Towards Oxide Electronics: a Roadmap M
Total Page:16
File Type:pdf, Size:1020Kb
Towards Oxide Electronics: a Roadmap M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, A. Calleja, G. Cheng, M. Cuoco, R. Dittmann, B. Dkhil, et al. To cite this version: M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, et al.. Towards Oxide Electronics: a Roadmap. Applied Surface Science, Elsevier, 2019, 482, pp.1-93. 10.1016/j.apsusc.2019.03.312. hal-02122830 HAL Id: hal-02122830 https://hal-centralesupelec.archives-ouvertes.fr/hal-02122830 Submitted on 24 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Applied Surface Science 482 (2019) 1–93 Contents lists available at ScienceDirect Applied Surface Science journal homepage: www.elsevier.com/locate/apsusc Towards Oxide Electronics: a Roadmap T M. Colla, J. Fontcubertaa, M. Althammerb,c, M. Bibesd, H. Boschkere, A. Callejaf, G. Chengg,h,i, M. Cuocoj, R. Dittmannk, B. Dkhill, I. El Baggarim, M. Fanciullin, I. Finaa, E. Fortunatop,q, C. Fronteraa, S. Fujitar, V. Garciad, S.T.B. Goennenweins,t, C.-G. Granqvistu, J. Grollierd, R. Grossb,c,v, A. Hagfeldtw, G. Herranza, K. Honox, E. Houwmany, M. Huijbeny, A. Kalaboukhovz, D.J. Keebleaa, G. Kostery, L.F. Kourkoutisab,ac, J. Levyh,i, M. Lira-Cantuad, J.L. MacManus-Driscollae, Jochen Mannharte, R. Martinsn,o, S. Menzeli, T. Mikolajickaf,ag, M. Napariae, M.D. Nguyeny, G. Niklassonu, C. Paillardah, S. Panigrahip,q, G. Rijndersy, F. Sáncheza, P. Sanchisai, S. Sannaaj, D.G. Schlomak,al, U. Schroederaf, K.M. Shenab,ak, A. Siemonam, ⁎ M. Spreitzeran, H. Sukegawax, R. Tamayof, J. van den Brinkao, N. Prydsaj, F. Miletto Granozioap, a Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus of UAB, 08193 Cerdanyola del Vallès, Catalonia, Spain b Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany c Physik-Department, Technische Universität München, 85748 Garching, Germany d Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France e Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany f OXOLUTIA S.L, Avda. Castell de Barberà, 26, Tallers 13, Nau 1, 08210 Barberà del Vallès, Barcelona, Spain g CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China h Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA i Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA j CNR-SPIN and Dipartimento di Fisica ''E. R. Caianiello", Università di Salerno, IT-84084 Fisciano (SA), Italy k Peter Grünberg Institut (PGI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany l Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec,CNRS-UMR 8580, Université Paris-Saclay, 91190 Gif-sur-Yvette, France m Department of Physics, Cornell University, Ithaca, NY 14853, USA n Department of Materials Science, University of Milano Bicocca, Milano, Italy o MDM Laboratory, IMM-CNR, Agrate Brianza, Italy p CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Portugal q CEMOP/UNINOVA, 2829-516 Caparica, Portugal r Kyoto University, Katsura, Kyoto 615-8520, Japan s Institut für Festkörperphysik, Technische Universität Dresden, 01062 Dresden, Germany t Center for Transport and Devices of Emergent Materials, Technische Universität Dresden, 01062 Dresden, Germany u Department of Engineering Sciences, The Ångström Laboratory, Upp sala University, P.O. Box 534, SE 75121 Uppsala, Sweden v Nanosystems Initiative Munich (NIM), 80799 München, Germany w Laboratory of Photomolecular Science, Institute of Chemical Sciencesand Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland x Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 3050047, Japan y MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, Netherlands z Department of Microtechnology and Nanoscience - MC2, Chalmers University ofTechnology, Göteborg, Sweden aa Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK ab Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA ac School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA ad Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, E-08193 Barcelona, Spain ae Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK af NaMLab gGmbH, Noethnitzer Straße 64, 01187 Dresden, Germany ag Chair of Nanoelectronic Materials, TU Dresden, 01062 Dresden, Germany ah Physics Department, University of Arkansas, Fayetteville, AR 72701, USA ai Nanophotonics TechnologyCenter, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain aj Department of Energy Storage and Conversion, Technical University of Denmark, DK-4000 Roskilde, Denmark ak Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA al Department of Material Science and Engineering, Cornell University, Ithaca, NY 14853, USA am Institut für Werkstoffe der Elektrotechnik (IWE 2), RWTH Aachen University, 52066 Aachen, Germany ⁎ Corresponding author. E-mail address: [email protected] (F. Miletto Granozio). https://doi.org/10.1016/j.apsusc.2019.03.312 0169-4332/ © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/). M. Coll, et al. Applied Surface Science 482 (2019) 1–93 an Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia ao Institute for Theoretical Solid State Physics, IFW-Dresden, Helm- holtzstr. 20, D-01069 Dresden, Germany ap CNR-SPIN, Naples Unit, Complesso Universitario di Monte Sant’An -gelo, Via Cinthia, IT-80126 Napoli, Italy Abstract At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore’s law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this classofcom- pounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community. Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin filmsand heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics. Index 12. Oxides for data storage and processing: Ferroelectric tunnel Preface junctions M. Coll, J. Fontcuberta, N. Pryds and F. Miletto Granozio V. Garcia and M. Bibes 13. Oxides for data storage: Ferroelectric RAMs Introduction U. Schröeder and T. Mikolajick 14. Alternative logic concepts using oxide-based electronic 1. A Unique Exploration devices J. Mannhart and H. Boschker S. Menzel and A. Siemon 15. High-k dielectrics for CMOS and emerging logic devices Methods M. Fanciulli 16. Oxide nano-electronics for neuromorphic computing 2. What theoretical approaches can provide: a perspective on J. Grollier oxide electronics 17. Possible future quantum technologies based