Fig. III.2A. Gauss - Weber Collage According to an Idea of Friedrich Zöllner

Total Page:16

File Type:pdf, Size:1020Kb

Fig. III.2A. Gauss - Weber Collage According to an Idea of Friedrich Zöllner Fig. III.2A. Gauss - Weber collage according to an idea of Friedrich Zöllner. Reproduced from [Zöllner 1878], page v, by courtesy of NSUB Göttingen. III.2 ‘O θo`ςαριθμητιζ´ ι — The Rise of Pure Mathematics as Arithmetic with Gauss JOSE´ FERREIROS1 The beautiful picture facing this page, which displays Carl Gauss and his colleague physicist Wilhelm Weber, is noteworthy not just for the quality and accuracy of the portraits, but also because of the mottos it includes. It was composed upon the inspiration of Friedrich Zöllner (1834–1882), an astrophysicist, professor at Berlin, and close follower of Weber.2 Among the mottos, one originates with Gauss himself: o θo`ςαριθμητιζ´ ι, God does arithmetic, or more literally “God arithmetizes” – presumably meaning that in his thoughts God is always dealing with numbers and number-relations. This motto is an adaptation of a sentence attributed to Plato: o θoςαιγωμτρι´ , “God geometrizes eternally.”3 Although this sentence is not found in Plato’s dialogues, nevertheless they offer declarations in the same spirit (see for instance the dialogue The Republic). Interestingly, the very same sentence, in Greek, is quoted by Kepler in his first work, Mysterium cosmographicum (1596), a book that Gauss must have been familiar with. Plato’s words can be found in the crucial chapter where Kepler describes the main guidelines of his peculiarly platonic 1. Universidad de Sevilla. I am grateful to participants in the Gauss Tagung at Oberwolfach for their reactions, and more particularly to Catherine Goldstein, Norbert Schappacher and Jeremy Gray for their criticism and suggestions based on a previous version of this paper. My work was partially supported by the Ministerio de Ciencia y Tecnología, Spain, grant BFF2000–0097–C02–02. 2. See [Zöllner 1878]. The portrait of Gauss was based on the well-known oil painting by Jensen and on the medal prepared for the 1877 centenary by the Göttingen Academie der Wissenschaften. Weber was portrayed on the basis of a photograph taken in 1877. The drawing is by A. Weger. See op. cit., v. 3. See [Plutarch], book VIII, quest. 2, where Plutarch indicates that the phrase cannot be found in extant writings of Plato. 207 208 III. The German reception of the D.A. reconstruction of the architecture of the universe, based on a clever combination of the regular solids.4 Several witnesses attest to the fact that the motto stems directly from Gauss, among them his friend the Göttingen professor Sartorius von Waltershausen, and the physician who treated him, Dr. Wilhelm Baum. Thus, Dr. Baum wrote to Alexander von Humboldt immediately after Gauss’s death: The last days of his life were often very painful owing to the aggravated complaint of dropsy, which the hypertrophy of his heart produced — but still he always main- tained his freedom and greatness of spirit, the strongest conviction of his personal permanence, the firmest hope in the still deeper intelligent insight into the number- relationships, which God places in matter and which he would perhaps be able to recognize in the intensive magnitudes, for he used to say ‘o θo`ςαριθμητ´ιζ ι.’5 In fact, Gauss employed those words when talking about questions that lay beyond the reach of human knowledge, at least in its present stage. Waltershausen explains it as follows: By science he understood only that rigorous logical edifice, closed in itself, whose foundations rest on some truths generally acknowledged by the human mind, truths which, once admitted, open for us an immense field of most intricate researches, linked to one another by an iron chain of thoughts. Therefore, as we have already mentioned, he placed arithmetic at the top, and, in connection with questions that we cannot ascertain scientifically, he loved to employ the words: ‘O θo`ςαριθμητ´ιζ ι, with which he acknowledged the logic that goes through the whole cosmos, also for those domains in which our mind is not allowed to penetrate.6 The Gaussian motto implies that there is a theological explanation for the im- pressive applicability and effectiveness of mathematics: God’s creation bears the mark of His thought, which we are able to grasp because we are of His lineage. But this point is perhaps less interesting than the way in which his adaptation of Plato’s words reflects changing perceptions of mathematical knowledge. The above motto and related statements document the end of the thousand year long domination of geometry in Western images of mathematics, and the corresponding rise of arith- metic as the paradigmatic mathematical discipline. As Hilbert wrote at the close 4. See [Kepler 1858], p. 124. 5. Quote from [Dunnington 1927], p. ***. I should mention that M. Kline has wrongly attributed the motto “God ever arithmetizes” to Jacobi; see [Kline 1972], vol. 3, 1026. While the attribution is wrong factually, it seems however quite right in spirit (see below). 