2004 Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

2004 Annual Report 2004 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE NATIONAL ACADEMY OF ENGINEERING 2101 Constitution Avenue, NW Washington, DC 20418 www.nae.edu 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports The National Academy of Sciences is a private, non- 4 Engineering Education profit, self-perpetuating society of distinguished schol- 4 ars engaged in scientific and engineering research, Center for the Advancement of Scholarship on dedicated to the furtherance of science and technolo- Engineering Education gy and to their use for the general welfare. Upon the 5 authority of the charter granted to it by the Congress in Technological Literacy 1863, the Academy has a mandate that requires it to 6 Public Understanding of Engineering advise the federal government on scientific and techni- cal matters. Dr. Ralph J. Cicerone is president of the Media Relations National Academy of Sciences. Public Relations The National Academy of Engineering was established Developing Effective Messages Project in 1964, under the charter of the National Academy of Great Achievements Website Sciences, as a parallel organization of outstanding 8 engineers. It is autonomous in its administration and in Engineering Ethics the selection of its members, sharing with the National 8 Diversity in the Engineering Workforce Academy of Sciences the responsibility for advising the 11 federal government. The National Academy of Engi- Frontiers of Engineering neering also sponsors engineering programs aimed at Lillian M. Gilbreth Lectureships for Young Engineers meeting national needs, encourages education and 12 research, and recognizes the superior achievements of Engineering and the Health Care System engineers. Dr. Wm. A. Wulf is president of the National 13 Engineering and the Environment Academy of Engineering. 13 Accident Precursors The Institute of Medicine was established in 1970 by 14 User-Authorized Handgun Technology the National Academy of Sciences to secure the serv- 15 ices of eminent members of appropriate professions in Assessing the Capacity of the U.S. Engineering Research Enterprise the examination of policy matters pertaining to the 16 2004 NAE Awards Recipients health of the public. The Institute acts under the 18 responsibility given to the National Academy of 2004 New Members and Foreign Associates Sciences by its congressional charter to be an adviser 20 2004 Private Contributions to the federal government and, upon its own 20 initiative, to identify issues of medical care, research, Einstein Society and education. Dr. Harvey V. Fineberg is president of 20 Golden Bridge Society the Institute of Medicine. 21 Catalyst Society The National Research Council was organized by the 21 Rosette Society National Academy of Sciences in 1916 to associate the 21 broad community of science and technology with the Challenge Society Academy’s purposes of furthering knowledge and 21 Charter Society advising the federal government. Functioning in accor- 22 dance with general policies determined by the Other Individual Donors Academy, the Council has become the principal oper- 25 Corporations, Foundations, and Other Organizations ating agency of both the National Academy of 25 Sciences and the National Academy of Engineering in Presidents’ Circle providing services to the government, the public, and 26 NAE Fund Financial Report the scientific and engineering communities. The 28 Council is administered jointly by both Academies and Report of Independent Certified Public Accountants Photo Credits the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. 32 Notes to Financial Statements Page 1: Cable Risdon Photography Wm. A. Wulf are chair and vice chair, respectively, of 39 Officers Page 13: Beijing photograph by Jeremy Woodhouse/Getty Images the National Research Council. Page 17: Photograph of Dr. Ruckenstein courtesy of University of 39 Councillors Buffalo; photograph of Dr. Slaughter courtesy of NACME www.national-academies.org 39 Staff 40 NAE Publications Letter from the President In 2004, the National Academy of Engineering (NAE) had a great opportunity to expand its focus on preparing to face ongoing and future challenges. At the NAE annual meeting, we examined in depth a “mosaic” of engineering challenges and opportunities that must be addressed to continue to provide the nation with the best information and advice regarding our technological welfare. In addition to out- sourcing, the definition and reliability of discipline-specific data, the importance of H1B visas, the need for more women and Wm. A.Wulf underrepresented minorities in the profession, the need for policy makers, journalists, and others who have tremendous influence to be technologi- cally literate, and other important issues, we also reflected on one of the main underpinnings of our profession—engineering education. We must continue our We must use all commitment to change and to providing resources to support changes in engi- neering education, not only to keep up with new inventions and achievements, of our resources, but also to meet the challenges of rapidly evolving societies and markets at home technical and human, and abroad. We must use all of our technical resources, qualitative, diversified, to educate engineers and quantitative systems, and all of our human and imaginative resources to edu- for a very different cate and prepare engineers to practice in a very different world. Otherwise, we world. will surely miss the mark of what engineering can and should achieve in building and sustaining our great nation. The achievements and advancements we have made in the arena of engineering education and other frontiers during 