Structure & Development 42 (2013) 565e582

Contents lists available at ScienceDirect

Arthropod Structure & Development

journal homepage: www.elsevier.com/locate/asd

Head anatomy of adult terminalis (Insecta: : ) e Functional and phylogenetic implications

Susanne Randolf a,b,*, Dominique Zimmermann a,b, Ulrike Aspöck a,b a Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010 Vienna, Austria b University of Vienna, Department of Integrative Zoology, Althanstrasse 14, 1090 Vienna, Austria article info abstract

Article history: The external and internal head anatomy of Sisyra terminalis is described in detail and compared with data Received 22 August 2012 from literature. A salivary pump consisting of a peculiar reservoir and a hitherto unknown muscle, M. Received in revised form ductus salivarii, is newly described for Neuroptera. The upward folded paraglossae form a secondary 22 July 2013 prolongation of the salivary system. These structures are discussed as functional adaptations for feeding Accepted 22 July 2013 on aphids and desiccated honeydew. In a phylogenetic analysis the basal position of the Sisyridae within Neuroptera is retrieved. The following new synapomorphies are postulated: (1) for Neuropterida, the Keywords: presence of a M. submentomentalis and prepharyngeal ventral transverse muscles, and the absence of a Musculature Feeding adaptations M. submentopraementalis; (2) for Neuroptera and Sialidae, the presence of a mandibular gland; (3) for Salivary reservoir Neuroptera, the presence of four scapopedicellar muscles; (4) for Neuroptera exclusive and M. ductus salivarii (0hy15) Sisyridae, the weakening of dorsal tentorial arms, the presence of a M. tentoriomandibularis medialis M. oralis transversalis ventralis (0hy16) superior and the shifted origin of M. tentoriocardinalis. Phylogeny Ó 2013 Elsevier Ltd. All rights reserved. Neuropterida

1. Introduction the season, since at the beginning of the flight period more is consumed than during the summer (Weißmair, 1993). However, The aquatic larvae of Sisyridae have long been the focus of sci- the adults do not actively search for pollen by visiting flowers entific interest (Anthony, 1902; Gaumont, 1965, 1966; Weißmair directly (Weißmair, 1993). In addition to pollen feeding, the adults and Waringer, 1994). Yet more recently, the inconspicuous adults are predacious. They seem to detect prey rather fortuitously by have gained importance in connection with the phylogenetic scanning leaf for leaf with the mouthparts held close to the surface relevance of the genital sclerites (Aspöck and Aspöck, 2008). In the (Pupedis, 1987). Once prey is located, a sisyrid can consume as present study the head anatomy is investigated, which, in other many as four aphid nymphs and one adult at a time (Pupedis, , has been shown to harbour a variety of phylogenetically 1987). and functionally interesting structures (Beutel et al., 2008; Dressler The Neuroptera (lacewings), formerly known as and Beutel, 2010; Friedrich et al., 2012; Wipfler et al., 2012; Blanke Planipennia, contains some 6010 (Aspöck and Aspöck, et al., 2013). 2005a, b, c). Together with the orders Megaloptera and Raphi- The Sisyridae are a rather small of neuropterans with dioptera they constitute the superorder Neuropterida. The mono- about 60 species worldwide (Aspöck and Aspöck, 2007). The phyly of Neuropterida is undisputed (Aspöck et al., 2012) but the aquatic larvae feed on freshwater and bryozoans, a relationships among the orders are not yet resolved. There are characteristic that led to the common name spongeflies. Adult competing hypotheses: a sisteregroup relationship of Megaloptera Sisyridae are polyphagous, feeding predominantly on aphids and and Raphidioptera (Beutel and Gorb, 2001; Beutel et al., 2011) vs. a mites, but also on pollen and honeydew (Kokubu and Duelli, sisteregroup relationship of Megaloptera and Neuroptera (e.g., 1983). The composition of the diet is apparently dependent on Aspöck et al., 2001; Haring and Aspöck, 2004; Aspöck and Aspöck, 2008). Within Neuroptera, family relationships have traditionally proven difficult to decipher. In the most recent phylogenetic ana- * Corresponding author. Natural History Museum Vienna, 2nd Zoological lyses, Sisyridae emerged either as a rather basal offshoot (e.g., þ Department, Burgring 7, 1010 Vienna, Austria. Tel.: 43 1 521 77 345. Winterton et al., 2010: þ ((Nevrorthidae þ E-mail addresses: [email protected] (S. Randolf), dominique. þ þ [email protected] (D. Zimmermann), [email protected] Sisyridae) (rest)); Aspöck and Aspöck, 2008: Nevrorthidae (U. Aspöck). (Sisyridae þ (rest)); Haring and Aspöck, 2004: Nevrorthidae þ

1467-8039/$ e see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.asd.2013.07.004 566 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582

(Sisyridae þ (rest)); Zimmermann et al., 2011: Sisyridae þ (rest)), or 2.1.2. Megaloptera alternatively, as part of the neuropteran suborder Neohermes californicus (Walker, 1853): dried specimen. Sialis (e.g., Aspöck et al., 2001; Beutel et al., 2010a, 2010b). lutaria (Linnaeus, 1758), male: histological sections, 1 mm thick. The internal and external anatomy of the head was described in detail for Raphidioptera (Matsuda, 1956; Achtelig, 1967)and 2.2. Semithin-sections and dissections Megaloptera (Maki, 1936; Röber, 1942; Kelsey, 1954). Three spe- cies of Neuroptera have been studied anatomically: Chrysoperla To prepare the histological sections, specimens were killed in plorabunda (Miller, 1933 as Chrysopa plorabunda), Euroleon nostras 96% alcohol, fixed in alcoholic Bouin’s fluid for 3 h and embedded in (Korn, 1943 as Myrmeleon europaeus) and recently, Osmylus ful- araldite. Semithin sections were cut with a diamond knife on a vicephalus (Beutel et al., 2010b). Regarding the morphology of the Reichert Ultracut Ultramicrotome (University of Vienna, Core Fa- head capsule, Shepard (1967) described representatives of all cility Cell Imaging and Ultrastructure Research). The sections were neuropteran families known at that time in great detail. stained with 0.1% toluidine blue. Histological sections are deposited In the present study external and internal head structures of at the Natural History Museum Vienna. For dissection, specimens Sisyra terminalis (Curtis, 1854)(Fig. 1) are described and illustrated stored in 75% alcohol were macerated with KOH. Figs. 4 and 6 were for the first time. The results are elaborately compared with data drawn with Adobe Illustrator CS 11.0.0 from pictures of macerated from literature and analyzed phylogenetically. Adaptations of the specimens. feeding apparatus are indicated and interpreted. 2.3. Scanning electron microscopy 2. Material and methods For scanning electron microscopy the specimens were dehy- drated in graded alcohol series, 100% acetone and chemically dried 2.1. Taxa examined using HMDS (hexamethyldisilazane; after Brown, 1993). They were subsequently mounted on pins and sputter coated with gold. 2.1.1. Neuroptera Scanning electron microscopic images were taken with a JEOL JSM- Sisyridae: Sisyra terminalis (Curtis, 1854), male and female: 6610 (Natural History Museum Vienna). For imaging Fig. 3a and b, a histological sections (cross: one female, longitudinal: one female rotatable specimen holder designed by Pohl (2010) was used. and one male), 1 mm thick, dissection (two females and males each), dry material, SEM (one female, two males), microCT (one female). 2.4. Micro-computertomography and 3D-reconstruction : Chrysoperla carnea (Stephens, 1836), male: histo- logical sections, 1 mm thick, dissection, microCT; Chrysopa dorsalis The specimens were imaged with an Xradia MicroXCT x-ray Burmeister, 1839, female: histological sections, 1 mm thick, dissec- microtomography system (University of Vienna, Department of tion, microCT; Chrysopa perla (Linnaeus, 1758), female: histological Theoretical Biology) with a tungsten or rhodium source at 40e sections, 1 mm thick. 80 kVp and 4e8 W and images were reconstructed using the : Osmylus fulvicephalus (Scopoli, 1763) (microCT stack software provided with the microCT system. The microCT data were from Beutel et al., 2010b). reconstructed with 2 2 pixel binning to reduce noise and file size, Polystoechotidae: Polystoechotes punctata (Fabricius, 1793), and reconstructed volume images were exported as TIFF image male: histological sections, 2 mm thick, microCT. stacks. The drawings in Figs. 5 and 7 are based on three- : Hemerobius humulinus Linnaeus, 1758, male: dimensional reconstructions which were created with the soft- histological sections, 1 mm thick, dissection, microCT; Micromus ware Amira 5.1. The structures were labeled manually and recon- variegatus (Fabricius, 1793), female: histological sections, 1 mm structed using the Arithmetics-tool. Isosurfaces of the segmented thick, microCT. volumes were created and imaged in the respective position. The Berothidae: Podallea vasseana (Navás, 1910), female: histological drawings were made with Adobe Illustrator CS 11.0.0. To recon- sections, 1 mm thick, microCT. struct the hypopharyngeal sclerites and adjacent structures, the Ascalaphidae: Libelloides macaronius (Scopoli, 1763), female: resolution of the microCT images was insufficient. Therefore the microCT. histological sections were photographed, imported and aligned in Amira 5.1, and the relevant structures reconstructed. Schematic drawings were made with Adobe Illustrator CS 11.0.0 based on the reconstructions (Fig. 8). MicroCT image stacks and histological sections are deposited in the Natural History Museum Vienna.

2.5. Phylogenetic data

The head anatomical characters were added to a published ma- trix with larval characters (Beutel et al., 2010a) (characters 1e64). Characters 65e82 are from the matrix of Zimmermann et al. (2011). They were amended to account for newly available data (see com- ments in 3.2.1.). The matrix is consistent on the level. The cladistic analyses were performed with TNT (Goloboff et al., 2008). Multistate characters were treated as non-additive. The parsimony analysis with equal weights and the analyses with implied weights (Goloboff, 1993) were conducted by exhaustive search. The bootstrap values and the Bremer support values were calculated with heuristic search (100,000 replications, 1000 TBR Fig. 1. S. terminalis, habitus, length of forewing 5e6 mm, photo: Gilles San Martin branch swapping replications). For character optimization Win- (CC BY-SA 3.0). clada (Nixon, 2002) was used. S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 567

cpe afo sc

as cpe fr

frgs frclys

atp ve g cs ec clygs cly

lbr md

occp poccp ab

Fig. 2. S. terminalis, head, habitus: a frontal view; b dorsal view. Abbreviations: af ¼ antennifer, afo ¼ antennal foramen, as ¼ antennal socket, atp ¼ anterior tentorial pit, cly ¼ clypeus, clygs ¼ clypeogenal suture, cpe ¼ compound eye, cs ¼ coronal suture, ec ¼ endocarina, fr ¼ frons, frclys ¼ frontoclypeal suture, frgs ¼ frontogenal suture, g ¼ gena, lbr ¼ labrum, md ¼ mandible, occp ¼ occiput, poccp ¼ postocciput, sc ¼ scapus, ve ¼ vertex. Scale bars: 100 mm.

2.6. Terminology a frontoclypeal suture (Figs. 2a; 3a: frclys). The clypeus (Figs. 2a; 3a: cly) is broad and short, and its anterior margin is emarginate. The classification of head musculature follows Wipfler et al. The clypeogenal suture (Fig. 2a: clygs) separates the clypeus from (2011) and Friedrich and Beutel (2008) for thoracic musculature the gena ventrally of the anterior tentorial pit. At the distal end of (1vlm3, Fig. 9c, e). In addition, the hitherto more commonly used the clypeus it is continuous with the inner eye margin. The gena classification by von Kéler (1963) is provided in brackets in the (Fig. 2a: g) is very short, and the subgenal sulcus is adjacent to the result section. ventral eye margin.