6. See [Waltershausen 1856], p. 97: Unter Wissenschaft verstand er allein jenes streng in sich abgeschlossene logische Gebäude, dessen Fundamente auf gewissen vom menschlichen Geist allgemein anerkannten Wahrheiten beruhe, die ein Mal zugegeben ein unabse- hbares Feld der verwickeltsten durch eine eiserne Gedankenkette mit einander zusam- menhängenden Forschungen gestatte. Er stellte daher wie schon bemerkt die Arithmetik an die Spitze und pflegte in Bezug auf Fragen die für uns wissenschaftlich nicht zu ergründen sind die Worte zu gebrauchen: ‘O θo`ςαριθμητ´ιζ ι, womit er die durchs ganze Weltall gehende Logik auch für solche Gebiete anerkannte, in welche einzudringen unserm Geiste nicht verstattet ist. 2. FERREIROS´ : Pure mathematics as arithmetic 209 of the century,7 mathematics in the XIXth century had developed “under the sign of number,” a topic that was discussed by Klein, Poincaré and others under the name of “arithmetization”.8 The purpose of this chapter is to discuss the complex of ideas and viewpoints related to the Gaussian conception of arithmetic and its role in mathematics: the new demarcation between pure and applied mathematics; aspects of the modern transformation of mathematics such as arithmetization and the conceptual approach; the role of conceptual developments, new cultural values, and epistemological views in the process. It will be argued that already in the case of Gauss, philosophical motives played a role in the rise of arithmetic as a paradigm, and that the intellectual atmosphere of Neohumanism promoted such approaches. It is obvious from this short summary that the picture I am about to draw is a complex, multifaceted one. While that may seem confusing to some readers, in my opinion it is essential to provide such a multifaceted analysis in order to account for the emergence of modern mathematics. 1. Pure mathematics: Arithmetic vs. geometry In order to understand what is behind Gauss’s motto, it is worthwhile to pause over the following sentences that the great mathematician wrote to Olbers in April 1817: I come more and more to the conviction, that the necessity of our [Euclidean] ge- ometry cannot be proven, at least not by human understanding nor for human un- derstanding. Perhaps in another life we come to different insights into the essence of space, that are now impossible for us to reach. Until then, we should not put geometry on the same rank with arithmetic, which stands purely a priori, but say with mechanics.9 Three aspects of this quote deserve to be emphasized. First, and as will become clearer soon, Gauss uses a rather philosophical language to express his views. Sec- ond, although the passage is usually quoted in connection with the foundations of geometry, it also presents us with a very characteristic view on the foundations of arithmetic. This branch of pure mathematics “stands purely a priori,” it consists of a priori knowledge. The language is Kantian, although the viewpoint might also be understood in the sense of Leibniz (see §5). A letter to Friedrich Wilhelm Bessel written in April 1830 is even more striking: According to my most intimate conviction, the theory of space has a completely different position with regards to our knowledge a priori, than the pure theory of 7. See [Hilbert 1897], p. 66. 8. See also chapter V.2 below. 9. See [Gauss 1900], p. 177: Ich komme immer mehr zu der Überzeugung, dass die Noth- wendigkeit unserer Geometrie nicht bewiesen werden kann, wenigstens nicht vom men- schlichen Verstande noch für den menschlichen Verstand. Vielleicht kommen wir in einem andern Leben zu andern Einsichten in das Wesen des Raumes, die uns jetzt unerreichbar sind. Bis dahin müsste man die Geometrie nicht mit der Arithmetik, die rein a priori steht, sondern etwa mit der Mechanik in gleichen Rang setzen. 210 III. The German reception of the D.A. magnitudes. Our knowledge of the former lacks completely that absolute conviction of its necessity (and therefore of its absolute truth) which is characteristic of the latter. We must humbly acknowledge that, whereas number is just a product of our minds, space also has a reality outside our minds, whose laws we cannot prescribe a priori.10 Here again, a clear distinction between geometric and arithmetic knowledge is drawn by characterizing the latter as “knowledge a priori,” consisting of necessary, certain, absolute truths. Concepts and terminology seem to be taken from Kant, who em- phasized that true science consists of necessary, certain, absolute truths, not just of empirical knowledge (see §5). The third aspect is that Gauss draws a neat distinction between what might be called, using 18th century language, pure and mixed mathematics. Mixed mathe- matics is that part of the discipline which deals with knowledge having (at least partly) empirical origins; specifically Gauss indicates that geometry and mechanics belong here. Pure mathematics is that part of mathematical knowledge which stands completely a priori.