2004 reflect our firm commitment to this fundamental aspect of engineering. Interestingly enough, one of our finest achievements—the 20 Greatest Achievements Project (www.greatachievements.org) —would not have been possible without a strong, viable U.S. engineering education system that fostered and supported the inventions and achievements that improved the way people everywhere live and work. The book is now also a website portal we hope will inspire achievements of this magnitude and impact in the next 100 years. Another cornerstone of our efforts to change, perhaps even revolutionize, engi- neering education is the rapid expansion—and success—of the Center for the Advancement of Scholarship on Engineering Education (CASEE). Our activities in CASEE include sponsoring scholarship in engineering education, setting higher 1 standards for such scholarship, encouraging the implementation of results of that scholarship, and providing a web-based portal to the best available scholarship in engineering education. But NAE has done more than advocate for change in engineering education. We are also working to educate the public about engineering issues that affect daily life and public policy. Take for example our “Media and the First Response” terrorism sce- narios, which bring together journalists and other members of the media, govern- ment officials, and engineering experts to prepare them to communicate accurate and pertinent information in the crucial minutes and hours after a terrorist event or other catastrophe. As part of these scenario exercises, we have produced basic fact sheets on radiological, nuclear, biological, and chemical terrorism and distributed them to the media. These fact sheets are meant to give them a quick reference in the event of an incident. These are but two of our current program activities. We also have ongoing projects, workshops, studies, and reports on technological literacy, the public understanding of engineering, engineering ethics, diversity in the engineering workforce, frontiers of engineering, and engineering and the environment. All of these programs are described briefly in this annual report. NAE also continues to marshal the knowledge and insights of our members in the fields of bioengineering, computer science, aerospace, civil, industrial, and mechani- cal engineering, and others in service to the nation. We encourage you to review this year’s annual report carefully and find a particular program or activity in which you can help us prepare to meet the needs of our communities and provide authoritative, independent information in areas of crucial importance to our national well-being. Wm. A. Wulf President 2 NAE In Service to the Nation Every day, our nation faces questions related to engineering and technology. How can we keep our nation safe from terrorism? How can we increase diversity in the engineering workforce? What role should citizens play in decisions about technol- ogy development? How can we help journalists and others in the media provide accurate, timely engineering and technology information? Answering these ques- tions is becoming increasingly difficult as we advance technologically and become more involved in the global community. Since 1964, the National Academy of Engineering (NAE) has provided independ- NAE brings together ent, objective advice to the nation on engineering-related topics and policies. distinguished NAE operates under the same congressional act of incorporation that established the National Academy of Sciences, signed in 1863 by President Abraham Lincoln. engineers for the Under this charter, NAE is directed “whenever called upon by any department or purpose of improving agency of the government, to investigate, examine, experiment, and report upon any subject of science or art.” the lives of people everywhere. NAE has
Recommended publications
  • Thriving in a Crowded and Changing World: C++ 2006–2020
    Thriving in a Crowded and Changing World: C++ 2006–2020 BJARNE STROUSTRUP, Morgan Stanley and Columbia University, USA Shepherd: Yannis Smaragdakis, University of Athens, Greece By 2006, C++ had been in widespread industrial use for 20 years. It contained parts that had survived unchanged since introduced into C in the early 1970s as well as features that were novel in the early 2000s. From 2006 to 2020, the C++ developer community grew from about 3 million to about 4.5 million. It was a period where new programming models emerged, hardware architectures evolved, new application domains gained massive importance, and quite a few well-financed and professionally marketed languages fought for dominance. How did C++ ś an older language without serious commercial backing ś manage to thrive in the face of all that? This paper focuses on the major changes to the ISO C++ standard for the 2011, 2014, 2017, and 2020 revisions. The standard library is about 3/4 of the C++20 standard, but this paper’s primary focus is on language features and the programming techniques they support. The paper contains long lists of features documenting the growth of C++. Significant technical points are discussed and illustrated with short code fragments. In addition, it presents some failed proposals and the discussions that led to their failure. It offers a perspective on the bewildering flow of facts and features across the years. The emphasis is on the ideas, people, and processes that shaped the language. Themes include efforts to preserve the essence of C++ through evolutionary changes, to simplify itsuse,to improve support for generic programming, to better support compile-time programming, to extend support for concurrency and parallel programming, and to maintain stable support for decades’ old code.
