Evolving a Language in and for the Real World: C++ 1991-2006

Total Page:16

File Type:pdf, Size:1020Kb

Evolving a Language in and for the Real World: C++ 1991-2006 Evolving a language in and for the real world: C++ 1991-2006 Bjarne Stroustrup Texas A&M University www.research.att.com/~bs Abstract Obviously, the C++ community spent the most time and This paper outlines the history of the C++ programming lan- money on the first of those items. The ISO C++ standards guage from the early days of its ISO standardization (1991), committee tends to focus on the second with some concern through the 1998 ISO standard, to the later stages of the for the third. My main effort was on the third and the fourth. C++0x revision of that standard (2006). The emphasis is on The ISO committee is the focus for people who aim to the ideals, constraints, programming techniques, and people improve the C++ language and standard library. Through that shaped the language, rather than the minutiae of lan- such change they (we) hope to improve the state of the guage features. Among the major themes are the emergence art in real-world C++ programming. The work of the C++ of generic programming and the STL (the C++ standard li- standards committee is the primary focus of the evolution of brary’s algorithms and containers). Specific topics include C++ and of this paper. separate compilation of templates, exception handling, and Thinking of C++ as a platform for applications, many support for embedded systems programming. During most have wondered why — after its initial success — C++ didn’t of the period covered here, C++ was a mature language with shed its C heritage to “move up the food chain” and be- millions of users. Consequently, this paper discusses various come a “truly object-oriented” applications programming uses of C++ and the technical and commercial pressures that language with a “complete” standard library. Any tendencies provided the background for its continuing evolution. in that direction were squelched by a dedication to systems programming, C compatibility, and compatibility with early Categories and Subject Descriptors K.2 [History of Com- versions of C++ in most of the community associated with puting]: systems the standards committee. Also, there were never sufficient General Terms Design, Programming Language, History resources for massive projects in that community. Another important factor was the vigorous commercial opportunism Keywords C++, language use, evolution, libraries, stan- by the major software and hardware vendors who each saw dardization, ISO, STL, multi-paradigm programming support for application building as their opportunity to dis- tinguish themselves from their competition and to lock in 1. Introduction their users. Minor players saw things in much the same light In October 1991, the estimated number of C++ users was as they aimed to grow and prosper. However, there was no 400,000 [121]. The corresponding number in October 2004 lack of support for the committee’s activities within its cho- was 3,270,000 [61]. Somewhere in the early ’90s C++ left its sen domain. Vendors rely on C++ for their systems and for initial decade of exponential growth and settled into a decade highly demanding applications. Therefore, they have pro- of steady growth. The key efforts over that time were to vided steady and most valuable support for the standards ef- fort in the form of hosting and — more importantly — of 1. use the language (obviously) key technical people attending. 2. provide better compilers, tools, and libraries For good and bad, ISO C++ [66] remains a general- 3. keep the language from fragmenting into dialects purpose programming language with a bias towards systems programming that 4. keep the language and its community from stagnating • is a better C • supports data abstraction • supports object-oriented programming • supports generic programming An explanation of the first three items from a historical [Copyright notice will appear here once ’preprint’ option is removed.] perspective can be found in [120, 121]; the explanation of Evolving C++ 1991-2006 1 2007/5/25 “supports generic programming” is a major theme of this 2. Background: C++ 1979-1991 paper. Bringing aspects of generic programming into the The early history of C++ (up until 1991) is covered by my mainstream is most likely C++’s greatest contribution to the HOPL-II paper [120]. The standard reference for the first 15 software development community during this period. years of C++ is my book The Design and Evolution of C++, The paper is organized in loose chronological order: usually referred to as D&E [121]. It tells the story from the §1 Introduction pre-history of C++ until 1994. However, to set the scene for the next years of C++, here is a brief summary of C++’s early §2 Background: C++ 1979-1991 — early history, design history. criteria, language features. C++ was designed to provide Simula’s facilities for pro- §3 The C++ world in 1991 — the C++ standards process, gram organization