Recommended publications
  • The Julius Caesar Objection
    The Julius Caesar Objection Richard G. Heck, Jnr. Department of Philosophy Harvard University Published in R. Heck, ed. Language, Thought, and Logic: Essays in Honour of Michael Dummett New York and Oxford: Oxford University Press, 1997, pp. 273-308 1. Opening Recent research has revealed three important points about Frege’s philosophy of arithmetic. First, his attempt to derive axioms for arithmetic from principles of logic does not require Frege to appeal to his Axiom V, the axiom which gives rise to Russell’s Paradox. The proofs sketched in Die Grundlagen der Arithmetik depend only upon what (alluding to Frege’s method of introducing it) may be called Hume’s Principle: The number of Fs is the same as the number of Gs just in case there is a one- one correspondence between the Fs and the Gs.1 Formally, the relevant result is that, if a formalization of this Principle is added as an axiom to standard, axiomatic second-order logic, second-order arithmetic can be interpreted in the resulting theory.2 Secondly, this theory—which may be called Fregean Arithmetic—is itself interpretable in second-order arithmetic and so, presumably, is consistent.3 And thirdly, Frege’s own formal proofs of axioms for arithmetic, given in his Grundgesetze der Arithmetik, do not depend essentially upon Axiom V.4 Indeed, Frege himself knew that he did not require any more than Hume’s Principle, this being essential if he is to draw certain of the philosophical conclusions he wishes to base upon his formal results.5 All of this having been said, the question arises why, upon receiving Russell’s famous letter, Frege did not simply drop Axiom V, install Hume’s Principle as an axiom, and claim himself to have established logicism anyway.
    [Show full text]
  • Pure Mathematics Professors Teaching and Leading Research CO-OP OR REGULAR 28
    PURE MATHEMATICS Pure Mathematics professors teaching and leading research CO-OP OR REGULAR 28 Mathematician ranked among top 10 TOP 10 jobs from 2011-2017 – Comcast.com of grads are employed Search for a deeper 96.6% within 2 years understanding of mathematics Pure mathematics is at the foundation of all mathematical reasoning. If first-year calculus ALEX teaches you how to drive the car, Pure Mathematics teaches you how to build one. 3B, PURE MATHEMATICS AND Mathematicians know that there could be no general relativity without differential COMBINATORICS AND geometry, and no computer security without advanced number theory. OPTIMIZATION Pure Mathematics at Waterloo is a small, cohesive, and challenging program that will open countless doors for you. Our graduates have used the program as a springboard into careers WHAT DO YOU LOVE ABOUT in information technology, finance, business, science, education, and insurance, often by way PURE MATHEMATICS? The satisfaction from understanding of some of the most prestigious graduate programs in the world. an idea at a deeper level and tying together unrelated branches of ALEX’S FAVOURITE COURSES mathematics or physics for the › PMATH 320 Euclidean Geometry: This course is everything you love about Geometry: first time is the most rewarding Euclid’s axioms, isometries of the Euclidean plane and of Euclidean space, polygons, part of learning and understanding polyhedral, polytopes, and the kissing problem. mathematics. What I really enjoy is › PMATH 351 Real Analysis: It’s a very intuitive and natural approach to real analysis, and the developing a deep understanding of complexity of the course builds very naturally to the end of the semester.