3. Results 3.1.2. Tentorium The tentorium has well-developed anterior tentorial arms No differences between females and males of Sisyra terminalis (Figs. 7a, c; 9b: ata), that are flattened in cross section at mid-length were observed regarding the investigated structures. and converge continuously toward the tentorial bridge. The pos- terior tentorial arms are short and plate-like and continue ventrally 3.1. Morphology as a thin apodeme along the median margin of the maxilla. The slightly narrower dorsal tentorial arms (Figs. 7a, c; 9a, b: dta) 3.1.1. Head capsule diverge apically; they originate just in front of the tentorial bridge Sisyra terminalis has an orthognathous, globular head. There is (Figs. 7a, c; 9c, e: tb) and are attached to the head capsule imme- no sclerotization of the head capsule between the occipital fora- diately lateral of the antennal foramina by fibrillae. The tentorial men and the submentum. Most parts of the dorsal and frontal bridge is quite broad and exceptionally long. regions of the head capsule are covered with long setae. The Musculature. The muscles of the tentorium 0te1-0te6 are compound eyes (Fig. 3a: cpe) have a few microtrichia on the dorsal absent. half (Fig. 3c: arrow). The area of the vertex (Figs. 2b; 3a: ve) is not doomed. The posterior coronal suture (Fig. 2b: cs) is internally 3.1.3. Labrum represented by a prominent endocarina (Figs. 2b; 9b, c: ec). At An elevated area along the midline of the dorsal surface of the about mid-length of the dorsal head surface, the coronal suture labrum corresponds with the emargination of the clypeal margin. bifurcates into two very short branches that might represent ves- The upper surface of the labrum (Fig. 3a, d: lbr) is smooth and tiges of the frontal suture. The occiput (Fig. 2b: occp) is a small but covered with a few setae. The lateral margin is sharp, rounded and distinct sclerite, divided by a faint median suture which is inter- multiply notched (Figs. 3d, arrow, e; 4a: no). Further median, the nally represented by an endocarina. Posterior of the occiput a small margin is equipped with four distinct teeth on each side (Figs. 3d; convex postocciput (Fig. 2b: poccp) is present. The antennal 4a: lbrrt). The two median teeth are on the adoral surface. They are foramina (Fig. 2a: afo) are large and approximately circular; the overlapped by a soft-tissued median lobe. The labral tormae distance between the foramina is about as wide as their diameter; (Figs. 4a; 8: to) are parallel, broad at the base and pointed toward mesally and ventrally they are reinforced by distinct shiny and their distal end. smooth sclerotizations of irregular shapes. A small and narrow Musculature (Fig. 9a). 0lb1: M. frontolabralis (M8), paired at antennifer (Fig. 2a: af) is present at the ventro-lateral margin of the origin, medially fused at insertion, O: paramedially on frontal antennal foramen. The frontogenal suture (Fig. 2a: frgs) is very region, I: medially on hind margin of dorsal labral wall; 0lb2: M. close to the eye margin and bends inward where it merges with frontoepipharyngalis (M9), three bundles, O: with long tendon on the anterior tentorial pits (Figs. 2a; 3a: atp). The ventral margin of the frons just anterior of the antennal foramen, I: on the tormae; the frons (Figs. 2a; 3a: fr) is distinctly separate from the clypeus by 0lb3: M. epistoepipharyngalis (M10), absent; 0lb4: M. labralis 568 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 569 transversalis, absent; 0lb5: M. labroepipharyngalis (M7), absent; 0lb6: M. labrolabralis, absent. no lbrrt ephrt sca

3.1.4. Antenna The scapus (Figs. 2b; 3a,c;5a: sc) is distinctly larger than the other antennomeres and densely covered with setae of different lengths. It is shaped like a short club with its strongest convexity on the mesal side. On the mesal side of the apical articulatory area of sch the scapus a distinct process is present; it articulates with the mesal base of the pedicellus (Figs. 3a, c; 5a: ped) which is slightly larger to fl than the agellomeres. A small process at the lateral base of the a scapus articulates with the antennal socket (Figs. 2b; 3a: as). The 40 flagellomeres are slightly longer than wide and approximately cy- ai ai lindrical; their length is uniform along the entire length of the mcue sai mcue antenna. Each flagellomere is equipped with four transverse rows mp vcue of sensilla: the first (most basal) and the third rows consist of long grooved sensilla chaetica, the second and the fourth rows have br shorter smooth sensilla trichoidea. p Musculature (Figs. 5a; 9a, b). 0an1: M. tentorioscapalis anterior (M1), O: two components, anterior tentorial arm and dorsal tentorial arm beyond origin of 0an4, I: ventral base of the scapus; 0md1 0md1 0an2: M. tentorioscapalis posterior (M2), O: mesal side of the anterior tentorial arm, I: dorsolateral (outer) base of the scapus; 0an3: M. tentorioscapalis lateralis, absent; 0an4: M. tentorioscapalis pmj smj medialis (M4), O: lateral side of the dorsal tentorial arm, I: dorsally b c on the base of the scapus; 0an5: M. frontopedicellaris, absent; 0an6: Fig. 4. S. terminalis: a labrum and epipharynx, ventral view; b left mandible, ventral M. scapopedicellaris lateralis (M5), O: lateral wall of scapus view; c right mandible, dorsal view. Abbreviations: ai ¼ apical incisor, br ¼ bristle, approximately one third of length of scapus above margin, I: lateral ephrt ¼ epipharyngeal row of teeth, lbrrt ¼ labral row of teeth, mcue ¼ mesal cutting base of pedicellus, at process of pedicellus; 0an7: M. scapopedi- edge, mp ¼ molar process, no ¼ notches, p ¼ pore, pmj ¼ primary mandibular joint, ¼ ¼ ¼ cellaris medialis (M6), O: mesal base of scapus; I: mesal base of sai subapical incisor, sca sensilla campaniformia, sch sensilla chaetica, ¼ ¼ ¼ fl smj secondary mandibular joint, to tormae, vcue ventral cutting edge, pedicellus, in front of condylus of scapus; 0an8: M. intra agellaris, 0md1 ¼ M. craniomandibularis internus. Scale bars: 50 mm. absent; 0an9 (muscle not described in von Kéler,1963; Wipfler et al., 2011): M. scapopedicellaris posterior, O: posteromesal lower wall of scapus, I: dorsal base of pedicellus; 0an10 (muscle not described in lateralis superior, absent; 0md6: M. tentoriomandibularis lateralis von Kéler, 1963; Wipfler et al., 2011): M. scapopedicellaris anterior, inferior (M14), O: anterior tentorial arm, I: ventral basal margin of O: anterior margin of scapus, I: anterior margin of pedicellus. the mandible; 0md7: M. tentoriomandibularis medialis superior, absent; 0md8: M. tentoriomandibularis medialis inferior, O: ante- 3.1.5. Mandible rior tentorial arm, I: dorsal inner wall of the mandibular cavity near The mandibles of S. terminalis are asymmetrical: the right dorsal basal margin. mandible has one incisivus (Fig. 4c: ai) whereas the left mandible has two incisivi, a larger apical and a smaller subapical one (Fig. 4b: 3.1.6. Maxilla ai, sai). The right mandible has fewer strongly sclerotized areas. The The maxilla and labium are connected by a wide membrane. The mesal cutting edge (Fig. 4b, c: mcue) is smooth in both mandibles; cardo (Figs. 3b; 6; 7a: ca) is divided by a cardinal ridge (Fig. 6: car). the left mandible has a distinct tooth-like molar process (Fig. 4b: The stipes (Figs. 3b; 6; 7a; 9c: st) is not divided into basistipes and mp) whereas in the right mandible it is moderately developed. The mediostipes. It has three internal ridges: A prominent strongly ventral cutting edge (Fig. 4b: vcue) merges into a mesal hump. On protruding stipital ridge (Fig. 9d: str1) is present along the mesal the ventral side three short bristles insert (Fig. 4b: br) and there are margin of the stipes; it corresponds to the ridge that distinguishes several pores (Fig. 4b: p) with a diameter of approximately 2 mm. eustipes from parastipes according to Crampton (1923). Another Proximal to the molar process, near the attachment area of 0md1, ridge (Fig. 6: str2) is located at mid-length on the mesal margin and both mandibles are equipped with several stiff setae. A basal mola is directed lateral. The third ridge (Fig. 6: str3) is located at the distal with a grinding surface is lacking. margin of the stipes, mesal to the maxillary palp (Figs. 3b; 6; 7a: Musculature (Figs. 5b; 9b, c, e). 0md1: M. craniomandibularis mxp), and is directed posterior; it might represent a vestige of a internus (M11), O: posterior vertex and gena, I: with a strongly palpifer; in contrast to stipital ridge 1 and stipital ridge 2 no developed tendon at inner basal margin of mandible; 0md2: M. muscles attach on this ridge. The maxillary palp is 5-segmented. craniomandibularis externus anterior, absent; 0md3: M. cranio- The 5th palpomere is triangular and enlarged; it is covered with mandibularis externus posterior (M12), O: lower part of gena, I: small sensilla on the entire inner side and long setae on the outside external basal margin of mandible; 0md4: M. hypopharyn- (Fig. 3g). The galea is cylindrical and one-segmented, without a gomandibularis (M13), absent; 0md5: M. tentoriomandibularis basigalea. Distally the galea is flattened and densely covered with

Fig. 3. S. terminalis, head, SEM images: a Frontolateral view; b Mouthparts, ventral view; c Upper head region, frontal view; arrow: microtrichia; d Labrum, frontal view; arrow: notches; e Labrum and epipharynx, lateroventral view; f Tip of galea and lacinia; arrow: sensory cone; g 5th segment of the left maxillary palp; h Ligula, ventral view. Abbreviations: as ¼ antennal socket, atp ¼ anterior tentorial pit, ca ¼ cardo, cly ¼ clypeus, cpe ¼ compound eye, fr ¼ frons, frclys ¼ frontoclypeal suture, frr ¼ fringe row, ga ¼ galea, hu ¼ humps, lac ¼ lacinia, lbp ¼ labial palp, lbr ¼ labrum, lbrrt ¼ labral row of teeth, lig ¼ ligula, md ¼ mandible, mt ¼ mentum, mxp ¼ maxillary palp, no ¼ notches, ped ¼ pedicellus, pg ¼ palpiger, pmt ¼ prementum, sc ¼ scapus, smt ¼ submentum, st ¼ stipes, ve ¼ vertex. 570 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582