together with C’s efficiency and flexibility chronology. for systems programming. It was intended to deliver that to §4 Standard library facilities 1991-1998 — the C++ stan- real projects within half a year of the idea. It succeeded. dard library with a heavy emphasis on its most impor- At the time, I realized neither the modesty nor the pre- tant and innovative component: the STL (containers, al- posterousness of that goal. The goal was modest in that it gorithms, and iterators). did not involve innovation, and preposterous in both its time scale and its Draconian demands on efficiency and flexibil- §5 Language features 1991-1998 — focusing on separate ity. While a modest amount of innovation did emerge over compilation of templates, exception safety, run-time type the early years, efficiency and flexibility have been main- information and namespaces. tained without compromise. While the goals for C++ have §6 Standards maintenance 1997-2003 — for stability, no been refined, elaborated, and made more explicit over the additions were made to the C++ standard. However, the years, C++ as used today directly reflects its original aims. committee wasn’t idle. Starting in 1979, while in the Computer Science Research §7 C++ in real-world use — application areas; applications Center of Bell Labs, I first designed a dialect of C called “C programming vs. systems programming; programming with Classes”. The work and experience with C with Classes styles; libraries, Application Binary Interfaces (ABIs), from 1979 to 1983 determined the shape of C++. In turn, C and environments; tools and research; Java, C#, and C; with Classes was based on my experiences using BCPL and dialects. Simula as part of my PhD studies (in distributed systems) in the University of Cambridge, England. For challenging §8 C++0x — aims, constraints, language features, and li- systems programming tasks I felt the need for a “tool” with brary facilities. the following properties: §9 Retrospective — influences and impact; beyond C++. • A good tool would have Simula’s support for program The emphasis is on the early and later years: The early years organization – that is, classes, some form of class hi- shaped current C++ (C++98). The later ones reflect the re- erarchies, some form of support for concurrency, and sponse to experience with C++98 as represented by C++0x. compile-time checking of a type system based on classes. It is impossible to discuss how to express ideas in code with- This I saw as support for the process of inventing pro- out code examples. Consequently, code examples are used to grams; that is, as support for design rather than just sup- illustrate key ideas, techniques, and language facilities. The port for implementation. examples are explained to make them accessible to non-C++ • programmers. However, the focus of the presentation is the A good tool would produce programs that ran as fast as people, ideas, ideals, techniques, and constraints that shape BCPL programs and share BCPL’s ability to combine C++ rather than on language-technical details. For a descrip- separately compiled units into a program. A simple link- tion of what ISO C++ is today, see [66, 126]. The emphasis age convention is essential for combining units written is on straightforward questions: What happened? When did in languages such as C, Algol68, Fortran, BCPL, assem- it happen? Who were there? What were their reasons? What bler, etc., into a single program and thus not to suffer the were the implications of what was done (or not done)? handicap of inherent limitations in a single language. C++ is a living language. The main aim of this paper • A good tool should allow highly portable implementa- is to describe its evolution. However, it is also a language tions. My experience was that the “good” implementa- with a great emphasis on backwards compatibility. The code tion I needed would typically not be available until “next that I describe in this paper still compiles and runs today. year” and only on a machine I couldn’t afford. This im- Consequently, I tend to use the present tense to describe it. plied that a tool must have multiple sources of implemen- Given the emphasis on compatibility, the code will probably tations (no monopoly would be sufficiently responsive to also run as described 15 years from now. Thus, my use of users of “unusual” machines and to poor graduate stu- the present tense emphasizes an important point about the dents), that there should be no complicated run-time sup- evolution of C++. port system to port, and that there should be only very Evolving C++ 1991-2006 2 2007/5/25 limited integration between the tool and its host operat- These criteria are explored in detail in Chapter 4 of D&E ing system. [121]. C++ as defined at the time of release 2.0 in 1989 strictly fulfilled these criteria; the fundamental tensions in During my early years at Bell Labs, these ideals grew into a the effort to design templates and exception-handling mech- set of “rules of thumb” for the design of C++.
