Unix Et Programmation Shell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Impact of Exception Handling Compatibility on Binary Instrumentation†
On the Impact of Exception Handling Compatibility on Binary Instrumentation† Soumyakant Priyadarshan Huan Nguyen R. Sekar Stony Brook University Stony Brook University Stony Brook University Stony Brook, NY, USA Stony Brook, NY, USA Stony Brook, NY, USA [email protected] [email protected] [email protected] Abstract overheads, but has been held back by challenges in accurate dis- assembly and code pointer identification. With the emergence of To support C++ exception handling, compilers generate metadata position-independent (or relocatable) binaries as the dominant for- that is a rich source of information about the code layout. On mat in recent years, researchers have been able to address these Linux, this metadata is also used to support stack tracing, thread challenges, e.g., in Egalito [41], RetroWrite [11] and SBR[28, 29] cleanup and other functions. For this reason, Linux binaries contain systems. code-layout-revealing metadata for C-code as well. Even hand- written assembly in low-level system libraries is covered by such Despite recent advances, deployability of binary instrumentation metadata. We investigate the implications of this metadata in this continues to face significant challenges. One of the major concerns paper, and show that it can be used to (a) improve accuracy of is compatibility. In particular, existing static binary instrumentation disassembly, (b) achieve significantly better accuracy at function tools tend to break stack tracing (for C and C++) as well as C++ boundary identification as compared to previous research, and(c) exception handling. While compatibility with these features may as a rich source of information for defeating fine-grained code not be important for proof-of-concept instrumentations, it is hardly randomization. -
MASTERCLASS GNUPG MASTERCLASS You Wouldn’T Want Other People Opening Your Letters and BEN EVERARD Your Data Is No Different
MASTERCLASS GNUPG MASTERCLASS You wouldn’t want other people opening your letters and BEN EVERARD your data is no different. Encrypt it today! SECURE EMAIL WITH GNUPG AND ENIGMAIL Send encrypted emails from your favourite email client. our typical email is about as secure as a The first thing that you need to do is create a key to JOHN LANE postcard, which is good news if you’re a represent your identity in the OpenPGP world. You’d Ygovernment agency. But you wouldn’t use a typically create one key per identity that you have. postcard for most things sent in the post; you’d use a Most people would have one identity, being sealed envelope. Email is no different; you just need themselves as a person. However, some may find an envelope – and it’s called “Encryption”. having separate personal and professional identities Since the early 1990s, the main way to encrypt useful. It’s a personal choice, but starting with a single email has been PGP, which stands for “Pretty Good key will help while you’re learning. Privacy”. It’s a protocol for the secure encryption of Launch Seahorse and click on the large plus-sign email that has since evolved into an open standard icon that’s just below the menu. Select ‘PGP Key’ and called OpenPGP. work your way through the screens that follow to supply your name and email address and then My lovely horse generate the key. The GNU Privacy Guard (GnuPG), is a free, GPL-licensed You can, optionally, use the Advanced Key Options implementation of the OpenPGP standard (there are to add a comment that can help others identify your other implementations, both free and commercial – key and to select the cipher, its strength and set when the PGP name now refers to a commercial product the key should expire. -
Glibc and System Calls Documentation Release 1.0
Glibc and System Calls Documentation Release 1.0 Rishi Agrawal <[email protected]> Dec 28, 2017 Contents 1 Introduction 1 1.1 Acknowledgements...........................................1 2 Basics of a Linux System 3 2.1 Introduction...............................................3 2.2 Programs and Compilation........................................3 2.3 Libraries.................................................7 2.4 System Calls...............................................7 2.5 Kernel.................................................. 10 2.6 Conclusion................................................ 10 2.7 References................................................ 11 3 Working with glibc 13 3.1 Introduction............................................... 13 3.2 Why this chapter............................................. 13 3.3 What is glibc .............................................. 13 3.4 Download and extract glibc ...................................... 14 3.5 Walkthrough glibc ........................................... 14 3.6 Reading some functions of glibc ................................... 17 3.7 Compiling and installing glibc .................................... 18 3.8 Using new glibc ............................................ 21 3.9 Conclusion................................................ 23 4 System Calls On x86_64 from User Space 25 4.1 Setting Up Arguements......................................... 25 4.2 Calling the System Call......................................... 27 4.3 Retrieving the Return Value...................................... -
