Metal C Programming Guide and Reference

Total Page:16

File Type:pdf, Size:1020Kb

Metal C Programming Guide and Reference z/OS Version 2 Release 3 Metal C Programming Guide and Reference IBM SC14-7313-30 Note Before using this information and the product it supports, read the information in “Notices” on page 159. This edition applies to Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2019-02-15 © Copyright International Business Machines Corporation 1998, 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents List of Figures...................................................................................................... vii List of Tables........................................................................................................ ix About this document.............................................................................................xi Who should read this document................................................................................................................. xi Where to find more information..................................................................................................................xi z/OS Basic Skills in IBM Knowledge Center.......................................................................................... xi How to read syntax diagrams......................................................................................................................xi How to send your comments to IBM......................................................................xv If you have a technical problem.................................................................................................................xv Summary of changes for z/OS Version 2 Release 3............................................... xvi Chapter 1. About IBM z/OS Metal C........................................................................ 1 Metal C environment....................................................................................................................................1 Programming with Metal C...........................................................................................................................1 Metal C and MVS linkage conventions................................................................................................... 2 Compiler-generated HLASM source code..............................................................................................4 Prolog and epilog code.........................................................................................................................12 Supplying your own HLASM statements..............................................................................................20 Inserting HLASM instructions into the generated source code.......................................................... 21 AMODE-switching support...................................................................................................................29 RENT mode support............................................................................................................................. 30 argc argv parsing support.....................................................................................................................33 AR-mode programming support.......................................................................................................... 33 Metal C function descriptor support.................................................................................................... 41 Defining an alternative name for function "main"............................................................................. 41 Building Metal C programs...................................................................................................................41 Summary of useful references for the Metal C programmer.................................................................... 49 Chapter 2. Header files........................................................................................ 51 builtins.h — Declare built-in functions...................................................................................................... 51 ctype.h — Declare character classification functions .............................................................................. 51 float.h — Define ANSI constants for floating-point data types.................................................................51 inttypes.h — Define macros for sprintf and sscanf family.........................................................................53 limits.h — Declare symbolic names for resource limits............................................................................ 55 math.h — Define macros for floating-point support .................................................................................56 metal.h — Define Metal C related function prototypes and data..............................................................56 stdarg.h — Define macros for accessing variable-length argument lists in functions............................. 56 stddef.h — Define ptrdiff_t, size_t, and ssize_t data types....................................................................... 57 stdio.h — Define I/O related functions...................................................................................................... 57 stdint.h — Define integer types and related limits and macros................................................................57 stdlib.h — Define standard library functions............................................................................................. 59 string.h — Declare string manipulation functions..................................................................................... 59 Chapter 3. C functions available to Metal C programs............................................61 Characteristics of Metal C runtime library functions................................................................................ 61 System and static object libraries............................................................................................................. 61 User-replaceable heap services................................................................................................................62 abs() — Calculate integer absolute value.................................................................................................. 64 atoi() — Convert character string to integer.............................................................................................. 65 iii atol() — Convert character string to long...................................................................................................65 atoll() — Convert character string to signed long long ............................................................................. 66 calloc() — Reserve and initialize storage...................................................................................................67 __cinit() - Initialize a Metal C environment............................................................................................... 67 __cterm() - Terminate a Metal C environment..........................................................................................70 div() — Calculate quotient and remainder.................................................................................................70 free() — Free a block of storage.................................................................................................................71 isalnum() to isxdigit() — Test integer value............................................................................................... 71 isalpha() — Test for alphabetic character classification........................................................................... 73 isblank() — Test for blank character classification....................................................................................73 iscntrl() — Test for control classification................................................................................................... 73 isdigit() — Test for decimal-digit classification......................................................................................... 73 isgraph() — Test for graphic classification.................................................................................................73 islower() — Test for lowercase...................................................................................................................73 isprint() — Test for printable character classification............................................................................... 73 ispunct() — Test for punctuation classification......................................................................................... 73 isspace() — Test for space character classification.................................................................................. 73 isupper() — Test for uppercase letter classification..................................................................................73 isxdigit() — Test for hexadecimal digit Classification................................................................................73 labs() — Calculate long absolute value......................................................................................................74 ldiv() — Compute quotient and remainder of integral division................................................................
