Mathematics, Mathematical Physics and Developing Countries M

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics, Mathematical Physics and Developing Countries M Mathematics, mathematical physics and developing countries M. Guenin, Geneva It is not self-evident that mathema­ people abroad for too long con­ We make the asumption that it is tics and perhaps, even more, mathe­ siderably reduces the danger of the easier to attract somebody of high matical physics can be useful to the brain drain. What developing countries level as the first in a given domain, establishment and growth of scientific need most and fast, is a very large if you have already got very good communities in developing countries. number of very competent primary and people in neighbouring fields. This Not everyone will agree that they do secondary school teachers, techni­ assumption is not necessarily always have a role to play and though many cians and engineers on the spot. So true but should apply in a majority of of the ideas presented here have been many can only be educated in the cases. discussed with friends, they are essen­ country itself, if there exists there a tially the author’s own views based on valid scientific community. It is an What is Mathematical Physics what is recognized to be a quite sub­ elementary point but one which must So far, nothing of what we have said jective analysis. be repeated again and again, that the value of the teaching, crucially de­ seems to imply that mathematical phy­ sics can be of any use in resolving Need for a Scientific Community pends upon the value of the teacher. the problems posed, and for most physicists, mathematical physics is A strong scientific community exists Establishing a Scientific Community in all the developed countries and just one of many marginal fields of there is no doubt that it has con­ The question of how to establish physics. That is a fair point of view tributed greatly to the general welfare and maintain a strong scientific com­ if the parameter used in the assess­ of such countries. It is generally munity is of course very complex. We ment is the number of people involved accepted that it could also signifi­ shall simplify it by concentrating on and also if only a restrictive definition cantly help less favoured countries three factors which we think are de­ is employed. In the broadest sense, and in two ways. First, by providing cisive in making a scientist want to mathematical physics is that part of skills, knowledge and experience come and stay at a given place. These theoretical physics which is not purely where they are needed and second, factors we describe by the catchwords phenomenological, together with the by allowing the formation and training Finances, Geography, Science, Under part of mathematics which is devoted of the younger generation directly in finances, we group the elements that to the study of the abstract structures the countries where they will have to go to make up the standard of living of physics. It does not comprise com­ work. which can be offered to the scientist. putational physics. Even if such an The first point is clear as soon as It is an aspect that cannot be cha­ embracing definition is not considered it is appreciated that the most im­ racterized by a universal figure, be­ acceptable, the marginality of mathe­ portant factor in the brain drain away cause cost of living, fringe benefits, matical physics appears completely from the developing countries, is that etc. vary considerably from place to different from that of other domains, their scientists and doctors, trained at place. Under geography we bring to­ because every problem of physics high cost in industrialized countries, gether all the factors connected with embodies an aspect which fits into find themselves completely isolated the actual location of the place in the framework of mathematical phy­ when they return home. Recognition question, such as educational facilities sics. In a sense, mathematical physics of this fact was incidentally a prime for the children, the cultural life, cli­ would be better called fundamental motivation for the creation of the Inter­ mate, recreation possibilities, histor­ physics, if only every branch of phy­ national Centre for Theoretical Phy­ ical or artistic surrounding, facilities sics were not, in fact, fundamental. So sics in Trieste, whose purpose is to for communications etc. Finally under we shall keep the nomenclature ma­ enable physicists from developing science, we have all the factors which thematical physics for lack of a better countries, periodically to spend a few influence scientific life : number and one. months re-establishing contact with level of colleagues and the colla­ the main stream of research. boration that is to be found, technical Mathematical Physics The second point is even more facilities and equipment, the teaching in Teaching Programmes obvious. Teaching and training young load and so on. It has not infrequently been said that people is cheaper and can be more Even a superficial observation of the one should teach people mainly specifically aimed if it is done in the evolution of the existing research and things which lie outside what they are developing countries themselves. As teaching centres, shows that in order going to do, because what they will for the cost, it is clear that even if one to achieve a reasonably rapid and need for their job they will have to has to offer a very attractive salary stable development, it is desirable that learn anyway, whereas once studies to a teacher to have him come to the all three factors should be positive. are terminated (with very few ex­ country, it is still much cheaper than Even if only two are adequately ceptions), they are not going to sending the