• Every Major Animal Phylum That Exists on Earth Today, As Well As A

Total Page:16

File Type:pdf, Size:1020Kb

• Every Major Animal Phylum That Exists on Earth Today, As Well As A • Every major animal phylum that exists on Earth today, as well as a few more that have since become ex:nct, appeared within less than 10 million years during the early Cambrian evolu:onary radiaon, also called the Cambrian explosion. • Phylum Brachiopoda is represented by the brachiopods, marine animals that have calcareous or chi:no- phosphac shells, or valves, that surround a variety of internal organs and muscles. Brachiopod valves are hinged at the rear, while the front can be opened for feeding or closed for protec:on. In a typical brachiopod a stalk-like pedicle projects from an opening called a foramen in the larger ventral valve, aaching the animal to the seabed but clear of silt that would obstruct the opening. • Brachiopods have an epithelial mantle that secretes and lines the shell, and encloses the internal organs. The brachiopod body occupies only about one-third of the internal space inside the shell, nearest the hinge. Like bryozoans, brachiopods have a lophophore, a coil of tentacles whose cilia create currents that enables them to filter food par:cles out of the water. Unlike bryozoans, brachiopod lophophores are non-retractable and occupy up to two-thirds of the internal space, near the front where the valves gape when opened. • Some brachiopods have a calcareous brachidium that supports the lophophore. Terebratula Spiriferina Zeilleria • Two major groups of brachiopods are recognized, ar:culate and inar:culate. Arculate brachiopods have toothed hinges and simple muscles for opening and closing the two valves, while inar:culate brachiopods have untoothed hinges and a more complex system of muscles used to keep the valves aligned. • Brachiopods possess a bilateral symmetry across their dorsal and ventral valves, unlike the pelecypods which have bilateral symmetry between their two valves. • Brachiopods are arguably the most important group of fossil animals. They arose in the Early Cambrian and flourished during the Paleozoic Era. Their diversity was remarkable — over 12,000 fossil species are known — yet there are only about 350 species alive today. • Class Inar:culata • Class Ar:culata • Order Lingulida • Order Orthida • Order Acrotre:da • Order Strphomenida • Order Pentamerida • Order Rhynchonellida • Order Spiriferida • Order Terebratulida • Order Lingulida (E. Cam.-Rec.): The • Order Acrotre:da (E. Cam-Rec.): The lingulids have biconvex shells that acrotre:ds have mostly circular are nearly all chi:no-phosphac. shells that are chi:no-phosphac or The pedicle emerges posteriorly calcareous. The pedicle emerges between the valves without a through a foramen in the ventral special foramen. Example is Lingula. valve. Example is Orbiculoidea. Lingula Orbiculoidea • Class Inar:culata • Class Ar:culata • Order Lingulida • Order Orthida • Order Acrotre:da • Order Strphomenida • Order Pentamerida • Order Rhynchonellida • Order Spiriferida • Order Terebratulida • Order Orthida (E. Cam.-L. Perm.): The orthids have subcircular to semiellip:cal, generally biconvex shells with straight hinge lines and radial ribs. The foramen notches the edge of both valves. Examples include Dinorthis (Ord.), Rhapidomella (Dev.), and Tropidoleptus (Dev.). Dinorthis Rhapidomella Tropidoleptus • Order Strophomenida (E. Ord.-E. Jur.): The strophomenids have shells with one valve convex and the other flat or concave. The hinge lines are straight. Foramen are very minute or lacking. Examples include Rafinesquina (Ord.), Leptaena (Sil.), and Chonetes (Dev.). Rafinesquina Leptaena Chonetes • Order Pentamerida (M. Cam.-L. Dev.): The pentamerids have heavy, generally smooth, strongly biconvex shells with short hinge lines. An internal spondylium, a spoon-shaped calcareous muscle support, is variably developed. Examples include Kirkidium (Sil.), Pentamerus (Sil.), and Stringocephalus (Dev.). Kirkidium Pentamerus Stringocephalus • Order Rhynchonellida (M. Ord.