Recommended publications
  • Operating System Engineering, Lecture 3
    6.828 2012 Lecture 3: O/S Organization plan: O/S organization processes isolation topic: overall o/s design what should the main components be? what should the interfaces look like? why have an o/s at all? why not just a library? then apps are free to use it, or not -- flexible some tiny O/Ss for embedded processors work this way key requirement: support multiple activities multiplexing isolation interaction helpful approach: abstract services rather than raw hardware file system, not raw disk TCP, not raw ethernet processes, not raw CPU/memory abstractions often ease multiplexing and interaction and more convenient and portable note: i'm going to focus on mainstream designs (xv6, Linux, &c) for *every* aspect, someone has done it a different way! example: exokernel and VMM does *not* abstract anything! xv6 has only a few abstractions / services processes (cpu, mem) I/O (file descriptors) file system i'm going to focus on xv6 processes today a process is a running program it has its own memory, share of CPU, FDs, parent, children, &c it uses system calls to interact outside itself to get at kernel services xv6 basic design here very traditional (UNIX/Linux/&c) xv6 user/kernel organization h/w, kernel, user kernel is a big program services: process, FS, net low-level: devices, VM all of kernel runs w/ full hardware privilege (very convenient) system calls switch between user and kernel 1 good: easy for sub-systems to cooperate (e.g. paging and file system) bad: interactions => complex, bugs are easy, no isolation within o/s called "monolithic";
    [Show full text]
  • Using the GNU Compiler Collection (GCC)
    Using the GNU Compiler Collection (GCC) Using the GNU Compiler Collection by Richard M. Stallman and the GCC Developer Community Last updated 23 May 2004 for GCC 3.4.6 For GCC Version 3.4.6 Published by: GNU Press Website: www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 59 Temple Place Suite 330 Tel 617-542-5942 Boston, MA 02111-1307 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being \GNU General Public License" and \Funding Free Software", the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Programming Languages Supported by GCC ............ 3 2 Language Standards Supported by GCC ............... 5 3 GCC Command Options .........................
    [Show full text]
  • Bash Shell Scripts
    Bash Shell Scripts Writing Bash shell scripts Bash shell scripts are text files Text files most efficiently built with programming editors (emacs or vi) File must be executable and in search path chmod 700 my_script PATH environment variable may not include .! An example shell script: #!/bin/bash #My first script echo "Hello World!" Bash Shell Scripts Writing Bash shell scripts Compile a Verilog file with vlog #!/bin/bash if [ ! d work ] ; then echo work does not exist, making it vlib work fi if [ ! s adder.v ] ; then vlog adder.v fi work directory must exist before compilation Get scripts via wget, eg: wget http://web.engr.oregonstate.edu/~traylor/ece474/script --- Bash Shell Scripts Writing Bash shell scripts File attribute checking #!/bin/bash if [ ! s junk_dir ] ; then mkdir junk_dir fi Spaces around brackets are needed! File attribute checking d exists and is a directory e, a file exists f exists and is a regular file s file exists and is not empty --- Bash Shell Scripts Writing Bash shell scripts Compile Verilog then run a simultion #!/bin/bash if [ ! -d "work" ] ; then vlib work fi if [ -s "adder.v" ] ; then vlog adder.v #runs simulation with a do file and no GUI vsim adder -do do.do quiet c else echo verilog file missing fi --- Bash Shell Scripts Writing Bash shell scripts vsim command and arguments vsim entity_name do dofile.do quiet -c -quiet (do not report loading file messages) -c (console mode, no GUI) -do (run vsim from a TCL do file) +nowarnTFMPC (don’t warn about mismatched ports, scary) +nowarnTSCALE (don’t warn about timing mismatches) Try vsim help for command line arguements --- Bash Shell Scripts Writing Bash Shell Scripts (TCL Script) In another text file, we create a TCL script with commands for the simulator.
    [Show full text]
  • Introduction to Linux by Lars Eklund Based on Work by Marcus Lundberg
    Introduction to Linux By Lars Eklund Based on work by Marcus Lundberg ● What is Linux ● Logging in to UPPMAX ● Navigate the file system ● “Basic toolkit” What is Linux ● The Linux Operating system is a UNIX like UNIX compatible Operating system. ● Linux is a Kernel on which many different programs can run. The shell(bash, sh, ksh, csh, tcsh and many more) is one such program ● Linux has a multiuser platform at its base which means permissions and security comes easy. Many Flavours Connect to UPPMAX ● (Download XQuartz or other X11 server for Mac OS ) ● Linux and MacOS: – start Terminal – $ ssh -X [email protected] Connect to UPPMAX for windows users ● Download a X-server such as GWSL or X-ming or VcXsrv or an other of your choosing ● Install WSL and a Distribution such as ubuntu or a ssh program such as MobaXTerm ● Connect to $ ssh -X [email protected] Windows links ● https://sourceforge.net/projects/vcxsrv/ ● https://mobaxterm.mobatek.net/ ● https://opticos.github.io/gwsl/ ● https://sourceforge.net/projects/xming/ ● https://docs.microsoft.com/en-us/windows/wsl/install-wi n10 ● Don’t forget to update to wsl2 X11-forwarding graphics from the command line ● Graphics can be sent through the SSH connection you’re using to connect - Use ssh -Y or ssh -X ● MacOS users will need to install XQuartz. ● When starting a graphical program, a new window will open, but your terminal will be “locked”. - Run using & at the end to run it as a background proccess e.g. “gedit &” - Alternatively, use ctrl-z to put gedit to sleep and