students abroad, at least covered, something can still be acquire much knowledge outside their so long as the teacher does not need achieved ; but if there is only one specialized field. To some this may equipment. Moreover, a large fraction good point, it had better be the sound a little like a joke, but if not of the salary of the teacher will be science. In any case, the science side pushed to its extreme it contains in spent where he lives, which is more is usually the only one which can be our opinion a certain amount of truth. favourable to the balance of payments modified by scientists, so it seems That is why personally I have always than sending students away. At the pertinent to ask where to start, espe­ insisted on teaching future experimen­ same time, not sending the younger cially if the means are not unlimited. talists and phenomenologists a sub- 10 stantial amount of mathematics and the ninth symphony, or Hamlet but it obtained at a total cost of about abstract theoretical physics, and on is, in addition, the language of one million dollars and its yearly sending future theoreticians into the science. Mathematical physics on the running costs for acquisitions are laboratory. With the exception of those other hand cannot be taught at all of the order of magnitude of 50,000 who later will be doing research in levels. Only for future mathematicians dollars. Such a library can also be mathematical physics, for most, ma­ and physicists (whatever their future used with very little supplements thematics and abstract theoretical field of specialization might be), can for the whole field of physics. The physics is the baggage for life that it be allowed to become a dominant rest of the costs are only salaries they assembled by the time they got part of the curriculum. and building and maintenance of their diploma. This abstract formation simple office rooms. Big computers has the disadvantage that the people Mathematical Physics and Creation are not an absolute must, even if who received it are less immediately of Scientific Communities they sometimes can be useful. Apart efficient than those which will already from mathematics, one cannot have have practised a lot in their future We now come, to the reasons why any cheaper science. Finally, one has field of specialization, but it has at we believe that mathematical physics to realize that mathematical physics is least the tremendous advantage of can make a useful contribution to the a good departure point for further being much more time resistant. Ma­ creation and development of scientific developments. There is a continuous thematical theorems remain true even communities in less favoured regions passage from the most abstract ma­ after twenty years and someone of the world. There is, first, a question thematical consideration to very con­ who has got into the habit of discern­ of “market”. Mathematical physics is crete phenomenological study and ing the basic structures of existing not fashionable, and the number of also to definitely applied problems. An theories will have a much easier time people working in the field is small ; extension to neighbouring fields is recycling himself, because he will be a few hundreds only are really active therefore relatively easy to perform, able to extract the basic features of in the whole world. That means that especially if there are highly com­ the theories which are going to there is a great deal to be done and petent people who are continuing in emerge in his subsequent work. new-comers have a fair chance of the more abstract domains. If it is agreed that an abstract and reaching really international level. The mathematical formation becomes ob­ second point is that those who are Conclusions solete more slowly than other training, working very far from the main re­ the question may then be asked : why search centres, are not placed at any We believe that these arguments are not only pure mathematics ? This real disadvantage.
Recommended publications
  • Pure Mathematics Professors Teaching and Leading Research CO-OP OR REGULAR 28
    PURE MATHEMATICS Pure Mathematics professors teaching and leading research CO-OP OR REGULAR 28 Mathematician ranked among top 10 TOP 10 jobs from 2011-2017 – Comcast.com of grads are employed Search for a deeper 96.6% within 2 years understanding of mathematics Pure mathematics is at the foundation of all mathematical reasoning. If first-year calculus ALEX teaches you how to drive the car, Pure Mathematics teaches you how to build one. 3B, PURE MATHEMATICS AND Mathematicians know that there could be no general relativity without differential COMBINATORICS AND geometry, and no computer security without advanced number theory. OPTIMIZATION Pure Mathematics at Waterloo is a small, cohesive, and challenging program that will open countless doors for you. Our graduates have used the program as a springboard into careers WHAT DO YOU LOVE ABOUT in information technology, finance, business, science, education, and insurance, often by way PURE MATHEMATICS? The satisfaction from understanding of some of the most prestigious graduate programs in the world. an idea at a deeper level and tying together unrelated branches of ALEX’S FAVOURITE COURSES mathematics or physics for the › PMATH 320 Euclidean Geometry: This course is everything you love about Geometry: first time is the most rewarding Euclid’s axioms, isometries of the Euclidean plane and of Euclidean space, polygons, part of learning and understanding polyhedral, polytopes, and the kissing problem. mathematics. What I really enjoy is › PMATH 351 Real Analysis: It’s a very intuitive and natural approach to real analysis, and the developing a deep understanding of complexity of the course builds very naturally to the end of the semester.