ped 0an9 sc A P 0md1 0an6

0an4 dta

0an10 dta ata 0an7 0an1 tb

0an2 0md8

smj

A P 0md3 ata 0md6 a b pmj

Fig. 5. S. terminalis: a antennal muscles, b mandibular muscles. Abbreviations: ata ¼ anterior tentorial arm, dta ¼ dorsal tentorial arm, ped ¼ pedicellus, pmj ¼ primary mandibular joint, sc ¼ scapus, smj ¼ secondary mandibular joint, tb ¼ tentorial bridge, 0an1 ¼ M. tentorioscapalis anterior, 0an2 ¼ M. tentorioscapalis posterior, 0an4 ¼ M. tentorioscapalis medialis, 0an6 ¼ M. scapopedicellaris lateralis, 0an7 ¼ M. scapopedicellaris medialis, 0an9 ¼ M. scapopedicellaris posterior, 0an10 ¼ M. scapopedicellaris anterior, 0md1 ¼ M. craniomandibularis internus, 0md3 ¼ M. craniomandibularis externus posterior, 0md6 ¼ M. tentoriomandibularis lateralis inferior, 0md8 ¼ M. tentoriomandibularis medialis inferior. Arrows indicate the orientation of the head: A-P ¼ anteroposterior axis. Scale bars: 100 mm. sensilla basiconica. The sensilla are distinctively candle-shaped, Musculature (Figs. 7a; 9c, d). 0mx1: M. craniocardinalis (M15), having a basal blunt cylindrical part without a socket and a O: dorsally on postgena, I: external process of basal saddle joint of smaller and thinner upper part with an apical and subapical tip. It cardo; 0mx2: M. craniolacinialis (M19), O: postgena, I: inner basal seems that there is a porus on the subapical tip. In the midst of the margin of lacinia; 0mx3: M. tentoriocardinalis (M17), O: laterally on field of sensilla there is a broad cylindrical elevation equipped with the tentorium at the transition of the anterior tentorial arm to 5e10 smaller regularly-shaped sensilla basiconica (Fig. 3f, arrow). the bridge, I: cardinal ridge; 0mx4a, b: M. tentoriostipitalis The lacinia is distally shovel-like and has two rows of spatulate anterior (M18), bipartite, fan-shaped muscle, O: anterior tentorial setae on its median margin (Figs. 3a, b). arms (a) and tentorial bridge (b), I: on stipital ridge str1; 0mx5: M. tentoriostipitalis posterior (M18), O: anterior tentorial arms, I: basally on the stipes, close to the stipitocardinal suture; 0mx6: M. stipitolacinialis (M20), O: basal margin of stipes, I: basal margin of lacinia; 0mx7: M. stipitogalealis (M21), O: stipital ridge str2, I: basal margin of galea; 0mx8: M. stipitopalpalis externus (M22), O: basomedian margin of stipes at cardostipital suture, I: distal margin lbp of basal palpomere; 0mx9: M. stipitopalpalis medialis, O: stipital ridge str2, I: ventral edge of palpomere 1; 0mx10: M. stipitopalpalis internus (M23), O: stipital ridge srt1, I: mesobasal margin of pal- mxp lig pomere 1; 0mx11: M. stipitalis transversalis, absent; 0mx12: M. palpopalpalis maxillae primus (M24), O: laterobasal margin of palpomere 1, I: laterobasal margin of palpomere 2; 0mx13: M. palpopalpalis maxillae secundus (M25), absent; 0mx14: M. palpo- palpalis maxillae tertius (M26), O: mesal wall of palpomere 3, I: ga mesobasal margin of palpomere 4; 0mx15: M. palpopalpalis maxillae quartus (M27), absent. lac pg 3.1.7. Labium str3 The submentum (Figs. 3b; 6; 7b; 9e: smt) is nearly rectangular, with six large setae along its anterior margin. In its natural position str2 it is at a right angle to the mentum. The mentum (Figs. 3b; 6; 7b; mt 9e: mt) is composed of two sclerites that are medially connected st by a membrane. The prementum (Figs. 3b; 7b: pmt) is composed of posterior palpigera (Figs. 3b; 6; 9e: pg), each of which is laterally ca smt car extended to an arcuate internal process that runs above the mental sclerite backward up to the submentum and an anterior spoon- shaped ligula, the fused glossae (Figs. 3b, h; 6; 9def: lig). Lateral Fig. 6. S. terminalis, labium and maxillae, ventral view, artificial position of sub- paraglossae (Figs. 8a, b; 9f: pgl) are folded onto the dorsal surface mentum. Abbreviations: ca ¼ cardo, car ¼ cardinal ridge, ga ¼ galea, lac ¼ lacinia, lig ¼ ligula, lbp ¼ labial palp, mxp ¼ maxillary palp, mt ¼ mentum, pg ¼ palpiger, of the ligula. The ligula is covered with setae; apically there are smt ¼ submentum, st ¼ stipes, str2, 3 ¼ stipital ridge 2, 3. Scale bar: 100 mm. distinct candle-shaped sensilla as on the galea (Fig. 3h). The labial S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 571

dta A R P A L L R

tb P 0la13

pmt lbp ata mt

0mx4a 0mx4b

lac 0mx3 0la5

ca

0mx5 0la14

ga st 0mx6 0mx7 0mx8 smt 0la10 0mx10 a 0mx9 mxp b

0bu3 dta 0ph1

0bu2

ppt

0bu1

ph

ata 0bu4 0bu5 0ci1 0bu6 0ph2 tb

A R

c L P

Fig. 7. S. terminalis: a maxillary muscles; b labial muscles, natural position of submentum; c prepharyngeal and pharyngeal muscles. Abbreviations: ata ¼ anterior tentorial arm, ca ¼ cardo, dta ¼ dorsal tentorial arm, ga ¼ galea, lac ¼ lacinia, lbp ¼ labial palp, mt ¼ mentum, mxp ¼ maxillary palp, ph ¼ pharynx, pmt ¼ prementum, ppt ¼ prepharyngeal tube, smt ¼ submentum, st ¼ stipes, tb ¼ tentorial bridge, 0bu1 ¼ M. clypeobuccalis, 0bu2 ¼ M. frontobuccalis anterior, 0bu3 ¼ M. frontobuccalis posterior, 0bu4 ¼ M. tentoriobuccalis lateralis, 0bu5 ¼ M. tentoriobuccalis anterior, 0bu6 ¼ M. tentoriobuccalis posterior, 0ci1 ¼ M. clypeopalatalis, 0la5 ¼ M. tentoriopraementalis, 0la10 ¼ M. submentomentalis, 0la13 ¼ M. praementopalpalis internus, 0la14 ¼ M. praementopalpalis externus, 0mx3 ¼ M. tentoriocardinalis, 0mx4a,b ¼ M. tentoriostipitalis anterior, 0mx5 ¼ M. tentoriostipitalis posterior, 0mx6 ¼ M. stipitolacinialis, 0mx7 ¼ M. stipitogalealis, 0mx8 ¼ M. stipitopalpalis externus, 0mx9 ¼ M. stipitopalpalis medialis, 0mx10 ¼ M. stipitopalpalis internus, 0ph1 ¼ M. verticopharyngalis, 0ph2 ¼ M. tentoriopharyngalis. Arrows indicate the orientation of the head: A-P ¼ anteroposterior axis, LeR ¼ lefteright axis. Scale bars: 100 mm.

palps (Figs. 3b; 6; 7b: lbp) are 3-segmented. The distal labial Musculature (Figs. 7b; 9e, f). 0la1: M. postoccipitoglossalis palp segment is axe-shaped and laterally compressed, forming an medialis, absent; 0la2: M. postoccipitoglossalis lateralis, edge on its meso-distal side that is densely covered with setae absent; 0la3: M. postoccipitoparaglossalis, absent, 0la4: M. post- (Figs. 3b; 6). occipitopraementalis, absent; 0la5: M. tentoriopraementalis (M29), 572 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582

hyph

hyssc

oa

to

hyssc

lbr

lig pgl a b

hyph

rsv hyssc hyspl

0hy7 0hy12 pglpgl

0hy3

0hy15

slv sd

lig vlv b slv

pmt 0hy8 sd a c

Fig. 8. S. terminalis, hypopharynx and salivary system: a hypopharynx and salivary system, lateral view. Grey dotted line: position of the salivary reservoir; black dotted line: cutting plane of Fig. 8b; arrow: secondary prolongation of the salivary system; b hypopharynx and labium. Black dotted line: cutting plane of Fig. 8a; arrow: secondary prolongation of the salivary system; c salivary reservoir and intrinsic salivary muscles. Abbreviations: hyph ¼ hypopharynx, hyssc ¼ hypopharyngeal suspensorial sclerite, hyspl ¼ hypopharyngeal suspensorial plate, lbr ¼ labrum, lig ¼ ligula, oa ¼ oral arm, pgl ¼ paraglossae, pmt ¼ prementum, rsv ¼ reservoir, sd ¼ salivary duct, slv ¼ salivarium, to ¼ tormae, vlv ¼ valve, 0hy3 ¼ M. craniohypopharyngalis, 0hy7 ¼ M. praementosalivaris anterior, 0hy8 ¼ M. praementosalivaris posterior, 0hy12 ¼ M. hypopharyngosalivaris, 0hy15: M. ductus salivarii. Scale bars: 25 mm.

bipartite, O: on posterior tentorial apodeme, I: processes of the 0la15: M. praementomembranus, absent; 0la16: M. palpopalpalis palpigera and palpigera; 0la6: M. tentorioparaglossalis (M30), ab- labii primus (M35), O: mesal wall of palpomere 1, I: mesobasal sent; 0la7: M. tentorioglandularis, absent; 0la8: M. sub- margin of palpomere 2; 0la17: M. palpopalpalis labii secundus mentopraementalis (M28), absent; 0la9: M. postmentomembranus, (M36), O: on outer wall of palpomere 2, close to its base, I: mesobasal absent; 0la10: M. submentomentalis, O: submentum, at mid-length, margin of palpomere I: hind margin of mental sclerites, respectively; 0la11: M. prae- mentoparaglossalis (M31), absent; 0la12: M. praementoglossalis 3.1.8. Hypopharynx and salivary system (M32), absent; 0la13: M. praementopalpalis internus (M33), weakly The hypopharynx (Figs. 8a, b; 9f: hyph) is tongue-shaped and developed, O: mid-ventral ridge on distal half of prementum, I: densely covered with posterially directed microtrichia. It is rein- anterobasal margin of palpomere 1; 0la14: M. praementopalpalis forced by hypopharyngeal suspensorial sclerites (Figs. 8a, b; 9e: externus (M34), extraordinarily well developed, O: one component hyssc), which are plate-like posteriorly (hypopharyngeal suspen- at the whole arcuate process of the palpiger, several bundles at the sorial plate, Fig. 8a: hyspl), then rapidly convolute downward and anterior part of the palpiger, I: posterobasal margin of palpomere 1; fuse anteriorly (Fig. 8a, b). Dorsally the oral sclerites run laterally S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 573 along the sides of the hypopharynx (oral arms, Figs. 8a; 9a, e: oa) 3.1.10. Pharynx and their flattened apices converge. A short anterior branch of the The anatomical opening of the mouth cannot be defined exactly hypopharyngeal suspensorial sclerites connects with the labral since M. frontobuccalis anterior (0bu2) inserts anterior to the tormae (Fig. 8a). hypopharyngeal muscles (0hy1, 0hy2). The lumen of the pharynx is The two branches of the salivary duct (Figs. 8,a,c;9e, f: sd) restricted due to several dorsolateral, ventrolateral and ventral converge posterior to the tentorial bridge. Due to the perpendicular folds (Fig. 9aec). The postcerebral pharynx is slightly wider than position of the submentum, the salivary duct bends at a right angle the precerebral pharynx. instead of ascending gently toward the neck region. The salivary Musculature (Figs. 7c; 9aec, e, f). 0bu2: M. frontobuccalis duct is equipped with a reservoir (Figs. 8c; 9d, f: rsv) posterior to its anterior (M45), O: frons, together with 0hy1, I: dorsal precerebral opening into the salivarium (Figs. 8a, c; 9d, f: slv) and reinforced by pharyngeal wall, just posteroventral to the ganglion frontale; 0bu3: strengthening ridges (Fig. 9f: r) up to the reservoir. The backflow of M. frontobuccalis posterior (M46), O: posterior part of frons, the saliva is prevented by a valve (Figs. 8c; 9f: vlv) directly posterior immediately anterior to brain, I: dorsal precerebral pharyngeal to the opening of the reservoir. The epithelium of the reservoir has wall, posterior to 0bu2; 0bu4: M. tentoriobuccalis lateralis (M49), numerous vacuoles (Fig. 9d: vac). O: dorsal tentorial arm, I: lateral precerebral pharyngeal wall; Musculature (Figs. 8a, c; 9def). 0hy1: M. frontooralis (M41), O: 0bu5: M. tentoriobuccalis anterior (M48), O: anterior on tentorial frons, close to origin of 0lb2, I: apex of oral suspensorial sclerites, bridge, I: ventral wall; 0bu6: M. tentoriobuccalis posterior (M50), lateral to anatomical mouth; 0hy2: M. tentoriooralis (M47), O: at O: dorsally on tentorial bridge, I: ventral side of pharynx, at level of invagination area of anterior tentorial arms, I: apex of oral sus- attachment of 0bu3; 0ph1: M. verticopharyngalis (M51), very pensorial sclerites; 0hy3: M. craniohypopharyngalis (M42), O: on massive muscle with many bundles, O: vertex, on coronal endo- posterior tentorial apodeme, adjacent to 0la5, I: hypopharyngeal carina, I: dorsally on postcerebral pharyngeal wall; 0ph2: M. ten- suspensorial sclerites; 0hy4: M. postoccipitalohypopharyngalis, toriopharyngalis (M52), O: posterior tentorial arm and head absent; 0hy5: M. tentoriosuspensorialis, absent; 0hy6: M. post- capsule, I: broadly along ventral postcerebral pharyngeal wall; mentoloralis, absent; 0hy7: M. praementosalivaris anterior (M38), 0ph3: M. postoccipitopharyngalis, absent; 0st1: M. anularis sto- thin muscle, O: hypopharyngeal suspensorial plates, I: lateral wall modaei (M68), pharyngeal ring musculature, posterior to insertion of salivarium, anterior to 0hy8; 0hy8: M. praementosalivaris pos- of 0hy1 and 0hy2; 0st2: M. longitudinalis stomodaei (M69), lon- terior (M39), thin muscle, O: hind margin of prementum, I: lateral gitudinal muscles of the pharynx beneath 0st1. wall of salivarium; 0hy9: M. oralis transversalis (M67), well devel- oped, O: anterior edge of oral suspensorial arm, I: anterior edge of 3.1.11. Cerebrum, suboesophageal complex, frontal ganglion and oral suspensorial arm on the other side; 0hy10: M. loroloralis, ab- stomatogastric nervous system sent; 0hy11: M. lorosalivarialis, absent; 0hy12: M. hypophar- The volume of the brain together with the suboesophageal yngosalivaris (M37), fan-shaped muscle, O: antero-laterally on the ganglion (Fig. 9c, e: soeg) is approximately one third of the head reservoir, anterior to 0hy15, I: roof of the salivarium; 0hy13: M. volume. The protocerebrum (Fig. 9a, e: pcer) has large optic lobes anularis salivarii (M40), absent; 0hy14: M. submentosuspensorialis, (Fig. 9b: ol), giving it the shape of a dumbbell. The frontal ganglion absent; 0hy15: M. ductus salivarii, few bundles, new muscle, O: (Fig. 9a, e: fg) is triangular, connected with the tritocerebrum by reservoir of salivary duct between the median bundles of 0hy12, I: two frontal connectives. Ventrally on the frontal ganglion origi- salivary duct; 0hy16: M. oralis transversalis ventralis, new name, nates a thin nervus procurrens, which innervates labral muscles well developed, O: posterior edge of oral suspensorial arm, I: pos- 0lb1 and 0lb2 as it extends to the clypeus and labrum. The nervus terior edge of oral suspensorial arm on the other side. [0hy16 is recurrens (Fig. 9a, b: nrec) originates posteriorly and passes back- mentioned in Achtelig (1967) as M. transversalis buccae ventralis ward along the pharynx to the ganglion hypocerebrale. The cir- (M49), and in Kelsey (1954) as ventral constrictor of the cibarium cumoesophageal connectives (tritocerebrum) are connected by the (51). It is referred to neither in von Kéler (1963) nor Wipfler et al. tritocerebral commissure (Fig. 9b: tcc), which runs dorsally of 0bu5. (2011). We propose to rename 0hy9: M. oralis transversalis A nervus connectivus is absent. The nervus labialis (Fig. 9e: nlb) is (Wipfler et al., 2011) to M. oralis transversalis dorsalis]. remarkably thick. The unpaired corpora cardiaca are located above the ganglion hypocerebrale, posterior to the insertion of 0ph1. They 3.1.9. Epipharynx are connected with the paired corpora allata on both sides of the The anterior epipharynx, i.e. the ventral surface of the labrum, postcerebral pharynx. is membranous. It is equipped with seven small teeth, which form the continuation of the labral row of teeth on each side. Between 3.1.12. Glands these epipharyngeal rows of teeth (Fig. 4a: ephrt) and on the distal Well-developed mandibular glands (Fig. 9b: mdg) are present. median margin of the epipharynx, numerous sensilla campani- They are compact, with a thick outer layer of secretory cells and a formia are present (Fig. 4a: sca). Lateral to the epipharyngeal rows globular cavity. They open at the base of the mandibles. of teeth are a few short sensilla chaetica (Fig. 4a: sch), followed by an area of fringe rows (Fig. 3e: frr). Lateral to the fringe rows, the epipharynx is covered with small humps (Fig. 3e: hu). The 3.2. Phylogenetically relevant characters of the head and cladistic margin is notched (Fig. 3e: no) as described in the section on the analyses labrum. The posterior epipharynx is laterally fused with the posterior hypopharynx, forming a prepharyngeal tube, which is 3.2.1. Phylogenetically relevant characters of the head (see reinforced by the hypopharyngeal oral arms. The wall of the Supplementary material for character state matrix) pharyngeal tube is thick and strongly folded at the attachment For larval characters [characters 1e64] see Beutel et al. (2010a). area of 0bu1. Musculature (Figs. 7c; 9a, e). 0ci1: M. clypeopalatalis (M43), few 1. Dorsal tentorial arms: present (0), absent (1) [character 65] see bundles, O: anterior margin of clypeus, on both sides of the emargi- Zimmermann et al. (2011) nation; I: dorsal wall of the preoral cavity between the tormae; 0bu1: M. clypeobuccalis (M44), well developed, numerous bundles, O: We added data for Lomamyia and Croce (Shepard, 1967), both of clypeus, I: anterior prepharyngeal tube between the bundles of 0hy9. which have weakly developed dorsal tentorial arms. 574 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 575