    [Show full text]
  • The Design of a Pascal Compiler Mohamed Sharaf, Devaun Mcfarland, Aspen Olmsted Part I
    The Design of A Pascal Compiler Mohamed Sharaf, Devaun McFarland, Aspen Olmsted Part I Mohamed Sharaf Introduction The Compiler is for the programming language PASCAL. The design decisions Concern the layout of program and data, syntax analyzer. The compiler is written in its own language. The compiler is intended for the CDC 6000 computer family. CDC 6000 is a family of mainframe computer manufactured by Control Data Corporation in the 1960s. It consisted of CDC 6400, CDC 6500, CDC 6600 and CDC 6700 computers, which all were extremely rapid and efficient for their time. It had a distributed architecture and was a reduced instruction set (RISC) machine many years before such a term was invented. Pascal Language Imperative Computer Programming Language, developed in 1971 by Niklaus Wirth. The primary unit in Pascal is the procedure. Each procedure is represented by a data segment and the program/code segment. The two segments are disjoint. Compiling Programs: Basic View Machine Pascal languag program Pascal e compile program filename . inpu r gp output a.out p t c Representation of Data Compute all the addresses at compile time to optimize certain index calculation. Entire variables always are assigned at least one full PSU “Physical Storage Unit” i.e CDC6000 has ‘wordlength’ of 60 bits. Scalar types Array types the first term is computed by the compiler w=a+(i-l)*s Record types: reside only within one PSU if it is represented as packed. If it is not packed its size will be the size of the largest possible variant. Data types … Powerset types The set operations of PASCAL are realized by the conventional bit-parallel logical instructions ‘and ‘ for intersection, ‘or’ for union File types The data transfer between the main store buffer and the secondary store is performed by a Peripheral Processor (PP).
    [Show full text]
  • Entry Point Specification
    EMV® Contactless Specifications for Payment Systems Book B Entry Point Specification Version 2.6 July 2016 © 2016 EMVCo, LLC. All rights reserved. Reproduction, distribution and other use of this document is permitted only pursuant to the applicable agreement between the user and EMVCo found at www.emvco.com. EMV® is a registered trademark or trademark of EMVCo, LLC in the United States and other countries. EMV Contactless Book B Entry Point Specification version 2.6 Legal Notice The EMV® Specifications are provided “AS IS” without warranties of any kind, and EMVCo neither assumes nor accepts any liability for any errors or omissions contained in these Specifications. EMVCO DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AS TO THESE SPECIFICATIONS. EMVCo makes no representations or warranties with respect to intellectual property rights of any third parties in or in relation to the Specifications. EMVCo undertakes no responsibility to determine whether any implementation of the EMV® Specifications may violate, infringe, or otherwise exercise the patent, copyright, trademark, trade secret, know-how, or other intellectual property rights of third parties, and thus any person who implements any part of the EMV® Specifications should consult an intellectual property attorney before any such implementation. Without limiting the foregoing, the Specifications may provide for the use of public key encryption and other technology, which may be the subject matter of patents in several countries. Any party seeking to implement these Specifications is solely responsible for determining whether its activities require a license to any such technology, including for patents on public key encryption technology.
    [Show full text]
  • A Trusted Mechanised Javascript Specification
    A Trusted Mechanised JavaScript Specification Martin Bodin Arthur Charguéraud Daniele Filaretti Inria & ENS Lyon Inria & LRI, Université Paris Sud, CNRS Imperial College London [email protected] [email protected] d.fi[email protected] Philippa Gardner Sergio Maffeis Daiva Naudžiunien¯ e˙ Imperial College London Imperial College London Imperial College London [email protected] sergio.maff[email protected] [email protected] Alan Schmitt Gareth Smith Inria Imperial College London [email protected] [email protected] Abstract sation was crucial. Client code that works on some of the main JavaScript is the most widely used web language for client-side ap- browsers, and not others, is not useful. The first official standard plications. Whilst the development of JavaScript was initially just appeared in 1997. Now we have ECMAScript 3 (ES3, 1999) and led by implementation, there is now increasing momentum behind ECMAScript 5 (ES5, 2009), supported by all browsers. There is the ECMA standardisation process. The time is ripe for a formal, increasing momentum behind the ECMA standardisation process, mechanised specification of JavaScript, to clarify ambiguities in the with plans for ES6 and 7 well under way. ECMA standards, to serve as a trusted reference for high-level lan- JavaScript is the only language supported natively by all major guage compilation and JavaScript implementations, and to provide web browsers. Programs written for the browser are either writ- a platform for high-assurance proofs of language properties. ten directly in JavaScript, or in other languages which compile to We present JSCert, a formalisation of the current ECMA stan- JavaScript.