    [Show full text]
  • Pure Mathematics
    Why Study Mathematics? Mathematics reveals hidden patterns that help us understand the world around us. Now much more than arithmetic and geometry, mathematics today is a diverse discipline that deals with data, measurements, and observations from science; with inference, deduction, and proof; and with mathematical models of natural phenomena, of human behavior, and social systems. The process of "doing" mathematics is far more than just calculation or deduction; it involves observation of patterns, testing of conjectures, and estimation of results. As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than on observation as its standard of truth, yet employs observation, simulation, and even experimentation as means of discovering truth. The special role of mathematics in education is a consequence of its universal applicability. The results of mathematics--theorems and theories--are both significant and useful; the best results are also elegant and deep. Through its theorems, mathematics offers science both a foundation of truth and a standard of certainty. In addition to theorems and theories, mathematics offers distinctive modes of thought which are both versatile and powerful, including modeling, abstraction, optimization, logical analysis, inference from data, and use of symbols. Mathematics, as a major intellectual tradition, is a subject appreciated as much for its beauty as for its power. The enduring qualities of such abstract concepts as symmetry, proof, and change have been developed through 3,000 years of intellectual effort. Like language, religion, and music, mathematics is a universal part of human culture.
    [Show full text]
  • B.S. in Mathematics - Pure Math Emphasis, 2020-2021
    B.S. in Mathematics - Pure Math Emphasis, 2020-2021 Course Title Cr. Sched. Prerequisites Required Quantitative Lit. MATH 1210 - Calculus I 4 F/S/Su MATH 1050 & 1060 or ACT 26+ GE Course Other GE Courses are required to graduate with a Bachelor’s Degree from SUU.* MATH 1220 Calculus II 4 F/S/Su MATH 1210 MATH 2210 Calculus III 4 F/S/Su MATH 1220 MATH 2270 Linear Algebra 3 F/S/Su MATH 1220 MATH 2280 Differential Equations 3 S MATH 1220 & 2270** Math Core MATH 3120 Transition to Advanced Math 3 F/S MATH 1220 & MATH 2270 Courses MATH 3250 Complex Variables 3 S-Odd MATH 2210 MATH 3700 Probability and Statistics 4 F/S/Su MATH 1220 MATH 4220 Abstract Algebra I 3 F MATH 3120 MATH 4400 Advanced Calculus I 3 F MATH 2210 & 3120 Choose 1 MATH 4230 Abstract Algebra II 3 S-Even MATH 4220 Advanced Class MATH 4410 Advanced Calculus II 3 S-Odd MATH 4400 Choose 1 CS 1400 Fundamentals of Programming 3 F/S CSIS 1030 or MATH 1050 or Permission Program- ming Class CS 1410 Object Oriented Programming 3 F/S/Su CS 1400 MATH 3130 Modern Geometries 3 S MATH 3120 MATH 3160 Number Theory 3 F-Odd MATH 3120 MATH 3500 Actuarial Mathematics 3 S-Even MATH 1100 or MATH 1210 MATH 3600 Numerical Analysis 3 S-Even MATH 2250 or 2280 & comp. knowledge Math MATH 3770 Mathematical Modeling 3 S-Odd MATH 3700 Elective MATH 3800 Partial Differential Equations 3 F-Odd MATH 2210 and 2250 or 2280 Credits (15 total Instructor Permissission; may repeat up MATH 3990 Undergraduate Research 1-3 *** credits to 5 cr.