Easy Slackware
1 Создание легкой системы на базе Slackware I - Введение Slackware пользуется заслуженной популярностью как классический linux дистрибутив, и поговорка "кто знает Red Hat тот знает только Red Hat, кто знает Slackware тот знает linux" несмотря на явный снобизм поклонников "бога Патре га" все же имеет под собой основания. Одним из преимуществ Slackware является возможность простого создания на ее основе практически любой системы, в том числе быстрой и легкой десктопной, о чем далее и пойдет речь. Есть дис трибутивы, клоны Slackware, созданные именно с этой целью, типа Аbsolute, но все же лучше создавать систему под себя, с максимальным учетом именно своих потребностей, и Slackware пожалуй как никакой другой дистрибутив подходит именно для этой цели. Легкость и быстрота системы определяется выбором WM (DM) , набором программ и оптимизацией программ и системы в целом. Первое исключает KDE, Gnome, даже новые версии XFCЕ, остается разве что LXDE, но набор программ в нем совершенно не устраивает. Оптимизация наиболее часто используемых про грамм и нескольких базовых системных пакетов осуществляется их сборкой из сорцов компилятором, оптимизированным именно под Ваш комп, причем каж дая программа конфигурируется исходя из Ваших потребностей к ее возможно стям. Оптимизация системы в целом осуществляется ее настройкой согласно спе цифическим требованиям к десктопу. Такой подход был выбран по банальной причине, возиться с gentoo нет ни какого желания, комп все таки создан для того чтобы им пользоваться, а не для компиляции программ, в тоже время у каждого есть минимальный набор из не большого количества наиболее часто используемых программ, на которые стоит потратить некоторое, не такое уж большое, время, чтобы довести их до ума. Кро ме того, такой подход позволяет иметь самые свежие версии наиболее часто ис пользуемых программ. -
Emacspeak — the Complete Audio Desktop User Manual
Emacspeak | The Complete Audio Desktop User Manual T. V. Raman Last Updated: 19 November 2016 Copyright c 1994{2016 T. V. Raman. All Rights Reserved. Permission is granted to make and distribute verbatim copies of this manual without charge provided the copyright notice and this permission notice are preserved on all copies. Short Contents Emacspeak :::::::::::::::::::::::::::::::::::::::::::::: 1 1 Copyright ::::::::::::::::::::::::::::::::::::::::::: 2 2 Announcing Emacspeak Manual 2nd Edition As An Open Source Project ::::::::::::::::::::::::::::::::::::::::::::: 3 3 Background :::::::::::::::::::::::::::::::::::::::::: 4 4 Introduction ::::::::::::::::::::::::::::::::::::::::: 6 5 Installation Instructions :::::::::::::::::::::::::::::::: 7 6 Basic Usage. ::::::::::::::::::::::::::::::::::::::::: 9 7 The Emacspeak Audio Desktop. :::::::::::::::::::::::: 19 8 Voice Lock :::::::::::::::::::::::::::::::::::::::::: 22 9 Using Online Help With Emacspeak. :::::::::::::::::::: 24 10 Emacs Packages. ::::::::::::::::::::::::::::::::::::: 26 11 Running Terminal Based Applications. ::::::::::::::::::: 45 12 Emacspeak Commands And Options::::::::::::::::::::: 49 13 Emacspeak Keyboard Commands. :::::::::::::::::::::: 361 14 TTS Servers ::::::::::::::::::::::::::::::::::::::: 362 15 Acknowledgments.::::::::::::::::::::::::::::::::::: 366 16 Concept Index :::::::::::::::::::::::::::::::::::::: 367 17 Key Index ::::::::::::::::::::::::::::::::::::::::: 368 Table of Contents Emacspeak :::::::::::::::::::::::::::::::::::::::::: 1 1 Copyright ::::::::::::::::::::::::::::::::::::::: -
Multilingual Ontology Acquisition from Multiple Mrds