-Rec.): The rhynchonellids have biconvex shells that usually have strong radial ribs and very short hinge lines. They have well- developed foramen. Examples include Rhynchotrema (Ord.), Rhynchotreta (Sil.), and Camarotoechia (Miss.). Rhynchotreta Rhynchotrema Camarotoechia • Order Spiriferida (M. Ord.-L. Jur.): The spiriferids have shells that have either rounded, very short hinge lines or extended hinge lines. Foramen are always present and a spiral brachidium is usually well-developed. Examples include Atrypa (Dev.), Athyris (Dev.), and Mucrospirifer (Dev.). Atrypa Athyris Mucrospirifer • Order Terebratulida (E. Dev.-Rec.): The terebratulids have shells with very short, rounded hinge lines. Foramen are present as are looped brachidia. Examples include Terebratula (Jur.), Oleneothyris (Pal.), and Calloria (Rec.). Terebratula Oleneothyris Calloria • Phylum Mollusca includes seven classes of animals: • Amphineura • Pelecypoda • Gastropoda • Conularida • Pteropoda • Scaphopoda • Cephalopoda • Mollusca include marine, freshwater, and terrestrial animals. Most of them have an exoskeleton or a shell of some kind secreted by the mantle. They are all free-moving and swim, crawl, or burrow. The body consists of a head (except in the pelecypods), a foot, and a dorsal por:on which includes the internal organs and is covered by the mantle. They have well- developed circulatory, diges:ve, excretory, and nervous systems. Respiraon is carried out by gills. • The phylum is pelecypod represented by over 60,000 living species and many thousands of fossil gastropod ones, but only the pelecypods (bivalves), gastropods (snails), and the cephalopods (squids, nau:loids, and ammonoids) have an abundant fossil record. cephalopod • The pelecypods, also known as bivalves, are represented by clams, muscles, and oysters, among others. They are nearly all marine. They have a calcareous shell of two valves with bilateral symmetry between the valves. Valve growth begins at an ini:al point, a beak or umbo, and proceeds outward concentrically. • Pelecypod valves are lateral, or le_ and right. They are mirror images of each other, with the plane of symmetry between the valves. • Pelecypod valves are closed by muscles and opened by hinge ligaments when the muscles relax. Teeth along the hinge aid in ar:culaon. The shell is made up of several layers. The external layer is the periostracum, a thin, flexible, dark-colored layer composed of a protein called concholin. The periostracum protects an underlying calcareous layer which is composed of an outer prismac calci:c layer and an inner porcellaneous or pearly aragoni:c layer made up of thin subparallel lamellae. Jacobs et al. (2008) • Locomoon in pelecypods is accomplished by a hatchet- shaped foot capable of burrowing. An incurrent or branchial siphon draws in water bringing food to the mouth and oxygen to the gills; an excurrent or anal siphon carries off the waste products and water that has passed over the gills. Eyes are present in some pelecypods such as the scallop Pecten. • Pelecypods occupy a wide range of habitats and are found in :dal zones to water as deep as 17,000 feet. Some are free-swimming, like the scallop Pecten. Grill and Zuschin (2001) • Pelecypods are found in the fossil record in the Cambrian, but they are quite rare un:l the Late Cambrian. They rapidly diversified during the Ordovician and Silurian. Examples include Orthonota (Dev.), Pecten (Carb.), Ostrea (Tri.), and Mercenaria (Jur.), among many others. Representaves of many of these genera are alive today. Orthonota Pecten Ostrea Mercenaria • The rudists were among many bizarre pelecypods that evolved during the Mesozoic Era. They arose during the Jurassic and became so diverse during the Cretaceous that they were major reef-building organisms. The rudists went ex:nct at the end of the Cretaceous. • The gastropods are represented by the snails, single-valved mollusks, and include marine, freshwater, and terrestrial forms. • The general anatomy of gastropods is similar to that of pelecypods, but they differ from pelecypods in having a more or less dis:nctly marked head which usually bears tentacles, eyes, and ears and usually contains a large Terrestrial gastropod cerebral ganglion. Marine gastropods would have a gill in place of a lung. • Gastropods