    [Show full text]
  • Axiomatic Foundations of Mathematics Ryan Melton Dr
    Axiomatic Foundations of Mathematics Ryan Melton Dr. Clint Richardson, Faculty Advisor Stephen F. Austin State University As Bertrand Russell once said, Gödel's Method Pure mathematics is the subject in which we Consider the expression First, Gödel assigned a unique natural number to do not know what we are talking about, or each of the logical symbols and numbers. 2 + 3 = 5 whether what we are saying is true. Russell’s statement begs from us one major This expression is mathematical; it belongs to the field For example: if the symbol '0' corresponds to we call arithmetic and is composed of basic arithmetic question: the natural number 1, '+' to 2, and '=' to 3, then symbols. '0 = 0' '0 + 0 = 0' What is Mathematics founded on? On the other hand, the sentence and '2 + 3 = 5' is an arithmetical formula. 1 3 1 1 2 1 3 1 so each expression corresponds to a sequence. Axioms and Axiom Systems is metamathematical; it is constructed outside of mathematics and labels the expression above as a Then, for this new sequence x1x2x3…xn of formula in arithmetic. An axiom is a belief taken without proof, and positive integers, we associate a Gödel number thus an axiom system is a set of beliefs as follows: x1 x2 x3 xn taken without proof. enc( x1x2x3...xn ) = 2 3 5 ... pn Since Principia Mathematica was such a bold where the encoding is the product of n factors, Consistent? Complete? leap in the right direction--although proving each of which is found by raising the j-th prime nothing about consistency--several attempts at to the xj power.
    [Show full text]
  • MATH S121 a Foundation in Pure Mathematics (Free Courseware) © the Open University of Hong Kong
    MATH S121 A Foundation In Pure Mathematics (Free Courseware) © The Open University of Hong Kong This work is licensed under a Creative Commons-ShareAlike 4.0 International License Contents Chapter 1 Counting and Basic Probability ..................................................................1 1.1 About this module..............................................................................................................1 1.2 Introduction ........................................................................................................................2 1.3 Counting .............................................................................................................................2 1.3.1 Number of outcomes of an event .........................................................................2 1.3.2 Addition Principle ....................................................................................................3 1.3.3 Multiplication Principle ...........................................................................................4 1.3.4 Permutations and combinations...........................................................................6 1.3.4.1 Permutation..................................................................................................7 1.3.4.2 Activity 1 .......................................................................................................8 1.3.4.2.1 Activity 1 feedback ............................................................................8 1.3.4.3 Combinations ...............................................................................................8
    [Show full text]
  • The Foundations of Mathematics, in Accordance with the General Method of Frege, Whitehead, and Bussell
    $88 F. P. KAMSEY [NOV. 12, THK FOUNDATIONS OF MATHEMATICS By F. P. KAMSEY. [Received 23 August, 1925.—Read 12 November, 1925.] Preface. THE object of this paper is to give a satisfactory account of the Foundations of Mathematics, in accordance with the general method of Frege, Whitehead, and Bussell. Following these authorities, I hold that mathematics is part of logic, and so belong to what may be called the logical school as opposed to the formalist and intuitionist schools. I have therefore taken Principia Mathematica as a basis for discussion and amendment, and believe myself to have discovered how, by using the work of Mr. Ludwig Wittgenstein, it can be rendered free from the serious objections which have caused its rejection by the majority of German authorities.who have deserted altogether its line of approach. Contents. I. Introduction. II. Principia Matliematica. III. Predicative Functions. IV. Functions in Extension. V. The Axioms. I. Introduction. In this chapter we shall be concerned with the general nature of pure mathematics*, and how it is distinguished from other sciences. • In future by "mathematics " will always be meant " pure mathematics." 1925.] THE FOUNDATIONS OF MATHEMATICS. 889 Here there are really two distinct categories of things of which an account must be given, the ideas or concepts of mathematics, and the propositions of mathematics. This distinction is neither artificial nor unnecessary, for the great majority of writers on the subject have con- centrated their attention on the explanation of one or other of these categories, and erroneously supposed that a satisfactory explanation of the other would immediately follow.