Multilingual Ontology Acquisition from Multiple MRDs Eric Nichols♭, Francis Bond♮, Takaaki Tanaka♮, Sanae Fujita♮, Dan Flickinger ♯ ♭ Nara Inst. of Science and Technology ♮ NTT Communication Science Labs ♯ Stanford University Grad. School of Information Science Natural Language ResearchGroup CSLI Nara, Japan Keihanna, Japan Stanford, CA [email protected] {bond,takaaki,sanae}@cslab.kecl.ntt.co.jp [email protected] Abstract words of a language, let alone those words occur- ring in useful patterns (Amano and Kondo, 1999). In this paper, we outline the develop- Therefore it makes sense to also extract data from ment of a system that automatically con- machine readable dictionaries (MRDs). structs ontologies by extracting knowledge There is a great deal of work on the creation from dictionary definition sentences us- of ontologies from machine readable dictionaries ing Robust Minimal Recursion Semantics (a good summary is (Wilkes et al., 1996)), mainly (RMRS). Combining deep and shallow for English. Recently, there has also been inter- parsing resource through the common for- est in Japanese (Tokunaga et al., 2001; Nichols malism of RMRS allows us to extract on- et al., 2005). Most approaches use either a special- tological relations in greater quantity and ized parser or a set of regular expressions tuned quality than possible with any of the meth- to a particular dictionary, often with hundreds of ods independently. Using this method, rules. Agirre et al. (2000) extracted taxonomic we construct ontologies from two differ- relations from a Basque dictionary with high ac- ent Japanese lexicons and one English lex- curacy using Constraint Grammar together with icon. -
MELT a Translated Domain Specific Language Embedded in the GCC
MELT a Translated Domain Specific Language Embedded in the GCC Compiler Basile STARYNKEVITCH CEA, LIST Software Safety Laboratory, boˆıte courrier 94, 91191 GIF/YVETTE CEDEX, France [email protected] [email protected] The GCC free compiler is a very large software, compiling source in several languages for many targets on various systems. It can be extended by plugins, which may take advantage of its power to provide extra specific functionality (warnings, optimizations, source refactoring or navigation) by processing various GCC internal representations (Gimple, Tree, ...). Writing plugins in C is a complex and time-consuming task, but customizing GCC by using an existing scripting language inside is impractical. We describe MELT, a specific Lisp-like DSL which fits well into existing GCC technology and offers high-level features (functional, object or reflexive programming, pattern matching). MELT is translated to C fitted for GCC internals and provides various features to facilitate this. This work shows that even huge, legacy, software can be a posteriori extended by specifically tailored and translated high-level DSLs. 1 Introduction GCC1 is an industrial-strength free compiler for many source languages (C, C++, Ada, Objective C, Fortran, Go, ...), targetting about 30 different machine architectures, and supported on many operating systems. Its source code size is huge (4.296MLOC2 for GCC 4.6.0), heterogenous, and still increasing by 6% annually 3. It has no single main architect and hundreds of (mostly full-time) contributors, who follow strict social rules 4. 1.1 The powerful GCC legacy The several GCC [8] front-ends (parsing C, C++, Go . -
Version 7.8-Systemd
Linux From Scratch Version 7.8-systemd Created by Gerard Beekmans Edited by Douglas R. Reno Linux From Scratch: Version 7.8-systemd by Created by Gerard Beekmans and Edited by Douglas R. Reno Copyright © 1999-2015 Gerard Beekmans Copyright © 1999-2015, Gerard Beekmans All rights reserved. This book is licensed under a Creative Commons License. Computer instructions may be extracted from the book under the MIT License. Linux® is a registered trademark of Linus Torvalds. Linux From Scratch - Version 7.8-systemd Table of Contents Preface .......................................................................................................................................................................... vii i. Foreword ............................................................................................................................................................. vii ii. Audience ............................................................................................................................................................ vii iii. LFS Target Architectures ................................................................................................................................ viii iv. LFS and Standards ............................................................................................................................................ ix v. Rationale for Packages in the Book .................................................................................................................... x vi. Prerequisites -
Behavior Based Software Theft Detection, CCS 2009