2. Dorsal tentorial arms: well developed (0), weakly developed (1) 14. Anterior component of M. tentoriostipitalis (M18): present (0), [character 66] see Zimmermann et al. (2011) absent (1) [character 78] see Zimmermann et al. (2011) 15. Posterior component of M. tentoriostipitalis (M18): present (0), We added data for Lomamyia and Croce (Shepard, 1967). absent (1) [character 79] see Zimmermann et al. (2011) 16. Origin of the posterior component of M. tentoriostipitalis (M18): 3. Laminatentorium: absent (0), present (1) [character 67] see postgular ridge (0), pta (1), tb-ata (2) [character 80] see Zimmermann et al. (2011) Zimmermann et al. (2011) 17. M. tentoriooralis (M47): absent (0), present (1) [character 81] We added data for Lomamyia and Croce (Shepard, 1967) which both have laminatentoria. We follow the homologization of Wipfler et al. (2011) that the M41b of Beutel et al. (2010b) is the M. frontobuccalis lateralis (M47) 4. Anteriorly projecting median process on the tentorial bridge: ab- of von Kéler (1963) and thus we redefined the character “M. fron- sent (0), present (1) [character 68] see Zimmermann et al. (2011) tohypopharyngalis (M41): non-partitioned (0), bipartite (1)“ (Zimmermann et al., 2011)to“M. tentoriooralis (M47): absent (0), We added data for Lomamyia and Croce; Croce has a median present (1)”. process on the tentorial bridge (Shepard, 1967: Fig. 79 “TBApT”), but not Lomamyia. 18. M. tentoriobuccalis lateralis (M49): present on dta (0), absent (1), present on ata (2) [character 82] see Zimmermann et al. (2011) 5. Anterior tentorial pits: open (0), slit-like constricted (1), trumpet- like (2), closed (3) [character 69] see Zimmermann et al. (2011) We changed the characters state 0 from present to “present on 6. Anterior tentorial arms: cylindrical tubes (0), flat hollow plates (1) ata” and added a character state 2 “present on dta”. The absence of [character 70] see Zimmermann et al. (2011) a M. tentoriobuccalis lateralis in Sialis and the presence with 7. Origin of M. tentorioscapalis anterior (M1): ata (0), ata-dta (1) shifted origin (from the dorsal to the anterior tentorial arm) in [character 71] see Zimmermann et al. (2011) Euroleon (Korn, 1943: M. dil. ph. lat. 1) and Libelloides are herewith 8. Origin of M. tentorioscapalis lateralis (M2): ata-dta (0), ata (1) amended. [character 72] see Zimmermann et al. (2011) 9. Origin of M. tentorioscapalis medialis (M4): dta (0), ata (1) 19. Ocelli: absent (0), present (1) [character 83] [character 73] see Zimmermann et al. (2011) 10. M. tentoriomandibularis medialis inferior (0md8): present (0), Ocelli are present in the raphidiopteran family Raphidiidae absent (1) [character 74] and the megalopteran family Corydalidae, as well as in the neuropteran family Osmylidae (Aspöck and Aspöck, 2005a, 2005b, In the present study the “M. zygomaticus mandibulae, 2005c). They are absent in Sialidae and all remaining neuropteran component a” of Zimmermann et al. (2011) is interpreted as families. M. tentoriomandibularis medialis inferior (0md8). 20. Gula: absent (0), present (1) [character 84] 11. M. tentoriomandibularis lateralis inferior (0md6): present (0), absent (1) [character 75] see Zimmermann et al. (2011) A gula sensu Snodgrass (1935) is present in Coleoptera, Raphidioptera and Megaloptera and absent in all Neuroptera. The We follow the homologization of Wipfler et al. (2011) “gula” described by Morse (1931: Chrysopa) is situated in front of that M. zygomaticus mandibulae of von Kéler (1963) is M. the posterior tentorial pits and thus not a gula sensu Snodgrass tentoriomandibularis lateralis inferior (0md6). (1935).

12. M. tentoriomandibularis medialis superior (0md7): present (0), 21. Basigalea: absent (0), present (1) [character 85] absent (1) [character 76] A basigalea (¼ subgalea sensu Ferris, 1940) is a small sclerite in In the present study the “M. zygomaticus mandibulae, front of the insertion site of M. stipitogalealis. The presence of a component c” of Zimmermann et al. (2011) is interpreted as basigalea is documented for most neuropteran families (Ferris, M. tentoriomandibularis medialis superior (0md7) of Wipfler et al. 1940; Korn, 1943; Tjeder, 1957, 1959, 1960, 1961, 1966, 1967, 1992). (2011). A galea lacking a basigalea is reported only for Sisyridae and the coniopterygidan subfamily Coniopteryginae (Tjeder, 1957). Data are 13. Origin M. tentoriocardinalis (M17): pta (0), tb (1), ata (2) [char- missing for Nevrorthidae, Dilaridae, , Polystoechotidae acter 77] see Zimmermann et al. (2011) and Nymphidae.

Fig. 9. S. terminalis, head: a cross section, level of frontal ganglion; b cross section, level of tritocerebral commissure; c cross section, level of salivary pump; d detail of c; e longitudinal section, level of frontal ganglion; f longitudinal section, level of salivary pump. Abbreviations: ata ¼ anterior tentorial arm, dta ¼ dorsal tentorial arm, ec ¼ endocarina, fg ¼ frontal ganglion, ga ¼ galea, gl ¼ glossae, hyph ¼ hypopharynx, hyssc ¼ hypopharyngeal suspensorial sclerite, lac ¼ lacinia, lbr ¼ labrum, lig ¼ ligula, md ¼ mandible, mdg ¼ mandibular gland, mt ¼ mentum, nlb ¼ nervus labialis, nrec ¼ nervus recurrens, oa ¼ oral arm, ol ¼ optical lobe, pcer ¼ protocerebrum, pg ¼ palpiger, pgl ¼ paraglossae, ph ¼ pharynx, r ¼ ridge, rsv ¼ reservoir, sd ¼ salivary duct, slv ¼ salivarium, smj ¼ secondary mandibular joint, smt ¼ submentum, soeg ¼ suboesophageal ganglion, st ¼ stipes, str1 ¼ stipital ridge 1, tb ¼ tentorial bridge, tcc ¼ tritocerebral commissure, vac ¼ vacuole, vlv ¼ valve, 0an1 ¼ M. tentorioscapalis anterior, 0an2 ¼ M. tentorioscapalis posterior, 0an4 ¼ M. tentorioscapalis medialis, 0bu1 ¼ M. clypeobuccalis, 0bu2 ¼ M. frontobuccalis anterior, 0bu3 ¼ M. frontobuccalis posterior, 0bu4 ¼ M. tentoriobuccalis lateralis, 0bu5 ¼ M. tentoriobuccalis anterior, 0bu6 ¼ M. tentoriobuccalis posterior, 0ci1 ¼ M. clypeopalatalis, 0hy1 ¼ M. frontooralis, 0hy2 ¼ M. tentoriooralis, 0hy3 ¼ M. craniohypo- pharyngalis, 0hy7 ¼ M. praementosalivaris anterior, 0hy8 ¼ M. praementosalivaris posterior, 0hy9 ¼ M. oralis transversalis dorsalis, 0hy12 ¼ M. hypopharyngosalivaris, 0hy15 ¼ M. ductus salivarii, 0hy16 ¼ M. oralis transversalis ventralis, 0la10 ¼ M. submentomentalis, 0la13: M. praementopalpalis internus, 0la14 ¼ M. praementopalpalis externus, 0lb1 ¼ M. frontolabralis, 0lb2 ¼ M. frontoepipharyngalis, 0md1 ¼ M. craniomandibularis internus, 0md3 ¼ M. craniomandibularis externus posterior, 0md6 ¼ M. tentoriomandibularis lateralis inferior, 0mx3 ¼ M. tentoriocardinalis, 0mx4 ¼ M. tentoriostipitalis anterior, 0mx5 ¼ M. tentoriostipitalis posterior, 0mx6 ¼ M. stipitolacinialis, 0mx7 ¼ M. stipitogalealis, 0mx8 ¼ M. stipitopalpalis externus, 0mx9 ¼ M. stipitopalpalis medialis, 0mx10 ¼ M. stipitopalpalis internus, 0ph1 ¼ M. verticopharyngalis, 0ph2 ¼ M. tentoriopharyngalis, 1vlm3 ¼ M. profurcatentorialis. Scale bars: 100 mm. 576 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582