are both herbivorous and carnivorous. Their mouth contains a radula, a minutely toothed, filelike, chi:nous ribbon, which is typically used for scraping or cung food before the food enters the esophagus. Some gastropods use their radula to bore into other shelled animals, while others, such as cone snails, secrete toxins and use them as poisoned harpoons. • Many marine gastropods are burrowers and have a siphon that extends out from the mantle edge through a Siphon siphonal canal. A siphon enables the animal to draw water into their mantle cavity and over the gill. They use the siphon primarily to “taste” the water to detect prey from a distance. Gastropods with siphons tend to be either predators or scavengers. • The embryonic shell is called the protoconch. The shell grows as a gradually widening cone which is Posterior wound around an axial pillar, the columella, or around a central tubular cavity. Each coil is known as a whorl. The last whorl, in which the animal lives, is known as the body whorl; all of the other whorls together form the spire. The aperture varies in form and it may be closed by a calcareous or chi:nous plate, the operculum, aached to the posterior part of Anterior the foot. • Whether conical or saucer- shaped, gastropod shells are Sinistral Dextral usually coiled into a spiral which is either right-handed (dextral) or le_-handed (sinistral). The coiling is the result of the more rapid growth of one side of the gastropod’s body, and as it is usually the le_ side which grows more rapidly than the right, the dextral coil is the more common type. • The shell is oriented by Sinistral Dextral holding it so that the apex (posterior end) is above and the aperture (anterior end) is below facing the observer. • In a dextral shell, the aperture is on the right side; in a sinistral shell, the aperture is on the le_ side. These are two species in the genus Neptunea. • Gastropods exceed all classes of mollusks in variety and importance. There are more than 30,000 known species, of which more than 20,000 are recent.
Recommended publications
  • Middle Permian Brachiopods from Setamai, the Type Locality of The
    Sci. Rep., Niigata Univ., Ser. E(Geology), No. 16, 1-33, 2001 Middle Permian brachiopods from Setamai,the type locality of the Kanokura Formation,southern Kitakami Mountains, northeast Japan Jun-ichi TAZAWA* and Yosuke IBARAKI** Abstract A Middle Permian (Kubergandian-Murgabian) brachiopod fauna is described from the type section of the lower Kanokura Formation in the Setamai area, southern Kitakami Moun tains, northeast Japan. This fauna contains the following nine species: Transennatia gratiosa, Tyloplecta cf. yangzeensis, Waagenoconcha sp., Linoproductus cora, Cancrinella sp., Leptodus nobilis, Derbyia grandis, Derbyia nipponica and Spiriferella keilhavii. The Setamai fauna is characterized by the mixuture of both the Boreal and Tethyan elements. Key words: Boreal-Tethyan mixed fauna, brachiopods. Middle Permian, Setamai, southern Kitakami Mountains. Introduction The Permian brachiopod specimens described in this paper were collected by the authors and late Prof. M. Minato of Hokkaido University from nine localities in the Kanokurasawa and Kacchizawa valleys in the Setamai area, the type locahty of the lower part of the Kanokura Formation, southern Kitakami Mountains, northeast Japan (Figs. 1,2). The Middle Permian Kanokura Formation was named by Onuki (1937) as the Kanokura Stage, but Onuki (1956)later changed the name to 'formation' with the outcrops along the Kanokurasawa valley as its type section. The stratigraphy of the Kanokura Formation in the Setamai area was described and discussed in detail by Minato et al.(1954,1978,1979), Onuki (1956, 1969), Murata (1964), Saito (1966, 1968) and Choi (1973, 1976). In palaeontology, many species of fusulinaceans (Choi, 1973), corals (Minato, 1955; Minato and Kato, 1965), brachiopods (Hayasaka, 1953; Hayasaka and Minato, 1956; Minato and Nakamura, 1956; * Department of Geology, Faculty of Science, Niigata University, Niigata 950-2181, Japan ** Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan (Manuscript received 24 November, 2(XX); accepted 21 December, 2000) J.