    [Show full text]
  • The Fact of Modern Mathematics: Geometry, Logic, and Concept Formation in Kant and Cassirer
    THE FACT OF MODERN MATHEMATICS: GEOMETRY, LOGIC, AND CONCEPT FORMATION IN KANT AND CASSIRER by Jeremy Heis B.A., Michigan State University, 1999 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2007 UNIVERSITY OF PITTSBURGH COLLEGE OF ARTS AND SCIENCES This dissertation was presented by Jeremy Heis It was defended on September 5, 2007 and approved by Jeremy Avigad, Associate Professor, Philosophy, Carnegie Mellon University Stephen Engstrom, Associate Professor, Philosophy, University of Pittsburgh Anil Gupta, Distinguished Professor, Philosophy, University of Pittsburgh Kenneth Manders, Associate Professor, Philosophy, University of Pittsburgh Thomas Ricketts, Professor, Philosophy, University of Pittsburgh Dissertation Advisor: Mark Wilson, Professor, Philosophy, University of Pittsburgh ii Copyright © by Jeremy Heis 2007 iii THE FACT OF MODERN MATHEMATICS: GEOMETRY, LOGIC, AND CONCEPT FORMATION IN KANT AND CASSIRER Jeremy Heis, PhD University of Pittsburgh, 2007 It is now commonly accepted that any adequate history of late nineteenth and early twentieth century philosophy—and thus of the origins of analytic philosophy—must take seriously the role of Neo-Kantianism and Kant interpretation in the period. This dissertation is a contribution to our understanding of this interesting but poorly understood stage in the history of philosophy. Kant’s theory of the concepts, postulates, and proofs of geometry was informed by philosophical reflection on diagram-based geometry in the Greek synthetic tradition. However, even before the widespread acceptance of non-Euclidean geometry, the projective revolution in nineteenth century geometry eliminated diagrams from proofs and introduced “ideal” elements that could not be given a straightforward interpretation in empirical space.
    [Show full text]
  • Pure Mathematics
    Why Study Mathematics? Mathematics reveals hidden patterns that help us understand the world around us. Now much more than arithmetic and geometry, mathematics today is a diverse discipline that deals with data, measurements, and observations from science; with inference, deduction, and proof; and with mathematical models of natural phenomena, of human behavior, and social systems. The process of "doing" mathematics is far more than just calculation or deduction; it involves observation of patterns, testing of conjectures, and estimation of results. As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than on observation as its standard of truth, yet employs observation, simulation, and even experimentation as means of discovering truth. The special role of mathematics in education is a consequence of its universal applicability. The results of mathematics--theorems and theories--are both significant and useful; the best results are also elegant and deep. Through its theorems, mathematics offers science both a foundation of truth and a standard of certainty. In addition to theorems and theories, mathematics offers distinctive modes of thought which are both versatile and powerful, including modeling, abstraction, optimization, logical analysis, inference from data, and use of symbols. Mathematics, as a major intellectual tradition, is a subject appreciated as much for its beauty as for its power. The enduring qualities of such abstract concepts as symmetry, proof, and change have been developed through 3,000 years of intellectual effort. Like language, religion, and music, mathematics is a universal part of human culture.