22. Finger-like process on galea: absent (0), present (1) [character 86] plorabunda (Miller,1933) but absent in Chrysoperla carnea, Chrysopa dorsalis and Chrysopa perla. The M. labroepipharyngalis is present An apical finger-like process on the galea is documented for all in the outgroups Raphidioptera and Megaloptera (Röber, 1942; neuropteran families except the Nevrorthidae for which data are Achtelig, 1967) and absent in Coleoptera (Beutel et al., 2003; missing (Shepard, 1967; Tjeder, 1957, 1992). In the families Sisy- Dressler and Beutel, 2010). ridae, Coniopterygidae, and Hemerobiidae both states occur (Meinander, 1972: Aleuropteryginae present, Coniopteryginae ab- 28. M. submentopraementalis (0la8): absent (0), present (1) [char- sent; Shepard, 1967: (Sisyridae) and some Hemerobiidae acter 92] present). The process is not reported for any of the outgroups (Crampton, 1923; Achtelig, 1967; Dressler and Beutel, 2010). The M. submentopraementalis is absent in Neuroptera (Korn, 1943; Beutel et al., 2010b) and Megaloptera (Maki, 1936; Röber, 23. Paraglossae: absent (0), present (1) [character 87] 1942; Kelsey, 1954). In Raphidioptera, Matsuda (1956) and Achtelig (1967) interpret the tripartite labium to consist of a Paraglossae are present in Sisyridae, Osmylidae, Chrysopidae bipartite prementum and a submentum (Matsuda, 1956) or post- (Sulc, 1914), Hemerobiidae and Polystoechotidae where they form mentum (Achtelig, 1967). As the “M. submentopraementalis” of an elongation of the salivary duct. They are lacking in Raphidioptera Matsuda (1956) and Achtelig (1967) inserts on the “posterior (Achtelig, 1967), Megaloptera (Röber, 1942) and Coleoptera (Beutel sclerite of the prementum” it is homologous with the M. sub- et al., 2003; Dressler and Beutel, 2010). mentomentalis in Neuroptera and Megaloptera. Thus a M. sub- mentopraementalis is absent in Raphidioptera. 24. Palpigera: without process (0), with process (1) [character 88] 29. M. submentomentalis (0la10): absent (0), present (1) [character 93] The palpigera are postero-laterally extended to an arcuate internal process in Sisyra (see also Tjeder, 1957) and in some The M. submentomentalis is present in all hitherto studied Coleoptera (Dressler and Beutel, 2010). Chrysopa (Morse, 1931) and Neuroptera (Korn, 1943; Beutel et al., 2010b), Megaloptera (Maki, Euroleon (Sundermeier, 1940 as Myrmeleon) have palpigera without 1936; Röber, 1942; Kelsey, 1954) and Raphidioptera (Matsuda, a process. 1956; Achtelig, 1967; see char. 92). The presence of a M. sub- mentomentalis in Neuropterida is unique for adults e it is other- 25. Palpimacula: absent (0), present (1) [character 89] wise only known from insect larvae (Das, 1937; Moulins, 1968).

Palpimaculae are sensory organs e a depression with several 30. M. oralis transversalis ventralis (0hy16): absent (0), present (1) sensilla basiconica e laterally on the terminal labial palpomere. [character 94] They are reported for representatives of the families Osmylidae, Hemerobiidae, Chrysopidae, Mantispidae, Polystoechotidae, The M. oralis transversalis ventralis is present in all studied Nymphidae, Psychopsidae, Ascalaphidae and Myrmeleontidae Neuroptera and Nemoptera (Krenn et al., 2008), as well as Raphi- (Shepard, 1967). Palpimaculae are not known from Sisyridae and dioptera (Achtelig, 1967: M. transversalis buccae ventralis) and Coniopterygidae (Shepard, 1967; Zimmermann et al., 2009). In Megaloptera. In Trachypachus (Dressler and Beutel, 2010) and Raphidia an apical sensory field on the terminal labial palp Ochthebius (Beutel et al., 2003) this muscle is absent. segment is indicated (Achtelig, 1967: Fig. 9); it is not in a depression and is located apically and not laterally and is thus not 31. Mandibular gland: absent (0), present (1) [character 95] assumed to be homologous. The same is true for the apical sen- sory field on the terminal segment of the labial and maxillary A mandibular gland is present in Neuroptera and in Sialis (Röber, palps of Trachypachus (Dressler and Beutel, 2010). However, 1942). It is absent in Raphidia and Corydalus (Achtelig, 1967; Kelsey, palpimacula-like structures are present in some and other 1954). The mandibular gland in Ochthebius (Beutel et al., 2003)is insect orders, and are assumed to be homologous in Hol- assumed not to be homologous since it differs in position (inside ometabola by Eikel and Hörnschemeyer (2008). mandible) and structure (regular rows of gland cells).

26. Number of scapopedicellar muscles: two (0), four (1) [character 3.2.2. Cladistic analyses 90] The cladistic analysis of all characters (larval characters from Beutel et al., 2010a and characters of the adult head) results in eight In all studied Neuroptera four scapopedicellar muscles with four most parsimonious trees. The trees have a length of 206 steps and a distinctly different insertions are present, while in Megaloptera and Consistency Index of 0.56. Two of them were also retrieved by the Raphidioptera there are only two (Maki, 1936; Röber, 1942; Kelsey, implied weighting analysis. The two trees differ in the position of 1954; Matsuda, 1956; Achtelig, 1967). In Trachypachus there are two Sialis which is either the sister group of Neuroptera or the muscles, of which one is bipartite (Dressler and Beutel, 2010). The (Raphidia þ Neohermes). The choice of our preferred tree (Fig. 10)is presence of four muscles is the ancestral condition in insects based on the best fit of the characters of the present study. A strict (Matsuda, 1965), which can be observed also in Machilis consensus tree with bootstrap and Bremer support values is shown (Bitsch, 1963) and Embioptera (Rähle, 1970), but also within in Fig. 11. Holometabola in (Hannemann, 1956: Micropterix calthella). 4. Discussion

27. M. labroepipharyngalis (0lb5): absent (0), present (1) [character 91] 4.1. General morphology

The M. labroepipharyngalis is absent in Sisyra, Polystoechotes, 4.1.1. Head and antennae Hemerobius, Osmylus (Beutel et al., 2010b), Euroleon (Korn, 1943) Lying beneath the coronal suture is a distinct endocarina which and Nemoptera. In Chrysopidae it is reported for Chrysoperla is a characteristic feature of Sisyra terminalis. In Neuroptera the S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 577 development of a coronal suture is more common in some families otherwise known only from insect larvae (Das,1937; Moulins,1968; than in others, and it may either be accompanied by an internal Beutel and Friedrich, 2008). The M. submentomentalis (0la10) has endocarina or occur alone (Shepard, 1967). In Sisyridae, a coronal been interpreted as the M. submentopraementalis (0la8) with a suture and endocarina are developed in S. terminalis but absent in shifted insertion in previous works (e. g. Beutel et al., 2010b). Since (Shepard, 1967). Both states also occur in Man- in holometabolan (Das, 1937) and plecopteran larvae (Moulins, tispidae (present in Plega dactylotavs. absent in Dichromantispa 1968) both muscles are concurrently present, it is evident that interrupta, Shepard, 1967 as Mantispa interrupta) and Osmylidae they cannot be identical. (present in Euosmylus stellae vs. absent in O. fulvicephalus, Shepard, 1967). The high variability of this character was already pointed out 4.1.3. Hypopharynx by Snodgrass (1947), Kelsey (1954) and DuPorte (1960). The hypopharynx is equipped with massive hypopharyngeal The development of four scapopedicellar muscles as in suspensorial plates that reinforce the hypopharynx laterally. S. terminalis is also present in all other examined Neuroptera, but Hypopharyngeal suspensorial plates are also present in Poly- was hitherto documented only for Chrysoperla plorabunda (Miller, stoechotes punctata (Shepard, 1967: Fig. 5 “HphyBScl”) and Sialis 1933). In Megaloptera, Raphidioptera and Coleoptera two scapo- lutaria (Röber, 1942: “Chitinplatte”). A connection of tormae and pedicellar muscles are described (Maki, 1936; Röber, 1942; Kelsey, hypopharyngeal suspensorial sclerites is present in S. terminalis and 1954; Matsuda, 1956; Achtelig, 1967; Dressler and Beutel, 2010). Trachypachus holmbergi (Coleoptera) (Dressler and Beutel, 2010). Regarding other insect orders, four scapopedicellar muscles are However, no descriptions of hypopharyngeal sclerites are available known only from Machilidae (Bitsch, 1963: Machilis), Embioptera for other Neuroptera. (Rähle, 1970: Embia ramburi), Lepidoptera (Hannemann, 1956: A remarkable feature in S. terminalis is the presence of the M. Micropterix calthella) and Trichoptera (Klemm, 1966: Rhyacophila). oralis transversalis ventralis (0hy16). Within Endopterygota, this muscle is known only from adults of the three neuropterid orders 4.1.2. Mouthparts (Kelsey, 1954; Achtelig, 1967; Vilhelmsen, 1996; Krenn et al., 2008: The morphology of the mouthparts is typical for most Neuroptera Fig. 9), larvae of Neuropterida (Wundt, 1961:M35;Beutel and (Shepard, 1967): The asymmetrically pointed mandibles lack a Friedrich, 2008: vtm; Beutel and Ge, 2008: vtm) and Nannome- grinding surface, the labrum is movable, the labium and maxillae are coptera (Beutel et al., 2009: vtm). However, this muscle seems to be well-developed and the maxillae are connected by membranous equally infrequent in non-endopterygote orders, and is reported areas. In many Neuroptera a finger-like structure at the tip of the only for Zygentoma (Chaudonneret, 1950: musculature semi- galea can be found, but it is absent in Sisyra. Instead, S. terminalis circulaire ventrale; Woo, 1950: ventral circular compressor mus- possesses a cylindrical elevationwith sensilla basiconica. A homology cle group of the buccal cavity) and Blatta orientalis (Eidmann, 1925: of these two structures can be excluded since both occur simulta- Fig. 2 “cpha”). There are two additional muscles which insert on the neously in Climacia (Shepard, 1967). Interestingly, in the mega- tip of the oral arms: M. frontooralis (0hy1) and M. tentoriooralis lopteran Sialis lutaria a sensory cone is present/indicated (Röber, (0hy2). Beutel et al. (2010b) indicate that M. tentoriooralis (0hy2) 1942;asSialis flavilatera) that might be homologous with the cylin- might be homologous with M. tentoriobuccalis lateralis (0bu4) drical elevation in Sisyridae. The complete set of maxillary muscles described for Chrysoperla plorabunda (Miller, 1933: 42) and Euro- known from other neuropterans can be found in Sisyra. Additionally, leon nostras (Korn, 1943: M. dil. ph. lat.1). The concurrent presence in Sisyra the M. stipitopalpalis medialis (0mx9) is present. It is not of M. tentoriooralis (0hy2) and M. tentoriobuccalis lateralis (0bu4) described for any other neuropterid, and regarding other insects only in Sisyra contradicts this interpretation. We follow the homolog- for Zygentoma (Chaudonneret, 1950), Plecoptera (Moulins, 1968), ization of Wipfler et al. (2011) that the M41b of Beutel et al. (2010b) Mantodea (Wipfler et al., 2012), Embioptera (Rähle, 1970) and is the M. frontobuccalis lateralis (M47) of von Kéler (1963). Phasmatodea (Maki, 1934). The palpigera are extended posteriorly in the labium to form a 4.1.4. Salivary system and mandibular gland process that serves as an attachment area for the enlarged M. A characteristic of the salivary system of S. terminalis is the praementopalpalis externus (0la14) in S. terminalis and other Sisy- presence of a salivary pump formed by two muscles: M. hypo- ridae, as well as in Hemerobiidae and the coleopteran Trachypachus pharyngosalivaris (0hy12), which has shifted its origin from the holmbergi (Tjeder, 1957; Dressler and Beutel, 2010: Sisyra producta; hypopharyngeal suspensorial sclerites to the salivary reservoir Stitz, 1931: Hemerobius pini; Hemerobius humulinus, Micromus vari- and inserts on the dorsal wall of the salivarium, and M. ductus egatus). In S. terminalis the antagonistic muscle, M. praemento- salivarii (0hy15), which originates on the salivary reservoir and palpalis internus (0la13) is present, though very thin, while it is inserts on the salivary duct. Since the reservoir is formed by the absent in the other species that possess an extended palpiger. salivary duct, M. ductus salivarii (0hy15) is an intrinsic muscle of In S. terminalis the glossae are fused to a rounded ligula (sensu the salivary duct. Additionally, M. praementosalivaris anterior Matsuda, 1965), and the paraglossae are folded onto the dorsal (0hy7) has shifted its origin from the prementum to the hypo- surface of the ligula and posteriorly project into the salivarium. The pharyngeal suspensorial plate in S. terminalis. The contraction of fold between the ligula and the paraglossae forms a secondary the salivary muscles widens the lumen of the anterior part of the prolongation of the salivary system through which saliva is trans- salivary duct, so that saliva is drawn from the reservoir into the ported to the tip of the ligula. A comparable structure is described salivarium. A guarding valve located at the point where the pos- for Chrysopa perla (Sulc, 1914), and is also developed in Chrysoperla terior salivary duct enters the reservoir prevents the backflow of carnea, Micromus variegatus, Podallea vasseana and Polystoechotes the saliva, as in other insects (Coons and Roshdy, 1973). It is un- punctata. Further, the position of the submentum in Sisyra is known whether the reservoir also has a secretory function. In remarkable: while in other neuropterans the submentum is contrast to the epithelium of the posterior salivary duct, which is approximately aligned with the mentum (Shepard, 1967), it is reinforced by strengthening ridges, as in other insects (Akai et al., nearly perpendicular to it in Sisyra. Consequently, the M. sub- 2003), the epithelium of the reservoir has a large number mentomentalis (0la10) does not only retract the mentum as in of vacuoles in the wall which might indicate absorption of other neuropterans but also moves it upward. The presence of this substances from the hemolymph to form the glandular secretion, muscle is unique for adults in Neuropterida (Maki, 1936; Röber, as hypothesized by Zara and Caetano (2003) for the salivary 1942; Korn, 1943; Kelsey, 1954; Beutel et al., 2010b) e it is reservoir of larval Pachycondyla villosa (Formicidae). In other 578