    [Show full text]
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • New Record of a Primitive Brachiopod Benthic Fauna from the North- East Coast of India
    ISSN: 2347-3215 Volume 2 Number 3 (March-2014) pp. 70-73 www.ijcrar.com New record of a primitive brachiopod benthic fauna from the North- East coast of India S.Samanta1*, A.Choudhury2 and S.K.Chakraborty3 1Department of Zoology,Vidyasagar University Midnapore-721102, West Bengal, India 2S.D.Marine Biological Research Institute, Sagar Island, Sundarban, 24 Parganas(S)- 743373.West Bengal, India 3Faculty of Science, Department of Zoology, Vidyasagar University, Midnapore-721102, West Bengal, India *Corresponding author KEYWORDS A B S T R A C T The intertidal belt at the confluence of Subarnarekha estuary, a transboundary Brachiopoda; with Bay of Bengal is an example of physically stressed heterogeneous Lingula anatina; habitats possessing a number of mudflats and sand flats that support the lives Living fossil; of an assemblage of diversified macrobenthic fauna. The Brachiopods West Bengal; (Lampshells) make up a major macrobenthic faunal group in this area which Subarnarekha estuary. includes several morphotypes of Lingula anatina distributed in some restricted areas of the world. The morpho-anatomic study of Lingula anatina- a Precambrian living fossil as a new record from the eastern part of West Bengal has been undertaken in the present study. Introduction The intertidal belt of Midnapore coast, shelled marine animal. About 30000 especially the studied area supports species and 120 genera under the phylum diversified forms of macrobenthic fauna of brachiopoda have been described in a which include good number of fossil record which extends into the lower brachiopodans which has not been reported Cambrian period of which 300 or so earlier from West Bengal coast-Talsari species of brachiopods remain.
    [Show full text]
  • Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
    Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian.
    [Show full text]
  • Pennsylvanian Boundary Unconformity in Marine Carbonate Successions
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Summer 6-2014 ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. Lucien Nana Yobo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geochemistry Commons, Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Nana Yobo, Lucien, "ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING." (2014). Dissertations & Theses in Earth and Atmospheric Sciences. 59. http://digitalcommons.unl.edu/geoscidiss/59 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. By Luscalors Lucien Nana Yobo A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Tracy D.
    [Show full text]
  • DOGAMI Open-File Report O-86-06, the State of Scientific
    "ABLE OF CONTENTS Page INTRODUCTION ..~**********..~...~*~~.~...~~~~1 GORDA RIDGE LEASE AREA ....................... 2 RELATED STUDIES IN THE NORTH PACIFIC .+,...,. 5 BYDROTHERMAL TEXTS ........................... 9 34T.4 GAPS ................................... r6 ACKNOWLEDGEMENT ............................. I8 APPENDIX 1. Species found on the Gorda Ridge or within the lease area . .. .. .. .. .. 36 RPPENDiX 2. Species found outside the lease area that may occur in the Gorda Ridge Lease area, including hydrothermal vent organisms .................................55 BENTHOS THE STATE OF SCIENTIFIC INFORMATION RELATING TO THE BIOLOGY AND ECOLOGY 3F THE GOUDA RIDGE STUDY AREA, NORTZEAST PACIFIC OCEAN: INTRODUCTION Presently, only two published studies discuss the ecology of benthic animals on the Gorda Sidge. Fowler and Kulm (19701, in a predominantly geolgg isal study, used the presence of sublittor31 and planktsnic foraminiferans as an indication of uplift of tfie deep-sea fioor. Their resuits showed tiac sedinenta ana foraminiferans are depositea in the Zscanaba Trough, in the southern part of the Corda Ridge, by turbidity currents with a continental origin. They list 22 species of fararniniferans from the Gorda Rise (See Appendix 13. A more recent study collected geophysical, geological, and biological data from the Gorda Ridge, with particular emphasis on the northern part of the Ridge (Clague et al. 19843. Geological data suggest the presence of widespread low-temperature hydrothermal activity along the axf s of the northern two-thirds of the Corda 3idge. However, the relative age of these vents, their present activity and presence of sulfide deposits are currently unknown. The biological data, again with an emphasis on foraminiferans, indicate relatively high species diversity and high density , perhaps assoc iated with widespread hydrotheraal activity.