    [Show full text]
  • Randomness in Arithmetic and the Decline and Fall of Reductionism in Pure Mathematics
    RANDOMNESS IN ARITHMETIC AND THE DECLINE AND FALL OF REDUCTIONISM IN PURE MATHEMATICS IBM Research Report RC-18532 November 1992 arXiv:chao-dyn/9304002v1 7 Apr 1993 G. J. Chaitin Lecture given Thursday 22 October 1992 at a Mathematics – Computer Science Colloquium at the University of New Mexico. The lecture was videotaped; this is an edited transcript. 1. Hilbert on the axiomatic method Last month I was a speaker at a symposium on reductionism at Cam- bridge University where Turing did his work. I’d like to repeat the talk 1 2 I gave there and explain how my work continues and extends Turing’s. Two previous speakers had said bad things about David Hilbert. So I started by saying that in spite of what you might have heard in some of the previous lectures, Hilbert was not a twit! Hilbert’s idea is the culmination of two thousand years of math- ematical tradition going back to Euclid’s axiomatic treatment of ge- ometry, going back to Leibniz’s dream of a symbolic logic and Russell and Whitehead’s monumental Principia Mathematica. Hilbert’s dream was to once and for all clarify the methods of mathematical reasoning. Hilbert wanted to formulate a formal axiomatic system which would encompass all of mathematics. Formal Axiomatic System −→ −→ −→ Hilbert emphasized a number of key properties that such a formal axiomatic system should have. It’s like a computer programming lan- guage. It’s a precise statement about the methods of reasoning, the postulates and the methods of inference that we accept as mathemati- cians.
    [Show full text]
  • History of Mathematics in the Higher Education Curriculum
    History of Mathematics in the Higher Education Curriculum Mathematical Sciences HE Curriculum Innovation Project Innovation Curriculum HE Sciences Mathematical Edited by Mark McCartney History of Mathematics in the Higher Education Curriculum Edited by Mark McCartney A report by the working group on History of Mathematics in the Higher Education Curriculum, May 2012. Supported by the Maths, Stats and OR Network, as part of the Mathematical Sciences Strand of the National HE STEM Programme, and the British Society for the History of Mathematics (BSHM). Working group members: Noel-Ann Bradshaw (University of Greenwich; BSHM Treasurer); Snezana Lawrence (Bath Spa University; BSHM Education Officer); Mark McCartney (University of Ulster; BSHM Publicity Officer); Tony Mann (University of Greenwich; BSHM Immediate Past President); Robin Wilson (Pembroke College, Oxford; BSHM President). History of Mathematics in the Higher Education Curriculum Contents Contents Introduction 5 Teaching the history of mathematics at the University of St Andrews 9 History in the undergraduate mathematics curriculum – a case study from Greenwich 13 Teaching History of Mathematics at King’s College London 15 History for learning Analysis 19 History of Mathematics in a College of Education Context 23 Teaching the history of mathematics at the Open University 27 Suggested Resources 31 History of Mathematics in the Higher Education Curriculum Introduction Introduction Mathematics is usually, and of course correctly, presented ‘ready-made’ to students, with techniques and applications presented systematically and in logical order. However, like any other academic subject, mathematics has a history which is rich in astonishing breakthroughs, false starts, misattributions, confusions and dead-ends. This history gives a narrative and human context which adds colour and context to the discipline.
    [Show full text]
  • Short Communication on Euclidean Geometry
    Mathematica Eterna Short Communication 2021 Short Communication on Euclidean Geometry Joseph* Department of Mathematics, University of Patras, Greece The word “geometry” comes from the Greek words “geo”, elementary geometry. it had been through his works, we've got a which implies the “earth”, and “matron”, which implies “to collective supply for learning pure mathematics; it lays the measure”. Euclidean geometry could be a mathematical system inspiration for geometry as we all know currently. attributed to geometer an instructor of arithmetic in Alexandria Euclidean Axioms in Egypt. geometer gave North American nation associate exceptional plan concerning the fundamental ideas of pure Here square measure the seven axioms given by geometer for pure mathematics, in his book referred to as “Elements”. mathematics. 1. Things that square measure up to identical issue square Euclid listed twenty three definitions in his book “Elements”. measure up to each other. Some small print square measure mentioned below: 2. If equals square measure additional to equals, the wholes • A line is associate endless length. square measure equal. • A purpose has no dimension (length, breadth and width). 3. If equals square measure subtracted from equals, the • A line that lies equally with the points on itself could be a remainders square measure equal. line. 4. Things that coincide with each other square measure up to • Points square measure the ends of a line. each other. • A surface is that that has breadth and length solely. 5. The total is larger than the half. • A plane surface could be a surface that lies equally with the 6. Things that square measure double of identical things square straight lines on itself.