    [Show full text]
  • Ali Aydar Anita Borg Alfred Aho Bjarne Stroustrup Bill Gates
    Ali Aydar Ali Aydar is a computer scientist and Internet entrepreneur. He is the chief executive officer at Sporcle. He is best known as an early employee and key technical contributor at the original Napster. Aydar bought Fanning his first book on programming in C++, the language he would use two years later to build the Napster file-sharing software. Anita Borg Anita Borg (January 17, 1949 – April 6, 2003) was an American computer scientist. She founded the Institute for Women and Technology (now the Anita Borg Institute for Women and Technology). While at Digital Equipment, she developed and patented a method for generating complete address traces for analyzing and designing high-speed memory systems. Alfred Aho Alfred Aho (born August 9, 1941) is a Canadian computer scientist best known for his work on programming languages, compilers, and related algorithms, and his textbooks on the art and science of computer programming. Aho received a B.A.Sc. in Engineering Physics from the University of Toronto. Bjarne Stroustrup Bjarne Stroustrup (born 30 December 1950) is a Danish computer scientist, most notable for the creation and development of the widely used C++ programming language. He is a Distinguished Research Professor and holds the College of Engineering Chair in Computer Science. Bill Gates 2 of 10 Bill Gates (born October 28, 1955) is an American business magnate, philanthropist, investor, computer programmer, and inventor. Gates is the former chief executive and chairman of Microsoft, the world’s largest personal-computer software company, which he co-founded with Paul Allen. Bruce Arden Bruce Arden (born in 1927 in Minneapolis, Minnesota) is an American computer scientist.
    [Show full text]
  • Bjarne Stroustrup
    Bjarne Stroustrup 52 Riverside Dr. #6A +1 979 219 5004 NY, NY 10024 [email protected] USA www.stroustrup.com Education Ph.D. in Computer Science, University of Cambridge, England, 1979 Ph.D. Thesis: Communication and Control in Distributed Computer Systems Thesis advisor: David Wheeler Cand.Scient. in Mathematics with Computer Science, Aarhus University, Denmark, 1975 Thesis advisor: Brian H. Mayoh Research Interests Distributed Systems, Design, Programming techniques, Software development tools, and Programming Languages Professional Experience Technical Fellow, Morgan Stanley, New York, January 2019 – present Managing Director, Division of Technology and Data, Morgan Stanley, New York, January 2014 – present Visiting Professor, Columbia University, New York, January 2014 – present Visiting Professor in the Computer Lab and Fellow of Churchill College, Cambridge University, Spring 2012 Visiting Professor in the Computer Science Department, Princeton University, Fall 2011 The College of Engineering Chair Professor in Computer Science, Department of Computer Science, Texas A&M University, October 2002 – January 2014 Department Head, AT&T Laboratories – Research, Florham Park, New Jersey, July 1995 – October 2002 Distinguished Member of Technical Staff, AT&T Bell Laboratories, Murray Hill, NJ, June 1987 – July 1995 Member of Technical Staff, AT&T Bell Laboratories, Murray Hill, NJ, March 1979 – June 1987 Honors & Awards 2019: Honorary doctor of University Carlos III in Madrid, Spain. 1 2018: The John Scott Legacy Medal and Premium from The Franklin Institute and the City Council of Philadelphia to men and women whose inventions improved the comfort, welfare, and happiness of human kind in a significant way. 2018: The Computer Pioneer Award from The IEEE Computer Society For bringing object- oriented programming and generic programming to the mainstream with his design and implementation of the C++ programming language.