    [Show full text]
  • 'Cenoceras Islands' in the Blue Lias Formation (Lower Jurassic)
    FOSSIL IMPRINT • vol. 75 • 2019 • no. 1 • pp. 108–119 (formerly ACTA MUSEI NATIONALIS PRAGAE, Series B – Historia Naturalis) ‘CENOCERAS ISLANDS’ IN THE BLUE LIAS FORMATION (LOWER JURASSIC) OF WEST SOMERSET, UK: NAUTILID DOMINANCE AND INFLUENCE ON BENTHIC FAUNAS DAVID H. EVANS1, *, ANDY H. KING2 1 Stratigrapher, Natural England, Rivers House, East Quay, Bridgwater, Somerset, TA6 4YS UK; e-mail: [email protected]. 2 Director & Principal Geologist, Geckoella Ltd, Suite 323, 7 Bridge Street, Taunton, Somerset, TA1 1TG UK; e-mail: [email protected]. * corresponding author Evans, D. H., King, A. H. (2019): ‘Cenoceras islands’ in the Blue Lias Formation (Lower Jurassic) of West Somerset, UK: nautilid dominance and influence on benthic faunas. – Fossil Imprint, 75(1): 108–119, Praha. ISSN 2533-4050 (print), ISSN 2533-4069 (on-line). Abstract: Substantial numbers of the nautilid Cenoceras occur in a stratigraphically limited horizon within the upper part of the Lower Jurassic (Sinemurian Stage) Blue Lias Formation at Watchet on the West Somerset Coast (United Kingdom). Individual nautilid conchs are associated with clusters of encrusting organisms (sclerobionts) forming ‘islands’ that may have been raised slightly above the surrounding substrate. Despite the relatively large numbers of nautilid conchs involved, detailed investigation of their preservation suggests that their accumulation reflects a reduction in sedimentation rates rather than an influx of empty conches or moribund animals. Throughout those horizons in which nautilids are present in relative abundance, the remains of ammonites are subordinate or rare. The reason for this unclear, and preferential dissolution of ammonite conchs during their burial does seem to provide a satisfactory solution to the problem.