Behavior Based Software Theft Detection 1Xinran Wang, 1Yoon-Chan Jhi, 1,2Sencun Zhu, and 2Peng Liu 1Department of Computer Science and Engineering 2College of Information Sciences and Technology Pennsylvania State University, University Park, PA 16802 {xinrwang, szhu, jhi}@cse.psu.edu, [email protected] ABSTRACT (e.g., in SourceForge.net there were over 230,000 registered Along with the burst of open source projects, software open source projects as of Feb.2009), software theft has be- theft (or plagiarism) has become a very serious threat to the come a very serious concern to honest software companies healthiness of software industry. Software birthmark, which and open source communities. As one example, in 2005 it represents the unique characteristics of a program, can be was determined in a federal court trial that IBM should pay used for software theft detection. We propose a system call an independent software vendor Compuware $140 million dependence graph based software birthmark called SCDG to license its software and $260 million to purchase its ser- birthmark, and examine how well it reflects unique behav- vices [1] because it was discovered that certain IBM products ioral characteristics of a program. To our knowledge, our contained code from Compuware. detection system based on SCDG birthmark is the first one To protect software from theft, Collberg and Thoborson that is capable of detecting software component theft where [10] proposed software watermark techniques. Software wa- only partial code is stolen. We demonstrate the strength of termark is a unique identifier embedded in the protected our birthmark against various evasion techniques, including software, which is hard to remove but easy to verify. -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
Université De Montréal Context-Aware
UNIVERSITE´ DE MONTREAL´ CONTEXT-AWARE SOURCE CODE IDENTIFIER SPLITTING AND EXPANSION FOR SOFTWARE MAINTENANCE LATIFA GUERROUJ DEPARTEMENT´ DE GENIE´ INFORMATIQUE ET GENIE´ LOGICIEL ECOLE´ POLYTECHNIQUE DE MONTREAL´ THESE` PRESENT´ EE´ EN VUE DE L'OBTENTION DU DIPLOME^ DE PHILOSOPHIÆ DOCTOR (GENIE´ INFORMATIQUE) JUILLET 2013 ⃝c Latifa Guerrouj, 2013. UNIVERSITE´ DE MONTREAL´ ECOLE´ POLYTECHNIQUE DE MONTREAL´ Cette th`ese intitul´ee: CONTEXT-AWARE SOURCE CODE IDENTIFIER SPLITTING AND EXPANSION FOR SOFTWARE MAINTENANCE pr´esent´eepar: GUERROUJ Latifa en vue de l'obtention du dipl^ome de: Philosophiæ Doctor a ´et´ed^ument accept´eepar le jury d'examen constitu´ede: Mme BOUCHENEB Hanifa, Doctorat, pr´esidente M. ANTONIOL Giuliano, Ph.D., membre et directeur de recherche M. GUEH´ ENEUC´ Yann-Ga¨el, Ph.D., membre et codirecteur de recherche M. DESMARAIS Michel, Ph.D., membre Mme LAWRIE Dawn, Ph.D., membre iii This dissertation is dedicated to my parents. For their endless love, support and encouragement. iv ACKNOWLEDGMENTS I am very grateful to both Giulio and Yann for their support, encouragement, and intel- lectual input. I worked with you for four years or even less, but what I learned from you will last forever. Giulio, your passion about research was a source of inspiration and motivation for me. Also, your mentoring and support have been instrumental in achieving my goals. Yann, your enthusiasm and guidance have always been a strength for me to keep moving forward. Research would not be as much fun without students and researchers to collaborate with. It has been a real pleasure and great privilege working with Massimiliano Di Penta (University of Sannio), Denys Poshyvanyk (College of William and Mary), and their teams. -
Performance Assessment and Translation of Physiologically
TOXICOLOGICAL SCIENCES, 158(1), 2017, 23–35 doi: 10.1093/toxsci/kfx070 Advance Access Publication Date: April 8, 2017 Forum FORUM Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples Zhoumeng Lin,*,1 Majid Jaberi-Douraki,*,† Chunla He,‡ Shiqiang Jin,*,§ Raymond S. H. Yang,¶,k Jeffrey W. Fisher,kj and Jim E. Riviere* *Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506; †Department of Mathematics, College of Arts and Sciences, Kansas State University, Manhattan, Kansas 66506; ‡Department of Epidemiology and Biostatistics, College of Public Health, The University of Georgia, Athens, Georgia 30602; §Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, Kansas 66506; ¶Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523; kRay Yang Consulting LLC, Fort Collins, Colorado 80526; and kjDivision of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079 1To whom correspondence should be addressed at Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS 66506. Fax: (785) 532-4953. E-mail: [email protected]. ABSTRACT Many physiologically based pharmacokinetic (PBPK) models for environmental chemicals, drugs, and nanomaterials have been developed to aid risk and safety assessments using acslX. However, acslX has been rendered sunset since November 2015. Alternative modeling tools and tutorials are needed for future PBPK applications.