    [Show full text]
  • The Catholic University of America
    THE CATHOLIC UNIVERSITY OF AMERICA Empty and Filled Intentions in Husserl‘s Early Work A DISSERTATION Submitted to the Faculty of the School of Philosophy Of The Catholic University of America In Partial Fulfillment of the Requirements For the Degree Doctor of Philosophy © Copyright All Rights Reserved By Micah D. Tillman Washington, D.C. 2011 Empty and Filled Intentions in Husserl‘s Early Work Micah D. Tillman, Ph.D. Director: Robert Sokolowski, Ph.D. Our theme in this dissertation is the theory of empty and filled intentions (leere und erfüllte Intentionen), as that theory is introduced, developed, and employed in the opening years of Husserl‘s career. The first major exposition and employment of the theory is provided by Husserl‘s Logical Investigations (Logische Untersuchungen, 1900/1). In chapter 1, we show how the introduction of empty and filled intentions in Investigation I arises from Husserl‘s attempt to understand the nature and function of signs. In chapter 2, we turn to Husserl‘s further exploration and use of the theory of empty and filled intentions in Investigations V and VI. To elucidate the background and development of the theory of empty and filled intentions, we turn to Philosophy of Arithmetic (Philosophie der Arithmetik, 1891). In chapters 3 and 4, we uncover a series of parallels between the theory of empty and filled intentions in Logical Investigations and the theory of ―symbolic and authentic presentations‖ (symbolische und eigentliche Vorstellungen) in Philosophy of Arithmetic. This leads us to argue that the theory of empty and filled intentions is actually a more mature version of the theory of symbolic and authentic presentations.
    [Show full text]
  • Stumpf and Husserl on Phenomenology and Descriptive Psychology
    Denis Fisette Stumpf and Husserl on Phenomenology and Descriptive Psychology One of the most stringent criticisms aimed at Husserl’s version of phenomenology comes from Stumpf himself in his posthumous book Erkenntnislehre (1939 Section 13), in which he tackles the transcendental phenomenology developed by Husserl in the first volume of Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy (Ideas I). This criticism is all the more credible when one considers that the two philosophers maintained a close relationship for over fifty years and that Stumpf followed with interest the evolution of the thought of a friend who was once his student in Halle. This criticism addresses, in fact, the very principles of Husserl’s “pure” phenomenology, and we will see that it is motivated largely by the principles of what he also called phenomenology understood in its narrower sense as the field of sensory phenomena. It is clear from his discussion of Ideas I that his own motives in this criticism are as philosophical as those that led Husserl to a form of transcendental philosophy. However, since the latter broke with the philosophical program that Husserl still defended in his Logical Investigations and to which Stumpf always remained faithful (see Fisette 2009), the question raised in Erkenntnislehre concerns precisely the reasons for his emancipation from the initial program and to what extent it innovates compared to the phenomenology of the Logical Investigations understood as descriptive psychology. Stumpf basically wanted to show that this new version of phenomenology not only presupposes the essential elements of the original program (including intentionality), but where it claims to innovate in relating itself to the Kantian tradition, it espouses a philosophical cause which is one of the main targets of Brentano’s criticism.
    [Show full text]
  • B.S. in Mathematics - Pure Math Emphasis, 2020-2021
    B.S. in Mathematics - Pure Math Emphasis, 2020-2021 Course Title Cr. Sched. Prerequisites Required Quantitative Lit. MATH 1210 - Calculus I 4 F/S/Su MATH 1050 & 1060 or ACT 26+ GE Course Other GE Courses are required to graduate with a Bachelor’s Degree from SUU.* MATH 1220 Calculus II 4 F/S/Su MATH 1210 MATH 2210 Calculus III 4 F/S/Su MATH 1220 MATH 2270 Linear Algebra 3 F/S/Su MATH 1220 MATH 2280 Differential Equations 3 S MATH 1220 & 2270** Math Core MATH 3120 Transition to Advanced Math 3 F/S MATH 1220 & MATH 2270 Courses MATH 3250 Complex Variables 3 S-Odd MATH 2210 MATH 3700 Probability and Statistics 4 F/S/Su MATH 1220 MATH 4220 Abstract Algebra I 3 F MATH 3120 MATH 4400 Advanced Calculus I 3 F MATH 2210 & 3120 Choose 1 MATH 4230 Abstract Algebra II 3 S-Even MATH 4220 Advanced Class MATH 4410 Advanced Calculus II 3 S-Odd MATH 4400 Choose 1 CS 1400 Fundamentals of Programming 3 F/S CSIS 1030 or MATH 1050 or Permission Program- ming Class CS 1410 Object Oriented Programming 3 F/S/Su CS 1400 MATH 3130 Modern Geometries 3 S MATH 3120 MATH 3160 Number Theory 3 F-Odd MATH 3120 MATH 3500 Actuarial Mathematics 3 S-Even MATH 1100 or MATH 1210 MATH 3600 Numerical Analysis 3 S-Even MATH 2250 or 2280 & comp. knowledge Math MATH 3770 Mathematical Modeling 3 S-Odd MATH 3700 Elective MATH 3800 Partial Differential Equations 3 F-Odd MATH 2210 and 2250 or 2280 Credits (15 total Instructor Permissission; may repeat up MATH 3990 Undergraduate Research 1-3 *** credits to 5 cr.