Recommended publications
  • Thriving in a Crowded and Changing World: C++ 2006–2020
    Thriving in a Crowded and Changing World: C++ 2006–2020 BJARNE STROUSTRUP, Morgan Stanley and Columbia University, USA Shepherd: Yannis Smaragdakis, University of Athens, Greece By 2006, C++ had been in widespread industrial use for 20 years. It contained parts that had survived unchanged since introduced into C in the early 1970s as well as features that were novel in the early 2000s. From 2006 to 2020, the C++ developer community grew from about 3 million to about 4.5 million. It was a period where new programming models emerged, hardware architectures evolved, new application domains gained massive importance, and quite a few well-financed and professionally marketed languages fought for dominance. How did C++ ś an older language without serious commercial backing ś manage to thrive in the face of all that? This paper focuses on the major changes to the ISO C++ standard for the 2011, 2014, 2017, and 2020 revisions. The standard library is about 3/4 of the C++20 standard, but this paper’s primary focus is on language features and the programming techniques they support. The paper contains long lists of features documenting the growth of C++. Significant technical points are discussed and illustrated with short code fragments. In addition, it presents some failed proposals and the discussions that led to their failure. It offers a perspective on the bewildering flow of facts and features across the years. The emphasis is on the ideas, people, and processes that shaped the language. Themes include efforts to preserve the essence of C++ through evolutionary changes, to simplify itsuse,to improve support for generic programming, to better support compile-time programming, to extend support for concurrency and parallel programming, and to maintain stable support for decades’ old code.
    [Show full text]
  • 18 Free Ways to Download Any Video Off the Internet Posted on October 2, 2007 by Aseem Kishore Ads by Google
    http://www.makeuseof.com/tag/18-free-ways-to-download-any-video-off-the-internet/ 18 Free Ways To Download Any Video off the Internet posted on October 2, 2007 by Aseem Kishore Ads by Google Download Videos Now download.cnet.com Get RealPlayer® & Download Videos from the web. 100% Secure Download. Full Movies For Free www.YouTube.com/BoxOffice Watch Full Length Movies on YouTube Box Office. Absolutely Free! HD Video Players from US www.20north.com/ Coby, TV, WD live, TiVo and more. Shipped from US to India Video Downloading www.VideoScavenger.com 100s of Video Clips with 1 Toolbar. Download Video Scavenger Today! It seems like everyone these days is downloading, watching, and sharing videos from video-sharing sites like YouTube, Google Video, MetaCafe, DailyMotion, Veoh, Break, and a ton of other similar sites. Whether you want to watch the video on your iPod while working out, insert it into a PowerPoint presentation to add some spice, or simply download a video before it’s removed, it’s quite essential to know how to download, convert, and play these videos. There are basically two ways to download videos off the Internet and that’s how I’ll split up this post: either via a web app or via a desktop application. Personally, I like the web applications better simply because you don’t have to clutter up and slow down your computer with all kinds of software! UPDATE: MakeUseOf put together an excellent list of the best websites for watching movies, TV shows, documentaries and standups online.
    [Show full text]
  • Imagine. Create. Deploy. Inspired? So Are We
    Imagine. Create. Deploy. Inspired? So Are We. Inspiration is all around us. From beautiful screens on the web to well-designed reports. New devices push the development envelope and ask that we consider new technologies. The latest release, DevExpress 12.2, delivers the tools you need to build the multi-channel solutions you can imagine: Windows 8-inspired applications with live tiles perfect for Microsoft Surface, multi-screen iOS and Android apps. It’s all possible. Let’s see what develops. Download your 30-day trial at www.DevExpress.com Copyright 1998-2013 Developer Express, Inc. All rights reserved. All trademarks are property of their respective owners. Untitled-9 1 1/8/13 2:10 PM THE MICROSOFT JOURNAL FOR DEVELOPERS MARCH 2013 VOL 28 NO 3 magazine XAML with DirectX and C++..............34 Using XAML with DirectX and C++ COLUMNS in Windows Store Apps WINDOWS WITH C++ Doug Erickson .................................................................34 Rendering in a Desktop Application with Direct2D Exploring the JavaScript API for Offi ce: Kenny Kerr, page 8 Data Access and Events DATA POINTS Stephen Oliver and Eric Schmidt ........................................48 Playing with the EF6 Alpha Julie Lerman, page 16 Best Practices in Asynchronous Programming WINDOWS AZURE INSIDER Stephen Cleary ................................................................56 Real-World Scenarios for Node.js in Windows Azure Migrating ASP.NET Web Forms to the Bruno Terkaly and Ricardo Villalobos, page 26 MVC Pattern with the ASP.NET Web API THE WORKING
    [Show full text]
  • A Trusted Mechanised Javascript Specification