    [Show full text]
  • Storm-Dominated Shelf and Tidally-Influenced Foreshore Sedimentation, Upper Devonian Sonyea Group, Bainbridge to Sidney Center, New York
    413 STORM-DOMINATED SHELF AND TIDALLY-INFLUENCED FORESHORE SEDIMENTATION, UPPER DEVONIAN SONYEA GROUP, BAINBRIDGE TO SIDNEY CENTER, NEW YORK DANIEL BISHUK JR. Groundwater and Environmental Services, Inc. (GES) 300 Gateway Park Drive North Syracuse, New York 13212 ROBERT APPLEBAUM and JAMES R. EBERT Dept. of Earth Sciences State University of New York College at Oneonta Oneonta, New York 13820-4015 INTRODUCTION The Upper Devonian paleoshoreline of the Catskill clastic wedge in New York State has been interpreted for nearly a century as a complex deltaic sequence (Barrel, 1913, 1914; Chadwick, 1933; Cooper, 1930; Sutton, Bowen and McAlester, 1970; and many others). Friedman and Johnson (1966) envisioned this deltaic complex as a series of coalescing deltaic lobes that progressively filled the Catskill epeiric sea and existed as an uninterrupted deltaic plain from New York to West Virginia. In addition, some geologists believe that such epeiric seas were tideless owing to rapid tidal wave attenuation (Shaw, 1964; and Mazzullo and Friedman, 1975). Others presume that storm (wave) processes were dominant with little or no tidal influence (Dennison, 1985). This study offers significant departures from these interpretations, by documenting nondeltaic environments with significant tidal influence along the Catskill paleo-shoreline. The purpose of this study (Fig. 1) is to delineate sedimentary environments spanning the nonmarine to marine transition in the Upper Devonian Sonyea Group and to test and challenge previous deltaic models of the Sonyea Group (Sutton, et al., 1970). Recent publications have introduced evidence for non-deltaic shoreline environments within the Catskill clastic wedge (Walker and Harms, 1971 ; 1975; Bridge and Droser, 1985; VanTassel, 1986; also see Seven, 1985, Table 1, p.
    [Show full text]
  • Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada
    :It k 'I! ' Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 Paleozoic Rocks of Antelope Valley Eureka and Nye Counties Nevada By CHARLES W. MERRIAM GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 P,rinciples of stratigraphy applied in descriptive study of the Central Great Basin Paleozoic column UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Silurian system ____________________________________ _ Abstract------------------------------------------- 1 36 Introduction. _____________________________________ _ 2 General features-------------------------------- 36 Geologic setting ______________ ------ ___ --------- 2 Roberts Mountains formation ___________________ _ 37 History of investigation ________________________ _ 5 Lone Mountain dolomite ______ ---_-------------- 39 Purpose and scope _____________ -- ______ ------ --- 6 Devonian system ______________ ---- __ - _- ___ - _------- 41 Acknowledgments ______________________________ _ 6 General features _____________ - ___________ -_----- 41 Geologic structure as related to stratigraphy __________ _ 6 Western Helderberg age limestones of the Monitor Paleontologic studies ______ ..:. _______ ~ ________________ _ 9 · Range ______ - _.- ___ --------------------------- 42 The Paleozoic column at Antelope Valley
    [Show full text]
  • Brachiopods from the Mobarak Formation, North Iran
    GeoArabia, 2011, v. 16, no. 3, p. 129-192 Gulf PetroLink, Bahrain Tournaisian (Mississippian) brachiopods from the Mobarak Formation, North Iran Maryamnaz Bahrammanesh, Lucia Angiolini, Anselmo Alessandro Antonelli, Babak Aghababalou and Maurizio Gaetani ABSTRACT Following detailed stratigraphic work on the Mississippian marlstone and bioclastic limestone of the Mobarak Formation of the Alborz Mountains in North Iran, forty-eight of the most important brachiopod taxa are here systematically described and illustrated. The ranges of the taxa are given along the Abrendan and Simeh Kuh stratigraphic sections, located north of Damgham. The examined brachiopod species date the base of the Mobarak Formation to the Tournaisian, in absence of age-diagnostic foraminifers. Change in brachiopod settling preferences indicates a shift from high energy, shallow-water settings with high nutrient supply in the lower part of the formation to quieter, soft, but not soppy substrates, with lower nutrient supply in the middle part of the Mobarak Formation. Brachiopod occurrence is instead scanty at its top. The palaeobiogeographic affinity of the Tournaisian brachiopods from North Iran indicates a closer relationship to North America, Western Europe and the Russian Platform than to cold-water Australian faunas, confirming the affinity of the other biota of the Alborz Mountains. This can be explained by the occurrence of warm surface-current gyres widely distributing brachiopod larvae across the Palaeotethys Ocean, where North Iran as other peri- Gondwanan blocks acted as staging-posts. INTRODUCTION The Mississippian Mobarak Formation of the Alborz Mountains (North Iran) has been recently revised by Brenckle et al. (2009) who focused mainly on its calcareous microfossil biota and refined its biostratigraphy, chronostratigraphy and paleogeography.