    [Show full text]
  • On the Tension Between Physics and Mathematics∗
    On the tension between physics and mathematics∗ Mikl´osR´edeiy Department of Philosophy, Logic and Scientific Method London School of Economics and Political Science Houghton Street London WC2A 2AE e-mail: [email protected] May 28, 2019 Abstract Because of the complex interdependence of physics and mathematics their relation is not free of tensions. The paper looks at how the tension has been perceived and articulated by some physicists, mathematicians and mathematical physicists. Some sources of the tension are identified and it is claimed that the tension is both natural and fruitful for both physics and mathematics. An attempt is made to explain why mathematical precision is typically not welcome in physics. 1 The "supermarket picture" of the relation of physics and mathematics, and Tension of type I According to what can be called the standard picture of the relation of physics and mathematics, physics is a science in the modern sense because it is systematically mathematical, which means two things: (a) Physics carries out precision measurements aiming at determining values of operationally defined physical quantities. This is what quantitative experimental physics does, and this ensures descriptive accuracy of physics. (b) Physics sets up mathematical models of physical phenomena that make explicit the func- tional relationships among the measured quantities; i.e. physics formulates general quan- titative physical laws. This is the main activity in theoretical physics and this enables physics to be predictively successful. Both descriptive accuracy and predictive success should be understood here with a number of qualifications: the descriptive accuracy is never perfect (experimental errors); the operationally defined quantities are not purely empirical (theory-ladenness of observations), natural laws may also refer to entities that are not observable strictly speaking, etc.
    [Show full text]
  • Bertrand Russell – Principles of Mathematics
    Principles of Mathematics “Unless we are very much mistaken, its lucid application and develop- ment of the great discoveries of Peano and Cantor mark the opening of a new epoch in both philosophical and mathematical thought” – The Spectator Bertrand Russell Principles of Mathematics London and New York First published in 1903 First published in the Routledge Classics in 2010 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN Routledge is an imprint of the Taylor & Francis Group, an informa business This edition published in the Taylor & Francis e-Library, 2009. To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk. © 2010 The Bertrand Russell Peace Foundation Ltd Introduction © 1992 John G. Slater All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalog record for this book has been requested ISBN 0-203-86476-X Master e-book ISBN ISBN 10: 0-415-48741-2 ISBN 10: 0-203-86476-X (ebk) ISBN 13: 978-0-415-48741-2 ISBN 13: 978-0-203-86476-0 (ebk) CONTENTS introduction to the 1992 edition xxv introduction to the second edition xxxi preface xliii PART I THE INDEFINABLES OF MATHEMATICS 1 1 Definition of Pure Mathematics 3 1.
    [Show full text]
  • Fig. III.2A. Gauss - Weber Collage According to an Idea of Friedrich Zöllner
    Fig. III.2A. Gauss - Weber collage according to an idea of Friedrich Zöllner. Reproduced from [Zöllner 1878], page v, by courtesy of NSUB Göttingen. III.2 ‘O θo`ςαριθμητιζ´ ι — The Rise of Pure Mathematics as Arithmetic with Gauss JOSE´ FERREIROS1 The beautiful picture facing this page, which displays Carl Gauss and his colleague physicist Wilhelm Weber, is noteworthy not just for the quality and accuracy of the portraits, but also because of the mottos it includes. It was composed upon the inspiration of Friedrich Zöllner (1834–1882), an astrophysicist, professor at Berlin, and close follower of Weber.2 Among the mottos, one originates with Gauss himself: o θo`ςαριθμητιζ´ ι, God does arithmetic, or more literally “God arithmetizes” – presumably meaning that in his thoughts God is always dealing with numbers and number-relations. This motto is an adaptation of a sentence attributed to Plato: o θoςαιγωμτρι´ , “God geometrizes eternally.”3 Although this sentence is not found in Plato’s dialogues, nevertheless they offer declarations in the same spirit (see for instance the dialogue The Republic). Interestingly, the very same sentence, in Greek, is quoted by Kepler in his first work, Mysterium cosmographicum (1596), a book that Gauss must have been familiar with. Plato’s words can be found in the crucial chapter where Kepler describes the main guidelines of his peculiarly platonic 1. Universidad de Sevilla. I am grateful to participants in the Gauss Tagung at Oberwolfach for their reactions, and more particularly to Catherine Goldstein, Norbert Schappacher and Jeremy Gray for their criticism and suggestions based on a previous version of this paper.
    [Show full text]