    A Trusted Mechanised JavaScript Specification Martin Bodin Arthur Charguéraud Daniele Filaretti Inria & ENS Lyon Inria & LRI, Université Paris Sud, CNRS Imperial College London [email protected] [email protected] d.fi[email protected] Philippa Gardner Sergio Maffeis Daiva Naudžiunien¯ e˙ Imperial College London Imperial College London Imperial College London [email protected] sergio.maff[email protected] [email protected] Alan Schmitt Gareth Smith Inria Imperial College London [email protected] [email protected] Abstract sation was crucial. Client code that works on some of the main JavaScript is the most widely used web language for client-side ap- browsers, and not others, is not useful. The first official standard plications. Whilst the development of JavaScript was initially just appeared in 1997. Now we have ECMAScript 3 (ES3, 1999) and led by implementation, there is now increasing momentum behind ECMAScript 5 (ES5, 2009), supported by all browsers. There is the ECMA standardisation process. The time is ripe for a formal, increasing momentum behind the ECMA standardisation process, mechanised specification of JavaScript, to clarify ambiguities in the with plans for ES6 and 7 well under way. ECMA standards, to serve as a trusted reference for high-level lan- JavaScript is the only language supported natively by all major guage compilation and JavaScript implementations, and to provide web browsers. Programs written for the browser are either writ- a platform for high-assurance proofs of language properties. ten directly in JavaScript, or in other languages which compile to We present JSCert, a formalisation of the current ECMA stan- JavaScript.
    [Show full text]
  • BCL: a Cross-Platform Distributed Data Structures Library
    BCL: A Cross-Platform Distributed Data Structures Library Benjamin Brock, Aydın Buluç, Katherine Yelick University of California, Berkeley Lawrence Berkeley National Laboratory {brock,abuluc,yelick}@cs.berkeley.edu ABSTRACT high-performance computing, including several using the Parti- One-sided communication is a useful paradigm for irregular paral- tioned Global Address Space (PGAS) model: Titanium, UPC, Coarray lel applications, but most one-sided programming environments, Fortran, X10, and Chapel [9, 11, 12, 25, 29, 30]. These languages are including MPI’s one-sided interface and PGAS programming lan- especially well-suited to problems that require asynchronous one- guages, lack application-level libraries to support these applica- sided communication, or communication that takes place without tions. We present the Berkeley Container Library, a set of generic, a matching receive operation or outside of a global collective. How- cross-platform, high-performance data structures for irregular ap- ever, PGAS languages lack the kind of high level libraries that exist plications, including queues, hash tables, Bloom filters and more. in other popular programming environments. For example, high- BCL is written in C++ using an internal DSL called the BCL Core performance scientific simulations written in MPI can leverage a that provides one-sided communication primitives such as remote broad set of numerical libraries for dense or sparse matrices, or get and remote put operations. The BCL Core has backends for for structured, unstructured, or adaptive meshes. PGAS languages MPI, OpenSHMEM, GASNet-EX, and UPC++, allowing BCL data can sometimes use those numerical libraries, but are missing the structures to be used natively in programs written using any of data structures that are important in some of the most irregular these programming environments.
    [Show full text]
  • Ali Aydar Anita Borg Alfred Aho Bjarne Stroustrup Bill Gates
    Ali Aydar Ali Aydar is a computer scientist and Internet entrepreneur. He is the chief executive officer at Sporcle. He is best known as an early employee and key technical contributor at the original Napster. Aydar bought Fanning his first book on programming in C++, the language he would use two years later to build the Napster file-sharing software. Anita Borg Anita Borg (January 17, 1949 – April 6, 2003) was an American computer scientist. She founded the Institute for Women and Technology (now the Anita Borg Institute for Women and Technology). While at Digital Equipment, she developed and patented a method for generating complete address traces for analyzing and designing high-speed memory systems. Alfred Aho Alfred Aho (born August 9, 1941) is a Canadian computer scientist best known for his work on programming languages, compilers, and related algorithms, and his textbooks on the art and science of computer programming. Aho received a B.A.Sc. in Engineering Physics from the University of Toronto. Bjarne Stroustrup Bjarne Stroustrup (born 30 December 1950) is a Danish computer scientist, most notable for the creation and development of the widely used C++ programming language. He is a Distinguished Research Professor and holds the College of Engineering Chair in Computer Science. Bill Gates 2 of 10 Bill Gates (born October 28, 1955) is an American business magnate, philanthropist, investor, computer programmer, and inventor. Gates is the former chief executive and chairman of Microsoft, the world’s largest personal-computer software company, which he co-founded with Paul Allen. Bruce Arden Bruce Arden (born in 1927 in Minneapolis, Minnesota) is an American computer scientist.