5 13 18 33 68 72 74 75 88 Trachypachus 3 1 1 2 1 2 1 1 1 9 16 3 12 51 Catops 1 6 62 83 0 1 2 Ochthebius 1 1 16 33 78 91 77 80 5 6 7 13 83 Raphidia 0 2 1 1 1 1 23 51 62 86 1 1 1 1 1 Neohermes 1 1 1 1 47 60 63 64 67 92 93 94 3 23 51 78 80 91 Sialis 0 0 0 0 0 0 1 1 0 1 1 1 2 1 2 22 28 34 43 51 61 82 88 62 72 77 95 Sisyra 1 1 3 1 1 2 1 0 1 1 1 2 1 5 6 7 13 16 79 82

1 18 26 27 38 39 40 42 52 54 71 81 84 87 90 Nevrorthus 565 (2013) 42 Development & Structure Arthropod / al. et Randolf S. 1 1 1 1 6 1 0 5 80 89 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 2 4 12 20 27 29 69 Polystoechotes 1 2 1 16 59 79 37 53 1 1 1 1 0 1 2 Ithone 7 1 1 1 1 28 80 82 83 89 Osmylus 22 36 3 2 0 1 1 16 51 69 88 43 62 66 67 76 77 86 1 1 35 58 68 Hemerobius 4 2 1 1 1 0 1 1 0 3 1 71 75 89 1 1 1 Chrysopa 0 1 1

2 15 19 25 34 41 46 47 48 50 Helicoconis 17 27 52 76 85 86 61 85 1 1 1 1 1 1 1 1 1 1 Coniopteryx 22 28 65 73 79 2 0 0 1 0 0 2 1 2 24 34 59 74 89 1 2 1 1 1 Mantispa 9 16 55 58 1 1 1 1 1 1 16 67 76 Nallachius 1 5 1 1 14 28 44 67 0 1 59 65 16 71 1 1 1 7 24 1 0 Lomamyia 75 2 0 1 1 Mucroberotha e 1 582 6 58 74 89 Psychopsis 1 1 1 1 6 47 5 7 8 10 11 13 33 45 27 1 1 Pterocroce 21 73 79 86 2 1 1 1 1 2 1 1 0 Nemoptera 16 17 49 87 2 1 1 0 6 47 68 0 1 1 0 Croce 1 1 1 30 32 49 Nymphes 1 21 31 56 89 0 0 65 73 1 1 1 1 17 57 69 70 80 82 Libelloides 1 1 2 1 3 1 2 2 Euroleon

Fig. 10. Cladogram recovered from parsimony analysis of larval and head anatomical characters: One of eight most parsimonious trees produced by exhaustive search under equal weights with slow character optimization. An identical topology is retrieved with implied weights K4eK6. Black boxes indicate unique synapomorphies, white boxes homoplastic ones. Head anatomical characters highlighted gray. S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 579

Trachypachus 4.2.2. Feeding on liquid and dried up honeydew 73 Catops The distally shovel-like lacinia of Sisyra is probably an adapta- Ochthebius tion for the consumption of honeydew drops and is also found in Sialis Hemerobiidae and Chrysopidae (Stelzl, 1992). 59 Raphidia Usually in solid food feeders, saliva serves mainly for insalivat- ing food particles in the oral cavity (Ribeiro, 1995); however, in 94 Neohermes species that feed on dried honeydew it is necessary that the saliva 6 Sisyra can be applied to the leaf surface. All the above mentioned species Nevrorthus with the upward folded paraglossae that form a secondary pro- 98 93 Polystoechotes longation of the salivary system either have been observed directly 10 5 Ithone to feed on crystallized honeydew by dissolving it (Bartlett, 1962: Osmylus Chrysopa nigricornis as Chrysopa majuscula, Micromus timidus as 59 Hemerobius 1 1 Nesomicromus nagivatorum) or had scales of other insects in their 2 Chrysopa digestive tract (Kokubu and Duelli, 1983:S.terminalis; Monserrat, 98 Helicoconis 2006: Podallea vasseana; De Jong, 2011: Polystoechotes punctata), 8 54 62 Coniopteryx which is an indication for feeding on honeydew since insect scales 3 3 Mantispa 53 often adhere to the sticky surface (Kokubu and Duelli, 1983). 1 Nallachius Thus the secondary prolongation of the salivary opening to the 1 59 Lomamyia tip of the ligula is most likely an to optimize the 1 Mucroberotha exploitation of honeydew as a food source. An alternative manner Psychopsis of dissolving honeydew was observed in parasitic Hymenoptera, 94 Pterocroce whereby dried sugar was dissolved by applying saliva with rapid 7 Croce movements of the glossae (Bartlett, 1962). However, this mode of

1 Nemoptera application is impossible in Neuroptera since they lack glossal 67 Nymphes muscles (Matsuda, 1965). 2 97 Libelloides 4 Euroleon 4.3. Phylogenetic relevance

Fig. 11. Cladogram recovered from parsimony analysis of larval and head anatomical Data for a phylogenetic evaluation of the head anatomy of Sisy- characters: Strict consensus tree of eight most parsimonious trees produced by ridae are scarce in Neuroptera, since only four of seventeen families exhaustive search under equal weights with bootstrap values over 50% (above) and Bremer support values (below). have been studied until now (Beutel et al., 2010b: Osmylidae; Korn, 1943: Myrmeleontidae; Krenn et al., 2008: Nemopteridae; Miller, 1933: Chrysopidae). Thus, despite the addition of several anatom- ical head characters to the matrix of Zimmermann et al. (2011),no holometabolan insect orders, a salivary pump is described for new results for the neuropteran relationships were obtained. How- Raphidioptera, where it is formed by an intrinsic muscle of the ever, the data availability for the outgroups has been essentially salivarium (Achtelig, 1967), and Mecoptera where it is formed by improved since three publications on head anatomy for the two an intrinsic muscle of the salivary duct (Beutel et al., 2008; Liu and megalopteran families (Maki, 1936; Röber, 1942; Kelsey, 1954) and Hua, 2010; Friedrich et al., 2012). two publications forone of the two raphidiopteran families (Achtelig, A mandibular gland seems to be present in all Neuroptera; aside 1967; Matsuda, 1956) have become available. Although these data from S. terminalis it is also present in Osmylidae (Beutel et al., were never analysed comparatively, some phylogenetically relevant “ ” 2010b), Mantispidae (Stitz, 1931: Kieferdrüsen ), Coniopterygidae characters for neuropterid phylogeny could be recognized. (Stitz,1931), Chrysopidae (Mc Dunnough,1909: “Unterkieferdrüse”; The monophyly of Neuropterida is undisputed. However, Sulc, 1914), Hemerobiidae (Stitz, 1931), Myrmeleontidae (Stitz, there are only few clear synapomorphies for this clade (Aspöck 1931), and Nemopteridae (Krenn et al., 2008). Otherwise, it is only et al., 1980; Beutel et al., 2011). The present study adds two new present in the megalopteran family Sialidae (Röber, 1942). It is ab- synapomorphies: the development of a M. submentomentalis sent in the megalopteran family Corydalidae (Maki, 1936; Kelsey, (0la10, Fig. 10, 93.1), which is unique for adults in Neuropterida 1954) and in Raphidiidae (Achtelig, 1967). (Maki, 1936; Röber, 1942; Korn, 1943; Kelsey, 1954; Beutel et al., 2010b), and the loss of M. submentopraementalis (0la8, Fig. 10, 4.2. Functional interpretations 92.0). The presence of M. oralis transversalis ventralis (0hy16, Fig. 10, 94.1) is retrieved as another new synapomorphy of Neuro- 4.2.1. Feeding on aphids pterida in our analysis. Vilhelmsen (1996) interpreted the presence The mandibles of S. terminalis are typical for carnivorous species of this muscle as the plesiomorphic condition for Endopterygota. (Snodgrass, 1935); they are equipped with sharp incisors that serve However, since this muscle occurs in very few insects, an inde- to capture the prey and dismember it. The correlation between pendent and new development in Neuropterida is a plausible nutrition and mandibular shape was shown by Stelzl (1992) for alternative hypothesis. The presence of a mandibular gland is the several Neuropterida. In all Neuroptera the mandibles lack a most substantial of the four apomorphic characters supporting a grinding surface on the molar region (Stitz, 1931; Tjeder, 1957,1959, sister group relationship of Neuroptera and Sialidae in our analysis 1960, 1961) which is known to be developed in phytophagous in- (Fig. 10, 62.1, 72.1, 77.2, 95.1). A monophyletic Megaloptera as sister sects (Chapman, 1995). The labral and epipharyngeal rows of teeth group of Neuroptera is recovered at a cost of two additional steps might serve to fix struggling aphids. The structure of the salivary and would imply a secondary reduction of the mandibular gland in system is likely to be an adaptation to feeding on aphids, a prey the megalopteran family Corydalidae. This relationship is sup- which occurs in aggregations. A reservoir may allow an insect to ported by recent molecular results (Meusemann et al., 2013), as feed occasionally and intensely, since it provides a large amount of well as by an analysis based on genital sclerites (Aspöck and saliva at a time (Ribeiro, 1995). Aspöck, 2008). 580 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582