    [Show full text]
  • Seeds of Discovery: Chapters in the Economic History of Innovation Within NASA
    Seeds of Discovery: Chapters in the Economic History of Innovation within NASA Edited by Roger D. Launius and Howard E. McCurdy 2015 MASTER FILE AS OF Friday, January 15, 2016 Draft Rev. 20151122sj Seeds of Discovery (Launius & McCurdy eds.) – ToC Link p. 1 of 306 Table of Contents Seeds of Discovery: Chapters in the Economic History of Innovation within NASA .............................. 1 Introduction: Partnerships for Innovation ................................................................................................ 7 A Characterization of Innovation ........................................................................................................... 7 The Innovation Process .......................................................................................................................... 9 The Conventional Model ....................................................................................................................... 10 Exploration without Innovation ........................................................................................................... 12 NASA Attempts to Innovate .................................................................................................................. 16 Pockets of Innovation............................................................................................................................ 20 Things to Come ...................................................................................................................................... 23
    [Show full text]
  • Academic Program Review
    Academic Program Review April 16-18, 2012 Department of Computer Science and Engineering Room 301 Harvey R. Bright Building Texas A&M University College Station, Texas 1 Contents I Introduction ............................................................................................................................... 4 I.1 Charge to Review Committee ............................................................................................. 4 I.2 Schedule of Review/Itinerary ............................................................................................. 5 I.3 Administrative Structure .................................................................................................... 6 II Brief History ............................................................................................................................... 7 II.1 Founding of Department .................................................................................................... 7 II.2 Founding and Development of Related Centers ................................................................ 7 II.3 Review and Changes in Past Seven Years ........................................................................ 15 II.4 Date of Last Program Review ........................................................................................... 16 III Vision and Goals ................................................................................................................... 16 III.1 Strategic Plan ...................................................................................................................
    [Show full text]
  • A History of C++: 1979− 1991
    A History of C++: 1979−1991 Bjarne Stroustrup AT&T Bell Laboratories Murray Hill, New Jersey 07974 ABSTRACT This paper outlines the history of the C++ programming language. The emphasis is on the ideas, constraints, and people that shaped the language, rather than the minutiae of language features. Key design decisions relating to language features are discussed, but the focus is on the overall design goals and practical constraints. The evolution of C++ is traced from C with Classes to the current ANSI and ISO standards work and the explosion of use, interest, commercial activity, compilers, tools, environments, and libraries. 1 Introduction C++ was designed to provide Simula’s facilities for program organization together with C’s effi- ciency and flexibility for systems programming. It was intended to deliver that to real projects within half a year of the idea. It succeeded. At the time, I realized neither the modesty nor the preposterousness of that goal. The goal was modest in that it did not involve innovation, and preposterous in both its time scale and its Draco- nian demands on efficiency and flexibility. While a modest amount of innovation did emerge over the years, efficiency and flexibility have been maintained without compromise. While the goals for C++ have been refined, elaborated, and made more explicit over the years, C++ as used today directly reflects its original aims. This paper is organized in roughly chronological order: §2 C with Classes: 1979– 1983. This section describes the fundamental design decisions for C++ as they were made for C++’s immediate predecessor. §3 From C with Classes to C++: 1982– 1985.