    [Show full text]
  • Imagine. Create. Deploy. Inspired? So Are We
    Imagine. Create. Deploy. Inspired? So Are We. Inspiration is all around us. From beautiful screens on the web to well-designed reports. New devices push the development envelope and ask that we consider new technologies. The latest release, DevExpress 12.2, delivers the tools you need to build the multi-channel solutions you can imagine: Windows 8-inspired applications with live tiles perfect for Microsoft Surface, multi-screen iOS and Android apps. It’s all possible. Let’s see what develops. Download your 30-day trial at www.DevExpress.com Copyright 1998-2013 Developer Express, Inc. All rights reserved. All trademarks are property of their respective owners. Untitled-9 1 1/8/13 2:10 PM THE MICROSOFT JOURNAL FOR DEVELOPERS FEBRUARY 2013 VOL 28 NO 2 magazine JavaScript API for Offi ce.........................20 Exploring the New JavaScript API for Offi ce COLUMNS Stephen Oliver and Eric Schmidt ........................................20 CUTTING EDGE Essential Facebook Async Causality Chain Tracking Programming: Andrew Stasyuk ...............................................................32 The JavaScript SDK Dino Esposito, page 6 Building a Simple Comet Application WINDOWS WITH C++ in the Microsoft .NET Framework Creating Desktop Apps Derrick Lau .....................................................................42 with Visual C++ 2012 Kenny Kerr, page 12 Detecting Abnormal Data Using TEST RUN k-Means Clustering Naive Bayes Classifi cation with C# ............................................................. James McCaffrey 54 James McCaffrey,
    [Show full text]
  • Bjarne Stroustrup
    Bjarne Stroustrup 52 Riverside Dr. #6A +1 979 219 5004 NY, NY 10024 [email protected] USA www.stroustrup.com Education Ph.D. in Computer Science, University of Cambridge, England, 1979 Ph.D. Thesis: Communication and Control in Distributed Computer Systems Thesis advisor: David Wheeler Cand.Scient. in Mathematics with Computer Science, Aarhus University, Denmark, 1975 Thesis advisor: Brian H. Mayoh Research Interests Distributed Systems, Design, Programming techniques, Software development tools, and Programming Languages Professional Experience Technical Fellow, Morgan Stanley, New York, January 2019 – present Managing Director, Division of Technology and Data, Morgan Stanley, New York, January 2014 – present Visiting Professor, Columbia University, New York, January 2014 – present Visiting Professor in the Computer Lab and Fellow of Churchill College, Cambridge University, Spring 2012 Visiting Professor in the Computer Science Department, Princeton University, Fall 2011 The College of Engineering Chair Professor in Computer Science, Department of Computer Science, Texas A&M University, October 2002 – January 2014 Department Head, AT&T Laboratories – Research, Florham Park, New Jersey, July 1995 – October 2002 Distinguished Member of Technical Staff, AT&T Bell Laboratories, Murray Hill, NJ, June 1987 – July 1995 Member of Technical Staff, AT&T Bell Laboratories, Murray Hill, NJ, March 1979 – June 1987 Honors & Awards 2019: Honorary doctor of University Carlos III in Madrid, Spain. 1 2018: The John Scott Legacy Medal and Premium from The Franklin Institute and the City Council of Philadelphia to men and women whose inventions improved the comfort, welfare, and happiness of human kind in a significant way. 2018: The Computer Pioneer Award from The IEEE Computer Society For bringing object- oriented programming and generic programming to the mainstream with his design and implementation of the C++ programming language.