    [Show full text]
  • Devonian Brachiopods of the Tamesna Basin (Central Sahara; Algeria and North Niger)
    Acta Musei Nationalis Pragae, Series B, Natural History, 60 (3–4): 61–112 issued December 2004 Sborník Národního muzea, Serie B, Přírodní vědy, 60 (3–4): 61–112 DEVONIAN BRACHIOPODS OF THE TAMESNA BASIN (CENTRAL SAHARA; ALGERIA AND NORTH NIGER). PART 1 MICHAL MERGL Department of Biology, University of West Bohemia, Klatovská 51, Plzeň, 30614, Czech Republic; e-mail: [email protected] DOMINIQUE MASSA Universite de Nice 6, Rue J. J. Rousseau, Suresnes, 92150, France Mergl, M., Massa, D. (2004): Devonian Brachiopods of the Tamesna Basin (Central Sahara; Algeria and North Niger). Part 1. – Acta Mus. Nat. Pragae, Ser. B, Hist. Nat. 60 (3-4): 61-112. Praha. ISSN 0036-5343. Abstract. The Devonian brachiopod fauna from samples collected by the late Lionel Lessard in the sixties from several secti- ons of the Lower Palaeozoic bordering the Tamesna Basin (Algeria and North Niger, south of the Ahaggar Massif) is descri- bed. The fauna is preserved in siliciclastic rocks, often lacking fine morphological details that are necessary for the determination of the fauna. Despite this difficulty, in total 40 taxa have been determined to generic, species or subspecies le- vels. One new chonetoid genus Amziella is defined on newly described species A. rahirensis. The new species Arcuaminetes racheboeufi, Montsenetes pervulgatus, Montsenetes ? drotae, Pustulatia lessardi, Pustulatia tamesnaensis, Eleutherokomma mutabilis, Mediospirifer rerhohensis and the new subspecies Tropidoleptus carinatus titanius are described. The Pragian age is suggested for the earliest brachiopod association, with maximum spread and diversity of the brachiopod fauna in Late Em- sian – Early Eifelian interval. The youngest Devonian brachiopod fauna in the available samples is probably of the Givetian age.
    [Show full text]
  • Mississippian Cephalopods of Northern and Eastern Alaska
    Mississippian Cephalopods of Northern and Eastern Alaska By MACKENZIE GORDON, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 283 Descr9tions and illustrations of nautiloids and ammonoids and correlation of the assemblages with European Carbonferous goniatite zones UNITED STATES GOVERNMENT PRINTING OF,FICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.50 (paper cover) CONTENTS Pane Page 1 Stratigraphic and geographic distribution-Continued Introduction - - - - - - .. - - - - ... - - - - - - - - - - - - .. - - - - - - - - - - - - - 1 Brooks Range-Continued Previous work-------------------------------------- 1 Kiruktagiak River basin--Chandler Lake area- - Composition of the cephalopod fauna ------------------ 2 Siksikpuk River basin ------- ---------- ------ Stratigraphic and geographic distribution of the cepha- Anaktuvuk River basin _------------..-..------ lopods------------------------------------------- Nanushuk River basin ...................... - Brooks Range---------------------------------- Echooka River basin --------- ----- - Cape Lisburne region ------- -- --- --------- - - - Eagle-Circle district ---__ _ -___ _- --- --- - - ---- - -- - - Lower Noatak Rlver basin -----------------..- Age and correlation of the cephalopod-bearing beds- ---- Western De Long Mountains_--__----- .------ Mississippian cephalopod-collecting localities in Alaska- -
    [Show full text]