatened by increasing demands on the regional aquifer. Addressing the driving forces causing groundwater loss in the region presents significant challenges for land managers. potential value of a species-level botanical inventory may not Introduction be realized until well into the future. Understanding biodiversity has the potential to serve a unifying role by (1) linking ecology, evolution, genetics and biogeography, (2) elucidating the role of disturbance regimes Study Site and habitat heterogeneity, and (3) providing a basis for effec- tive management and restoration initiatives (Ward and Tockner San Pedro Riparian National 2001). Clearly, we must understand the variety and interac- Conservation Area tion of the living and non-living components of ecosystems in order to deal with them effectively. Biological inventories In 1988 Congress designated the San Pedro Riparian are one of the first steps in advancing understanding of our National Conservation Area (SPRNCA) as a protected reposi- natural resources and providing a foundation of information tory of the disappearing riparian habitat of the arid Southwest.
    [Show full text]