    [Show full text]
  • Introduc)On to C++
    Introduc)on to C++ CS 16: Solving Problems with Computers I Lecture #2 Ziad Matni Dept. of Computer Science, UCSB Announcements • Homework #1 due today – Please take out any staples or paper clips • No more switching lab )mes – Labs at 9am, 10am, 11am are FULL – Other labs have some space leF 9/27/16 Matni, CS16, Fa16 2 Lecture Outline • Computer Systems -­‐-­‐-­‐ A review from last week • Programming and Problem Solving • IntroducPon to C++ 9/27/16 Matni, CS16, Fa16 3 Defining Computer A device that can be instructed to carry out an arbitrary set of arithme)c or logical opera)ons automaPcally 9/27/16 Matni, CS16, Fa16 4 Computer SoFware • The collecPon of programs used by a computer, and includes: – ApplicaPons – Translators (compilers) – System Managers (drivers, other OS components) 9/27/16 Matni, CS16, Fa16 5 5 Main Components to Computers • Inputs • Outputs • Processor • Main memory – Usually inside the computer, volaPle • Secondary memory – More permanent memory for mass storage of data 9/27/16 Matni, CS16, Fa16 6 Computer Memory • Usually organized in two parts: – Address • Where can I find my data? – Data (payload) • What is my data? • The smallest representaPon of the data – A binary bit (“0”s and “1”s) – A common collecPon of bits is a byte (8 bits = 1 byte) 9/27/16 Matni, CS16, Fa16 7 What is the Most Basic Form of Computer Language? • Binary a.k.a Base-­‐2 • Expressing data AND instrucPons in either “1” or “0” – So, “01010101 01000011 01010011 01000010 00100001 00100001” could mean an instruc-on to “calculate 2 + 3” Or it could
    [Show full text]
  • Optimizing a Bank of Kalman Filters for Navigation Integrity
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2021 Optimizing a Bank of Kalman Filters for Navigation Integrity Luis E. Sepulveda Follow this and additional works at: https://scholar.afit.edu/etd Part of the Computer Sciences Commons, and the Navigation, Guidance, Control and Dynamics Commons Recommended Citation Sepulveda, Luis E., "Optimizing a Bank of Kalman Filters for Navigation Integrity" (2021). Theses and Dissertations. 4908. https://scholar.afit.edu/etd/4908 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Optimizing Banks of Kalman Filters for Navigation Integrity using Parallel Computing and Efficient Software Design THESIS Luis E. Sepulveda, Captain, USAF AFIT-ENG-MS-21-M-079 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-21-M-079 OPTIMIZING BANKS OF KALMAN FILTERS FOR NAVIGATION INTEGRITY USING PARALLEL COMPUTING AND EFFICIENT SOFTWARE DESIGN THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science Luis E.
    [Show full text]
  • Ghosh Wsu 0251E 12693.Pdf (9.791Mb)
    SUPPORTING EFFICIENT GRAPH ANALYTICS AND SCIENTIFIC COMPUTATION USING ASYNCHRONOUS DISTRIBUTED-MEMORY PROGRAMMING MODELS By SAYAN GHOSH A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY School of Electrical Engineering and Computer Science MAY 2019 c Copyright by SAYAN GHOSH, 2019 All Rights Reserved c Copyright by SAYAN GHOSH, 2019 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of SAYAN GHOSH find it satisfactory and recommend that it be accepted. Assefaw H. Gebremedhin, Ph.D., Chair Carl Hauser, Ph.D. Ananth Kalyanaraman, Ph.D. Pavan Balaji, Ph.D. Mahantesh Halappanavar, Ph.D. ii ACKNOWLEDGEMENT I thank my adviser, Dr. Assefaw Gebremedhin for his generous guidance, unflagging support, and considerable enthusiasm toward my research. I greatly appreciate his attempts in always push- ing me to refine my writing and narration skills, which has helped me to become a better researcher and communicator. I would like to thank Dr. Jeff Hammond for introducing me to one-sided communication models, which play an important role in my thesis. I would also like to thank Dr. Barbara Chapman and Dr. Sunita Chandrasekaran, for their unwavering support during my Masters studies at the University of Houston. I am immensely fortunate to have had the opportunity to work with all of my thesis committee members. As a Teaching Assistant to Dr. Carl Hauser for the Computer Networks course, I appreciate that he encouraged me to solve the problem sets on my own, so that I could assist the students effectively.