    [Show full text]
  • Frege and the Logic of Sense and Reference
    FREGE AND THE LOGIC OF SENSE AND REFERENCE Kevin C. Klement Routledge New York & London Published in 2002 by Routledge 29 West 35th Street New York, NY 10001 Published in Great Britain by Routledge 11 New Fetter Lane London EC4P 4EE Routledge is an imprint of the Taylor & Francis Group Printed in the United States of America on acid-free paper. Copyright © 2002 by Kevin C. Klement All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any infomration storage or retrieval system, without permission in writing from the publisher. 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Klement, Kevin C., 1974– Frege and the logic of sense and reference / by Kevin Klement. p. cm — (Studies in philosophy) Includes bibliographical references and index ISBN 0-415-93790-6 1. Frege, Gottlob, 1848–1925. 2. Sense (Philosophy) 3. Reference (Philosophy) I. Title II. Studies in philosophy (New York, N. Y.) B3245.F24 K54 2001 12'.68'092—dc21 2001048169 Contents Page Preface ix Abbreviations xiii 1. The Need for a Logical Calculus for the Theory of Sinn and Bedeutung 3 Introduction 3 Frege’s Project: Logicism and the Notion of Begriffsschrift 4 The Theory of Sinn and Bedeutung 8 The Limitations of the Begriffsschrift 14 Filling the Gap 21 2. The Logic of the Grundgesetze 25 Logical Language and the Content of Logic 25 Functionality and Predication 28 Quantifiers and Gothic Letters 32 Roman Letters: An Alternative Notation for Generality 38 Value-Ranges and Extensions of Concepts 42 The Syntactic Rules of the Begriffsschrift 44 The Axiomatization of Frege’s System 49 Responses to the Paradox 56 v vi Contents 3.
    [Show full text]
  • Axiomatic Foundations of Mathematics Ryan Melton Dr
    Axiomatic Foundations of Mathematics Ryan Melton Dr. Clint Richardson, Faculty Advisor Stephen F. Austin State University As Bertrand Russell once said, Gödel's Method Pure mathematics is the subject in which we Consider the expression First, Gödel assigned a unique natural number to do not know what we are talking about, or each of the logical symbols and numbers. 2 + 3 = 5 whether what we are saying is true. Russell’s statement begs from us one major This expression is mathematical; it belongs to the field For example: if the symbol '0' corresponds to we call arithmetic and is composed of basic arithmetic question: the natural number 1, '+' to 2, and '=' to 3, then symbols. '0 = 0' '0 + 0 = 0' What is Mathematics founded on? On the other hand, the sentence and '2 + 3 = 5' is an arithmetical formula. 1 3 1 1 2 1 3 1 so each expression corresponds to a sequence. Axioms and Axiom Systems is metamathematical; it is constructed outside of mathematics and labels the expression above as a Then, for this new sequence x1x2x3…xn of formula in arithmetic. An axiom is a belief taken without proof, and positive integers, we associate a Gödel number thus an axiom system is a set of beliefs as follows: x1 x2 x3 xn taken without proof. enc( x1x2x3...xn ) = 2 3 5 ... pn Since Principia Mathematica was such a bold where the encoding is the product of n factors, Consistent? Complete? leap in the right direction--although proving each of which is found by raising the j-th prime nothing about consistency--several attempts at to the xj power.