    [Show full text]
  • Automated Fortran–C++ Bindings for Large-Scale Scientific Applications
    Automated Fortran–C++ Bindings for Large-Scale Scientific Applications Seth R Johnson HPC Methods for Nuclear Applications Group Nuclear Energy and Fuel Cycle Division Oak Ridge National Laboratory ORNL is managed by UT–Battelle, LLC for the US Department of Energy github.com/swig-fortran Overview • Introduction • Tools • SWIG+Fortran • Strategies • Example libraries 2 Introduction 3 How did I get involved? • SCALE (1969–present): Fortran/C++ • VERA: multiphysics, C++/Fortran • MPACT: hand-wrapped calls to C++ Trilinos 4 Project background • Exascale Computing Project: at inception, many scientific app codes were primarily Fortran • Numerical/scientific libraries are primarily C/C++ • Expose Trilinos solver library to Fortran app developers: ForTrilinos product 5 ECP: more exascale, less Fortran Higher-level { }Fortran ECP application codes over time (credit: Tom Evans) 6 Motivation • C++ library developers: expand user base, more F opportunities for development and follow-on funding • Fortran scientific app developers: use newly exposed algorithms and tools for your code C • Multiphysics project integration: in-memory coupling of C++ physics code to Fortran physics code • Transitioning application teams: bite-size migration from Fortran to C++ C++ 7 Tools 8 Wrapper “report card” • Portability: Does it use standardized interoperability? • Reusability: How much manual duplication needed for new interfaces? • Capability: Does the Fortran interface have parity with the C++? • Maintainability: Do changes to the C++ code automatically update
    [Show full text]
  • (DNC) Magazine
    EDITOR’S NOTE @suprotimagarwal Editor in Chief Developers! Developers! Developers! A decade ago, bathed in sweat, Editor In Chief : yelled the one and only Steve Balmer as if he was addressing a sect Suprotim Agarwal that's unlike any other. (suprotimagarwal@ dotnetcurry.com) But why am I bringing this up now? Art Director : Minal Agarwal In the Software ecosystem, change has always been disruptive and has occured more frequently than ever. Contributing Authors : Yacoub Massad Organizations have had the best of intentions while adapting to these Gouri Sohoni frequent changes and have often pondered seriously accelerating their Darren Gillis Daniel Jimenez Garcia digital transformation journey. The actual transformation though has Damir Arh been quite slow due to restraints like time and budget. Benjamin Jakobus That is, until now. Technical Reviewers : Damir Arh The pandemic that began in 2020 forced companies to reformulate Daniel Jimenez Garcia their plans and pivot by setting up remote working environments. Years’ Gouri Sohoni Subodh Sohoni worth of digital transformation, happened in just a matter of months! Suprotim Agarwal And at the center of this were the Developers and IT staff, playing Yacoub Massad a crucial role in this transformation. Sitting in remote locations, and dealing with unprecedented challenges, developers have been working Next Edition : asynchronously to skill, reskill and upskill themselves, and make their April 2021 organizations more agile. Windows, Visual Studio, ASP.NET, Azure, TFS & other Microsoft products & technologies are trademarks of Nobody knows for sure what 2021 and the coming years has in store the Microsoft group of companies. for us. I sincerelly hope it's good for everyone.
    [Show full text]
  • Metal C Programming Guide and Reference
    z/OS Version 2 Release 3 Metal C Programming Guide and Reference IBM SC14-7313-30 Note Before using this information and the product it supports, read the information in “Notices” on page 159. This edition applies to Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2019-02-15 © Copyright International Business Machines Corporation 1998, 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents List of Figures...................................................................................................... vii List of Tables........................................................................................................ ix About this document.............................................................................................xi Who should read this document................................................................................................................. xi Where to find more information..................................................................................................................xi z/OS Basic Skills in IBM Knowledge Center.......................................................................................... xi How to read syntax diagrams......................................................................................................................xi How to send your comments to IBM......................................................................xv
    [Show full text]
  • Academic Program Review
    Academic Program Review April 16-18, 2012 Department of Computer Science and Engineering Room 301 Harvey R. Bright Building Texas A&M University College Station, Texas 1 Contents I Introduction ............................................................................................................................... 4 I.1 Charge to Review Committee ............................................................................................. 4 I.2 Schedule of Review/Itinerary ............................................................................................. 5 I.3 Administrative Structure .................................................................................................... 6 II Brief History ............................................................................................................................... 7 II.1 Founding of Department .................................................................................................... 7 II.2 Founding and Development of Related Centers ................................................................ 7 II.3 Review and Changes in Past Seven Years ........................................................................ 15 II.4 Date of Last Program Review ........................................................................................... 16 III Vision and Goals ................................................................................................................... 16 III.1 Strategic Plan ...................................................................................................................
    [Show full text]