    [Show full text]
  • Business Policy and Strategic Management (Text and Cases)
    Business Policy and Strategic Management (Text and Cases) P. SUBBA RAO Professor and Convener, Executive MBA Program School of Business Administration University of Papua New Guinea Papua New Guinea (Australia) Formerly: Professor and Dean Faculty of Commerce and Management Sri Krishnadevaraya University Anantapur-515 003 (AP), India E-mail: [email protected] Assisted by: Hima Bindu Chandra President, Cybernit Software Solutions,USA MUMBAI z NEW DELHI z NAGPUR z BENGALURU z HYDERABAD z CHENNAI z PUNE LUCKNOW z AHMEDABAD z ERNAKULAM z BHUBANESWAR z KOLKATA © Author No part of this book shall be reproduced, reprinted or translated for any purpose whatsoever without prior permission of the Publisher in writing. First Edition : 1999 Edition : 2000, 2001, 2002, 2003, 2004 2005, 2006, 2007, 2008, 2009 Second Revised Edition : 2010 Edition : 2011, 2013, 2014 Edition : 2015 Edition : 2016 Published by : Mrs. Meena Pandey for Himalaya Publishing House Pvt. Ltd., “Ramdoot”, Dr. Bhalerao Marg, Girgaon, Mumbai - 400 004. Phone: 022-23860170/23863863, Fax: 022-23877178 E-mail: [email protected]; Website: www.himpub.com Branch Offices : New Delhi : “Pooja Apartments”, 4-B, Murari Lal Street, Ansari Road, Darya Ganj, New Delhi - 110 002. Phone: 011-23270392, 23278631; Fax: 011-23256286 Nagpur : Kundanlal Chandak Industrial Estate, Ghat Road, Nagpur - 440 018. Phone: 0712-2738731, 3296733; Telefax: 0712-2721216 Bengaluru : Plot No. 91-33, 2nd Main Road Seshadripuram, Behind Nataraja Theatre, Bengaluru-560020. Phone: 08041138821, 9379847017, 9379847005 Hyderabad : No. 3-4-184, Lingampally, Besides Raghavendra Swamy Matham, Kachiguda, Hyderabad - 500 027. Phone: 040-27560041, 27550139 Chennai : New-20, Old-59, Thirumalai Pillai Road, T. Nagar, Chennai - 600 017.
    [Show full text]
  • About C++ And... Few More Things
    INTERVIEW Bjarne Stroustrup About C++ and... few more things Bjarne Stroustrup: Born December 30, 1950 in Århus, ( Denmark) He is a computer scientist, most notable for the creation and the development of the widely used C++ programming language. He is currently Professor and holder of the College of Engineering Chair in Computer Science at Texas A&M University C++ is undoubtedly one of the most successful two papers from the ACM History of Programming Lan- programming languages of our era. I know guages conference (HOPL). They are available from my You heard this question many times but today, publications page. looking from almost 30 years perspective, could you say what are in your opinion the What about C compatibility? Is C greatest advantages and disadvanta ges of compatibility a good for C++? this language? From today’s perspective what I decided to build C++ on the fo undation of some exi- would you change/redesign in C++? sting programming language. Si mula67 set an example by There are two ways of approaching this question: building on Algol and I really didn’t want to re-invent the wheel and make the usual set of beginner’s mistakes. I ne- • If I had a time machine and could go back to 1979 eded to build on a systems programming language becau- and start over, what would I have done differently? se my aim was to deal with the increasing complexity of • What would I like to change today? system programs arising from the huge increase in pro- cessor speeds and memory capacities.
    [Show full text]
  • The Political Ascendance of the English Language in Computer Programming
    Talking to Machines: The Political Ascendance of the English Language in Computer Programming by Ejilayomi Mimiko B.A. (History), Simon Fraser University, 2018 Extended Essay Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the School of Communication (Dual Degree Program in Global Communication) Faculty of Communication, Art and Technology © Ejilayomi Mimiko 2019 SIMON FRASER UNIVERSITY Summer 2019 Copyright in this Work rests With the author. Please ensure that any reproduction or re-use is done in accordance With the relevant national copyright legislation. Approval Name: Ejilayomi Mimiko Degree: Master of Arts Title: Talking to Machines: The Political Ascendance of the English Language in Computer Programming Supervisory Committee: Program Director Katherine Reilly, Professor Yuezhi Zhao Senior Supervisor Professor Katherine Reilly Program Director Associate Professor Date Approved: 29th August, 2019. ii Abstract This essay explores possible reasons Why English has become the "default" natural language from Which programming commands are borroWed. Programming languages like C, C++, Java and Python use English keywords exclusively. The essay explores the social factors that underlie this phenomenon and how traditional poWer hierarchies are perpetuated. The essay is a critical response to the emancipatory rhetoric that ushered in the creation and popularization of the digital computer. It uses the story of ALGOL project to illustrate how technical goals are shaped by social factors Which inevitably reify inequality into technological artefacts. ALGOL, an attempt to create a standardized machine independent universal programming language, While answering a significant amount of technical questions, did not bridge the natural language gap. By Way of historical exploration, I argue this result is an expression of American globalization of the computing industry.
    [Show full text]