    [Show full text]
  • MATH S121 a Foundation in Pure Mathematics (Free Courseware) © the Open University of Hong Kong
    MATH S121 A Foundation In Pure Mathematics (Free Courseware) © The Open University of Hong Kong This work is licensed under a Creative Commons-ShareAlike 4.0 International License Contents Chapter 1 Counting and Basic Probability ..................................................................1 1.1 About this module..............................................................................................................1 1.2 Introduction ........................................................................................................................2 1.3 Counting .............................................................................................................................2 1.3.1 Number of outcomes of an event .........................................................................2 1.3.2 Addition Principle ....................................................................................................3 1.3.3 Multiplication Principle ...........................................................................................4 1.3.4 Permutations and combinations...........................................................................6 1.3.4.1 Permutation..................................................................................................7 1.3.4.2 Activity 1 .......................................................................................................8 1.3.4.2.1 Activity 1 feedback ............................................................................8 1.3.4.3 Combinations ...............................................................................................8
    [Show full text]
  • The Foundations of Mathematics, in Accordance with the General Method of Frege, Whitehead, and Bussell
    $88 F. P. KAMSEY [NOV. 12, THK FOUNDATIONS OF MATHEMATICS By F. P. KAMSEY. [Received 23 August, 1925.—Read 12 November, 1925.] Preface. THE object of this paper is to give a satisfactory account of the Foundations of Mathematics, in accordance with the general method of Frege, Whitehead, and Bussell. Following these authorities, I hold that mathematics is part of logic, and so belong to what may be called the logical school as opposed to the formalist and intuitionist schools. I have therefore taken Principia Mathematica as a basis for discussion and amendment, and believe myself to have discovered how, by using the work of Mr. Ludwig Wittgenstein, it can be rendered free from the serious objections which have caused its rejection by the majority of German authorities.who have deserted altogether its line of approach. Contents. I. Introduction. II. Principia Matliematica. III. Predicative Functions. IV. Functions in Extension. V. The Axioms. I. Introduction. In this chapter we shall be concerned with the general nature of pure mathematics*, and how it is distinguished from other sciences. • In future by "mathematics " will always be meant " pure mathematics." 1925.] THE FOUNDATIONS OF MATHEMATICS. 889 Here there are really two distinct categories of things of which an account must be given, the ideas or concepts of mathematics, and the propositions of mathematics. This distinction is neither artificial nor unnecessary, for the great majority of writers on the subject have con- centrated their attention on the explanation of one or other of these categories, and erroneously supposed that a satisfactory explanation of the other would immediately follow.
    [Show full text]
  • Randomness in Arithmetic and the Decline and Fall of Reductionism in Pure Mathematics
    RANDOMNESS IN ARITHMETIC AND THE DECLINE AND FALL OF REDUCTIONISM IN PURE MATHEMATICS IBM Research Report RC-18532 November 1992 arXiv:chao-dyn/9304002v1 7 Apr 1993 G. J. Chaitin Lecture given Thursday 22 October 1992 at a Mathematics – Computer Science Colloquium at the University of New Mexico. The lecture was videotaped; this is an edited transcript. 1. Hilbert on the axiomatic method Last month I was a speaker at a symposium on reductionism at Cam- bridge University where Turing did his work. I’d like to repeat the talk 1 2 I gave there and explain how my work continues and extends Turing’s. Two previous speakers had said bad things about David Hilbert. So I started by saying that in spite of what you might have heard in some of the previous lectures, Hilbert was not a twit! Hilbert’s idea is the culmination of two thousand years of math- ematical tradition going back to Euclid’s axiomatic treatment of ge- ometry, going back to Leibniz’s dream of a symbolic logic and Russell and Whitehead’s monumental Principia Mathematica. Hilbert’s dream was to once and for all clarify the methods of mathematical reasoning. Hilbert wanted to formulate a formal axiomatic system which would encompass all of mathematics. Formal Axiomatic System −→ −→ −→ Hilbert emphasized a number of key properties that such a formal axiomatic system should have. It’s like a computer programming lan- guage. It’s a precise statement about the methods of reasoning, the postulates and the methods of inference that we accept as mathemati- cians.
    [Show full text]