The presence of four scapopedicellar muscles (Fig.10 and 90.1) is Appendix A. Supplementary data a new synapomorphy of Neuroptera. Matsuda (1965) regarded four scapopedicellar muscles as the plesiomorphic condition for insects. Supplementary data related to this article can be found at http:// However, this view is not convincing in higher insects, where the dx.doi.org/10.1016/j.asd.2013.07.004. presence of four scapopedicellar muscles is confined to a few single representatives in different orders. Here, an independent acquisi- References tion in response to an extensive usage of the antennae seems to be the more plausible scenario. In Neuroptera the antennae are re- Achtelig, M., 1967. Über die Anatomie des Kopfes von Raphidia flavipes STEIN und ported to play an essential role in the pre-copulatory behavior in die Verwandtschaftsbeziehungen der Raphidiidae zu den Megaloptera. Zoo- logische Jahrbücher. Abteilung Anatomie und Ontogenie 84, 249e312. Sisyridae (Eisner, 1989), Osmylidae (Gepp, 2007) and Chrysopidae Acker, T.S., 1966. Courtship and mating behavior in Agulla species (Neuroptera: (Henry, 1979). The intensive waving, rotating and drumming of the Raphidiidae). Annals of the Entomological Society of America 59, 1e6. antennae in these families are more complex movements than Akai, H., Hakim, R.S., Kristensen, N.P., 2003. Labial glands, silk and saliva. In: Kristensen, N.P. (Ed.), Handbook of Zoology 4: Arthropoda, Insecta. Part 36: found in the pre-copulatory behavior of Raphidioptera, where the Lepidoptera: and Butterflies, Morphology, Physiology and Development, antennal activity is restricted to probing the substrate (Acker, 1966). vol. 2. Walter de Gruyter, Berlin, pp. 377e388. The loss of the gula (Fig. 10, 84.0) is another synapomorphy of Anthony, M.H., 1902. The metamorphosis of Sisyra. American Naturalist 36, 615e 631. the head of adult Neuroptera. It is questionable whether the pres- Aspöck, H., Aspöck, U., Hölzel, H., (unter Mitarbeit von H. Rausch), 1980. Die Neu- ence of a M. tentoriooralis (0hy2; Fig. 10, 81.1) is a synapomorphy of ropteren Europas. Eine zusammenfassende Darstellung der Systematik, Öko- Neuroptera as retrieved in our analysis. Independent losses in logie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. Goecke und Evers, Krefeld. Coleoptera, Raphidioptera and Megaloptera appear more likely. Aspöck, U., Aspöck, H., 2005a. 28. Ordnung Raphidioptera, Kamelhalsfliegen. In: A basal position of the families Sisyridae and Nevrorthidae is Dathe, H. H., (Ed.), 5. Teil: Insecta. In: Gruner, H.-E., (Ed.): Band I: Wirbellose supported by three unique synapomorphies in the head anatomy of Tiere. In: Lehrbuch der Speziellen Zoologie, Begründet von A. Kaestner, Spek- trum Akademischer Verlag Heidelberg, Berlin, pp. 542e552. all remaining neuropteran families: the weakening and consequent Aspöck, U., Aspöck, H., 2005b. 29. Ordnung Megaloptera, Großflügler, loss of dorsal tentorial arms (Fig. 10, 66.1), the anterior shift of the Schlammfliegen. In: Dathe, H. H., (Ed.): 5. Teil: Insecta. In: Gruner, H.-E., origin of M. tentoriocardinalis (0mx3, Fig.10, 77.3) and the presence (Ed.): Band I: Wirbellose Tiere. In: Lehrbuch der Speziellen Zoologie, of a M. tentoriomandibularis medialis superior (Fig. 10, 76.0). In Begründet von A. Kaestner, Spektrum Akademischer Verlag Heidelberg, Berlin, pp. 552e564. addition, this splitting is supported by the cryptonephry of the Aspöck, U., Aspöck, H., 2005c. 30. Ordnung Neuroptera (Planipennia), Netzflügler. Malpighian tubules in the larvae: a cryptonephric condition in In: Dathe, H. H., (Ed.): 5. Teil: Insecta. In: Gruner, H.-E., (Ed.): Band I: Wirbellose which only two free tubules are found in all neuropteran families Tiere. In: Lehrbuch der Speziellen Zoologie, Begründet von A. Kaestner, Spek- trum Akademischer Verlag Heidelberg, Berlin, pp. 564e584. except Nevrorthidae and Sisyridae (Beutel et al., 2010a). Aspöck, U., Aspöck, H., 2007. Verbliebene Vielfalt vergangener Blüte. Zur Evolution, The basal position of the Sisyridae is supported by two larval Phylogenie und Biodiversität der Neuropterida (Insecta: Endopterygota). synapomorphies of all other Neuroptera including Nevrorthidae: Denisia 20, 451e516. Aspöck, U., Aspöck, H., 2008. Phylogenetic relevance of the genital sclerites of the presence of a poison channel (Fig. 10, 37.1) and poison gland Neuropterida (Insecta: Holometabola). Systematic Entomology 33, 97e127. (Fig. 10, 53.1). This position should be regarded with reservation. Aspöck, U., Haring, E., Aspöck, H., 2012. The phylogeny of the neuropterida: long The absence of a poison channel and a poison gland are doubtlessly lasting and current controversies and challenges (Insecta: Endopterygota). Arthropod Systematics & Phylogeny 70, 119e129. correlated to each other. A loss in connection with the feeding on Aspöck, U., Plant, J.D., Nemeschkal, H.L., 2001. Cladistic analysis of neuroptera and sessile prey in Sisyridae is plausible. In contrast, a sister group their systematic position within neuropterida (Insecta: Holometabola: Neuro- relationship of Nevrorthidae to all other Neuroptera including pterida: Neuroptera). Systematic Entomology 26, 73e86. Bartlett, B.R., 1962. The ingestion of dry sugars by adult entomophagous insects and Sisyridae is supported by a convincing synapomorphy: the the use of this feeding method for measuring the moisture needs of parasites. divided larval postmentum in nevrorthid larvae as it is the case in Journal of Economic Entomology 55, 749e753. Coleoptera, Raphidioptera and Megaloptera while in all other Beutel, R.G., Anton, E., Jäch, M.A., 2003. On the evolution of adult head structures Neuroptera the sclerite is undivided (Fig. 10, 43.0/43.1). A basal and the phylogeny of Hydraenidae (Coleoptera, Staphyliniformia). Journal of Zoological Systematics and Evolutionary Research 41, 256e275. position of the Nevrorthidae is retrieved at a cost of only one Beutel, R.G., Friedrich, F., 2008. Comparative study of larval head structures of additional step. The investigation of the head anatomy of adult megaloptera (). European Journal of Entomology 105, 917e938. Nevrorthidae is essential for a clarification of the basal splitting Beutel, R.G., Friedrich, F., Aspöck, U., 2010a. The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta). Zoological Journal of the Linnean Society events in Neuroptera. 158, 533e562. In conclusion, not only the head of neuropteran larvae (Beutel Beutel, R.G., Friedrich, F., Hörnschemeyer, T., Pohl, H., Hünefeld, F., Beckmann, F., et al., 2010a) but also the head of the adults exhibits a number of Meier, R., Misof, B., Whiting, M.F., Vilhelmsen, L., 2011. Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse derived features. Apart from the spectacular autapomorphies of Holometabola. Cladistics 27 (4), 341e355. S. terminalis our investigations yielded some phylogenetically Beutel, R.G., Friedrich, F., Whiting, M.F., 2008. Head morphology of Caurinus (Bor- relevant characters for Neuropterida. More output is to be expected eidae, Mecoptera) and its phylogenetic implications. Arthropod Structure & Development 37 (5), 418e433. when the anatomical details described for S. terminalis will be Beutel, R.G., Ge, S.-Q., 2008. The larval head of Raphidia (Raphidioptera, Insecta) and available for a broad range of neuropteran taxa. its phylogenetic significance. Zoology 111, 89e113. Beutel, R.G., Gorb, S.N., 2001. Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal Acknowledgements phylogeny. Journal of Zoological Systematics and Evolutionary Research 39, 177e207. We cordially thank Benjamin Wipfler (Friedrich-Schiller-Uni- Beutel, R.G., Kristensen, N.P., Pohl, H., 2009. Resolving insect phylogeny: the sig- fi versität Jena) for valuable discussions and support in morpholog- ni cance of cephalic structures of the Nannomecoptera in understanding endopterygote relationships. Arthropod Structure & Development 38, 427e460. ical questions, Brian Metscher (Universität Wien) for providing Beutel, R.G., Zimmermann, D., Krauß, M., Randolf, S., Wipfler, B., 2010b. Head extremely helpful microCT scans, Sabine Gaal-Haszler (NHM Wien), morphology of Osmylus fulvicephalus (Osmylidae, Neuroptera) and its phylo- e Barbara Würinger (James Cook University), Horst Aspöck (Medi- genetic implications. Organisms Diversity & Evolution 10, 311 329. Bitsch, J., 1963. Morphologie céphalique des Machilides (Insecta Thysanura). zinische Universität Wien), John Plant (Universität Wien) and Annales des Sciences Naturelles, Zoologie et Biologie Animale, Paris, 12e serie 5, Herbert Zettel (NHM Wien) for critically reading the manuscript 501e706. and providing linguistic improvements. We appreciate the sug- Blanke, A., Beckmann, F., Misof, B., 2013. The head anatomy of Epiophlebia superstes (Odonata: Epiophlebiidae). Organisms, Diversity & Evolution 13 (1), 55e66. gestions of the two reviewers which greatly helped to improve the Brown, B.V., 1993. A further chemical alternative to critical-point-drying for pre- manuscript. paring small (or large) flies. Fly Times 11, 10. S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582 581

Chapman, R.F., 1995. Mechanics of food handling by chewing insects. In: Maki, T., 1936. Studies of the skeletal structure, musculature and nervous system of Chapman, R.F., de Boer, G. (Eds.), Regulatory Mechanisms in Insect Feeding. the alder fly Chauliodes formosanus Peterson. Memoirs of the Faculty of Science Chapman & Hall, New York, pp. 3e31. and Agriculture, Taihoku Imperial University 16, 117e243. Chaudonneret, J., 1950. La morphologie céphalique de Thermobia domestica (Pack- Matsuda, R., 1956. Musculature of the head of Agulla Adnixa (Hagen) (Neuroptera, ard) (Insecte Aptérygote Thysanoure). Annales des Sciences Naturelles, Zoologie Raphidiidae). Journal of the Kansas Entomological Society 29, 146e155. 12, 145e302. Matsuda, R., 1965. Morphology and evolution of the insect head. Memoirs of the Coons, L.B., Roshdy, M.A., 1973. Fine structure of the salivary glands of unfed male American Entomological Institute 4, 1e334. Dermacentor variabilis (Say) (Ixodoidea: Ixodidae). The Journal of Parasitology Mc Dunnough, J., 1909. Über den Bau des Darmes und seiner Anhänge von Chrysopa 59, 900e912. perla L. Archiv für Naturgeschichte 75, 313e360. þ5pls. Crampton, G.C., 1923. A phylogenetic comparison of the maxillae throughout Meinander, M., 1972. A revision of the family Coniopterygidae (Planipennia). Acta the orders of insects. Journal of the New York Entomological Society 31, Zoologica Fennica 136, 1e357. 77e107. Meusemann, K., Peters, R.S., Petersen, M., Donath, A., Nihuis, O., Mayer, C., Curtis, J., 1854. Descriptions of two species of the genus Hemerobius of Linnaeus, Aspöck, U., Aspöck, H., Hünefeld, F., Kier, K.M., Beutel, R.G., Misof, B., 2013. new to this country, with remarks on the nomenclature of Coniopteryx, and on Phylogeny of the holometabolous insect orders e new insights from tran- Orthotaenia Buoliana, &c. Transactions of the Royal Entomological Society of scriptomes and morphology. In: BioSyst.EU 2013 Global Systematics!, 18e22 London 8, 56e60 (¼(N.S.)3). February 2013, Vienna, pp. 139e140. Abstract volume. Das, G.M., 1937. The musculature of the mouth-parts of insect larvae. Quarterly Miller, F.W., 1933. Musculature of the lacewing (Chrysopa plorabunda) Neuroptera. Journal of Microscopical Science 80, 39e80. þ12pls. Journal of Morphology 55, 29e51. De Jong, G.D., 2011. Observations on the biology of Polystoechotes punctatus (Fab- Monserrat, V.J., 2006. Nuevos datos sobre algunas species de la familia Berothidae ricius) (Neuroptera: Ithonidae): adult trophic status, description of the male (Insecta: Neuroptera). Heteropterus Revista de Entomologìa 6, 173e207. reproductive system, and associations with mites. Proceedings of the Ento- Morse, M., 1931. The external morphology of Chrysopa perla L. (Neuroptera: mological Society of Washington 113, 291e298. Chrysopidae). Journal of the New York Entomological Society 39, 1e43. Dressler, C., Beutel, R.G., 2010. The morphology and evolution of the adult head Moulins, M., 1968. Contribution à la connaissance anatomique des Plécoptères: la of (Insecta: Coleoptera). Arthropod Systematics & Phylogeny 68, région céphalique de la larve de Nemoura cinerea [Nemouridae]. Annales de la 239e287. Société d’ Entomologie de France (N.S.) 4, 91e143. DuPorte, M.E., 1960. Evolution of cranial structure in adult Coleoptera. Canadian Nixon, K.C., 2002. WinClada. Ver. 1.00.08. Cornell University, Ithaca, NY. Journal of Zoology 38, 655e675. Pohl, H., 2010. A scanning electron microscopy specimen holder for viewing Eidmann, H., 1925. Vergleichend-anatomische Studien über die Pharynxmuskulatur different angles of a single specimen. Microscopy Research and Technique 73, von Insekten. Zoologischer Anzeiger 62, 49e64. 1073e1076. Eikel, O., Hörnschemeyer, T., 2008. Are the sensory fields on the palps homologous Pupedis, R.J., 1987. Foraging behavior and food of adult Spongila-flies (Neuroptera: within the Holometabola (Insecta)? e An approach from Trichoptera. In: Sisyridae). Annals of the Entomological Society of America 80, 758e760. Gradstein, S.R., Klatt, S., Normann, F., Weigelt, P., Willmann, R., Wilson, R. (Eds.), Rähle, W., 1970. Untersuchungen am Kopf und Prothorax von Embia ramburi Systematics 2008, Göttingen, Programme and Abstracts, 189. Rimsky-Korsakow 1906 (Embioptera, Embiidae). Zoologische Jahrbücher. Eisner, M., 1989. Biologie und Larvalmorphologie der wasserlebenden Neuropteren Abteilung Anatomie und Ontogenie 87, 248e330. Mitteleuropas (Neuropteroidea; Megaloptera, Planipennia). University Graz Ribeiro, J.M.C., 1995. Insect saliva: function, biochemistry and physiology. In: (PhD thesis). Chapman, R.F., de Boer, G. (Eds.), Regulatory Mechanisms in Insect Feeding. Ferris, G.F., 1940. The morphology of Plega signata (Hagen) (Neuroptera: Man- Chapman & Hall, New York, pp. 74e97. tispidae). Microentomology 5, 33e56. Röber, H., 1942. Morphologie des Kopfes und des Vorderdarmes der Larve und Friedrich, F., Beutel, R.G., 2008. The thorax of Zorotypus (Hexapoda, Zoraptera) and a Imago von Sialis flavilatera. Zoologische Jahrbücher. Abteilung Anatomie und new nomenclature for the musculature of Neoptera. Arthropod Structure & Ontogenie 67, 61e118. Development 37, 29e54. Shepard, F.D., 1967. The Head Capsule and Cervix of Adult Neuroptera (Insecta). A Friedrich, F., Pohl, H., Beckmann, F., Beutel, R.G., 2012. The head of Merope tuber Comparative Morphological Study. Massachusetts, Cambridge (PhD thesis). (Meropeidae) and the phylogeny of Mecoptera (Hexapoda). Arthropod Struc- Snodgrass, R.E., 1935. Principles of Insect Morphology. MacGraw-Hill, New York. ture & Development 42, 69e88. Snodgrass, R.E., 1947. The insect cranium and the “epicranial suture”. Smithsonian Gaumont, J., 1965. L’appareil digestif de la larve d’un Planipenne associé aux Miscellaneous Collections 107, 1e52. éponges d’eau douce: Sisyra fuscata. Annales de la Société Entomologique de Stelzl, M., 1992. Comparative studies on mouthparts and feeding habits of adult France (N.S.) 1, 335e357. Raphidioptera and Neuroptera (Insecta: Neuropteroidea). Privately printed, Gaumont, J., 1966. L’appareil respiratoire de la larve de Sisyra fuscata [Planipenne] et Toulouse. In: Canard, M., Aspöck, H., Mansell, M.W. (Eds.), Current Research in ses adaptions a la vie aquatique et aérienne. Annales de la Société Entomolo- Neuropterology. Proceedings of the Fourth International Symposium on Neu- gique de France (N.S.) 2, 449e455. ropterology, pp. 341e347. Bagnères-de-Luchon, Haute-Garonne, France. Gepp, J., 2007. Zum verdichteten Auftreten und zum Paarungsverhalten des Bach- Stitz, H., 1931. Planipennia. In: Schulze, P. (Ed.), Biologie der Tiere Deutschlands, vol. haftes Osmylus fulvicephalus (Neuroptera) vor allem unter Brücken. DGaaE 35, pp. 67e304. Nachrichten 21, 146e147. Sulc, K., 1914. Über die Stinkdrüsen und Speicheldrüsen der Chrysopen. Sitzungs- Goloboff, P.A., 1993. Estimating character weights during tree search. Cladistics 9, berichte der k. k. böhmischen Gesellschaft der Wissenschaften in Prag 11, 1e50. 83e91. Sundermeier, W., 1940. Der Hautpanzer des Kopfes und des Thorax von Myrmeleon Goloboff, P.A., Farris, J.S., Nixon, K.C., 2008. TNT, a free program for phylogenetic europaeus und seine Metamorphose. Zoologische Jahrbücher. Abteilung für analysis. Cladistics 24, 774e786. Anatomie und Ontogenie der Tiere 66, 291e348. Hannemann, H.J., 1956. Die Kopfmuskulatur von Micropteryx calthella (L.) (Lep.): Tjeder, B., 1957. Neuroptera e Planipennia. The lace-wings of Southern Africa. 1. Morphologie und Funktion. Zoologische Jahrbücher. Abteilung Anatomie und Introduction and families Coniopterygidae, Sisyridae, and Osmylidae. In: Ontogenie 75, 177e206. Hanström, B., Brinck, P., Rudebec, G. (Eds.), South African Life, 4. Haring, E., Aspöck, U., 2004. Phylogeny of the Neuropterida: a first molecular Swedish Natural Science Research Council, Stockholm, pp. 95e188. approach. Systematic Entomology 29, 415e430. Tjeder, B., 1959. Neuroptera e Planipennia. The lace-wings of Southern Africa. 2. Henry, C.S., 1979. Acoustical communication during courtship and mating in the Family Berothidae. In: Hanström, B., Brinck, P., Rudebec, G. (Eds.), South African green lacewing Chrysopa carnea (Neuroptera: Chrysopidae). Annals of the Animal Life, vol. 6. Swedish Natural Science Research Council, Stockholm, Entomological Society of America 72, 68e79. pp. 256e314. Kelsey, L.P., 1954. The Skeleto-motor Mechanism of the Dobson Fly, Corydalus cor- Tjeder, B., 1960. Neuroptera e Planipennia. The lace-wings of Southern Africa. 3. nutus. Part I. Head and Prothorax. In: Memoir, vol. 334. Cornell University Family Psychopsidae. In: Hanström, B., Brinck, P., Rudebec, G. (Eds.), South Af- Agricultural Experiment Station, pp. 1e51. rican Animal Life, vol. 7. Swedish Natural Science Research Council, Stockholm, Klemm, N., 1966. Die Morphologie des Kopfes von Rhyacophila Pict. (Trichoptera). pp. 164e209. Zoologische Jahrbücher. Abteilung Anatomie und Ontogenie 83, 1e51. Tjeder, B., 1961. Neuroptera e Planipennia. The lace-wings of Southern Africa. 4. Kokubu, H., Duelli, P., 1983. Adult food of flies: observations on the crop and Family Hemerobiidae. In: Hanström, B., Brinck, P., Rudebec, G. (Eds.), South gut content of Sisyra terminalis Curtis (Planipennia: Sisyridae). Neuroptera In- African Animal Life, vol. 8. Swedish Natural Science Research Council, Stock- ternational 2, 157e162. holm, pp. 296e408. Korn, W., 1943. Die Muskulatur des Kopfes und des Thorax von Myrmeleon euro- Tjeder, B., 1966. Neuroptera e Planipennia. The lace-wings of Southern Africa. 5. paeus und ihre Metamorphose. Zoologische Jahrbücher. Abteilung Anatomie Family Chrysopidae. In: Hanström, B., Brinck, P., Rudebec, G. (Eds.), South Af- und Ontogenie 68, 273e330. rican Animal Life, vol. 12. Swedish Natural Science Research Council, Stockholm, Krenn, H.W., Gereben-Krenn, B.A., Steinwender, B.M., Popov, A., 2008. Flower pp. 228e534. visiting Neuroptera: mouthparts and feeding behaviour of Nemoptera sinuata Tjeder, B., 1967. Neuroptera e Planipennia. The lace-wings of Southern Africa. 6. (Nemopteridae). European Journal of Entomology 105, 267e277. Family Chrysopidae. In: Hanström, B., Brinck, P., Rudebec, G. (Eds.), South Af- Liu, S., Hua, B., 2010. Histology and ultrastructure of the salivary glands and salivary rican Animal Life, vol. 13. Swedish Natural Science Research Council, Stockholm, pumps in the scorpionfly Panorpa obtusa (Mecoptera: Panorpidae). Acta Zoo- pp. 290e501. logica 91, 457e465. Tjeder, B.,1992. The Ascalaphidae of the Afrotropical Region (Neuroptera).1. External Maki, T., 1934. A study of the musculature of the phasmid Megacrania tsudai Shiraki. morphology and bionomics of the family Ascalaphidae, and of the Memoirs of the Faculty of Science and Agriculture, Taihoku Imperial University subfamily Haplogleniinae including the tribes Proctolyrini n. tribe, Melambrotini 12, 181e279. þ5pls. n. tribe, Campylophlebini n. tribe, Tmesibasini n. tribe, Allocormodini n. tribe, and 582 S. Randolf et al. / Arthropod Structure & Development 42 (2013) 565e582

Ululomyiini n. tribe of Ascalaphidae. Entomologica Scandinavica, Supplement 41, Wipfler, B., Wieland, F., DeCarlo, F., Hörnschemeyer, T., 2012. Cephalic morphology 3e169. of Hymenopus coronatus (Insecta: Mantodea) and its phylogenetic implications. Vilhelmsen, L., 1996. The preoral cavity of lower Hymenoptera (Insecta): compar- Arthropod Structure & Development 41, 87e100. ative morphology and phylogenetic significance. Zoologica Scripta 25, 143e170. Woo, W., 1950. Skeleto-muscular studies on the head and feeding apparatus of von Kéler, S., 1963. Entomologisches Wörterbuch. Akademie Verlag, Berlin. Ctenolepisma urbana Slabaugh (Thysanura: Lepismatidae). Peking Natural His- Weißmair, W., 1993. Larvaltaxonomie, Biologie und Verbreitung heimischer tory Bulletin 18, 171e188. Schwammfliegen (Insekta: Neuroptera: Sisyridae). Universität Wien (thesis). Wundt, H.,1961. Der Kopf der Larve von Osmylus chrysops L. (Neuroptera, Planipennia). Weißmair, W., Waringer, J., 1994. Identification of the larvae and pupae of Sisyra Zoologische Jahrbücher. Abteilung Anatomie und Ontogenie 79, 557e662. fuscata (Fabricius, 1793) and Sisyra terminalis Curtis, 1854 (Insecta: Planipennia: Zara, F.J., Caetano, F.H., 2003. Ultramorphology and histology of the larval salivary Sisyridae), based on Austrian material. Aquatic Insects 16, 147e155. gland of Pachycondyla villosa (Fabricius) (Hymenoptera: Formicidae, Ponerinae). Winterton, S.L., Hardy, N.B., Wiegmann, B.M., 2010. On wings of lace: phylogeny and Neotropical Entomology 32, 59e68. Bayesian divergence time estimates of Neuropterida (Insecta) based on Zimmermann, D., Klepal, W., Aspöck, U., 2009. The first SEM study on Coniopterygidae morphological and molecular data. Systematic Entomology 35, 349e378. (Neuroptera) structural evidence and phylogenetic implications. European Jour- Wipfler, B., Machida, R., Müller, B., Beutel, R.G., 2011. On the head morphology of nal of Entomology 106, 651e662. Grylloblattodea (Insecta) and the systematic position of the order, with a new Zimmermann, D., Randolf, S., Metscher, B.D., Aspöck, U., 2011. The function and nomenclature for the head muscles of Dicondylia. Systematic Entomology 36, phylogenetic implications of the tentorium in adult Neuroptera (Insecta). 241e266. Arthropod Structure & Development 40, 571e582.