    [Show full text]
  • BCL: a Cross-Platform Distributed Data Structures Library
    BCL: A Cross-Platform Distributed Data Structures Library Benjamin Brock, Aydın Buluç, Katherine Yelick University of California, Berkeley Lawrence Berkeley National Laboratory {brock,abuluc,yelick}@cs.berkeley.edu ABSTRACT high-performance computing, including several using the Parti- One-sided communication is a useful paradigm for irregular paral- tioned Global Address Space (PGAS) model: Titanium, UPC, Coarray lel applications, but most one-sided programming environments, Fortran, X10, and Chapel [9, 11, 12, 25, 29, 30]. These languages are including MPI’s one-sided interface and PGAS programming lan- especially well-suited to problems that require asynchronous one- guages, lack application-level libraries to support these applica- sided communication, or communication that takes place without tions. We present the Berkeley Container Library, a set of generic, a matching receive operation or outside of a global collective. How- cross-platform, high-performance data structures for irregular ap- ever, PGAS languages lack the kind of high level libraries that exist plications, including queues, hash tables, Bloom filters and more. in other popular programming environments. For example, high- BCL is written in C++ using an internal DSL called the BCL Core performance scientific simulations written in MPI can leverage a that provides one-sided communication primitives such as remote broad set of numerical libraries for dense or sparse matrices, or get and remote put operations. The BCL Core has backends for for structured, unstructured, or adaptive meshes. PGAS languages MPI, OpenSHMEM, GASNet-EX, and UPC++, allowing BCL data can sometimes use those numerical libraries, but are missing the structures to be used natively in programs written using any of data structures that are important in some of the most irregular these programming environments.
    [Show full text]
  • Openshift Container Platform 3.11 CLI Reference
    OpenShift Container Platform 3.11 CLI Reference OpenShift Container Platform 3.11 CLI Reference Last Updated: 2021-04-12 OpenShift Container Platform 3.11 CLI Reference OpenShift Container Platform 3.11 CLI Reference Legal Notice Copyright © 2021 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • HP Openvms Utility Routines Manual
    HP OpenVMS Utility Routines Manual Order Number: BA554-90019 June 2010 This manual describes the OpenVMS utility routines, a set of routines that provide a programming interface to various OpenVMS utilities. Revision/Update Information: This manual supersedes the HP OpenVMS Utility Routines Manual, OpenVMS Alpha Version 8.3. Software Version: OpenVMS Version 8.4 for Integrity servers OpenVMS Alpha Version 8.4 Hewlett-Packard Company Palo Alto, California © Copyright 2010 Hewlett-Packard Development Company, L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. ZK4493 The HP OpenVMS documentation set is available on CD. This document was prepared using DECdocument, Version 3.3-1B. Contents Preface ............................................................ xvii 1 Introduction to Utility Routines 2 Access Control List (ACL) Editor Routine 2.1 Introduction to the ACL Editor Routine ........................... ACL–1 2.2 Using the ACL Editor Routine: An Example ....................... ACL–1 2.3 ACL Editor Routine . ........................................ ACL–2 ACLEDIT$EDIT ...........................................
    [Show full text]
  • Command Line Interface Overview
    Command Line Interface Overview Note The ASR 5000 hardware platform has reached end of life and is not supported in this release. Any references to the ASR 5000 (specific or implied) or its components in this document are coincidental. Full details on the ASR 5000 hardware platform end of life are available at: https://www.cisco.com/c/en/us/products/collateral/wireless/asr-5000-series/eos-eol-notice-c51-735573.html. This chapter describes the numerous features in the command line interface (CLI). It includes information about the architecture of the CLI, its command modes and user privileges, how to obtain help within the CLI, and other key items. The operating system (StarOS™) controls the overall system logic, control processes, and the CLI. The CLI is a multi-threaded user interface that allows you to manipulate, configure, control and query the hardware and software components that make up the system and its hosted services. In addition, the CLI can host multiple instances of management and service configuration sessions. This allows multiple users to simultaneously access and manage multiple hosted services. This section provides the following information about the CLI: • CLI Structure, on page 1 • CLI Command Modes, on page 2 • CLI Administrative Users, on page 2 • CLI Contexts, on page 7 • Understanding the CLI Command Prompt, on page 8 • CLI Command Syntax, on page 9 • Entering and Viewing CLI Commands, on page 9 • Obtaining CLI Help, on page 13 • Exiting the CLI and CLI Command Modes, on page 14 • IP Address Notation, on page 15 • Alphanumeric Strings, on page 16 CLI Structure CLI commands are strings of commands or keywords and user-specified arguments that set or modify specific parameters of the system.
    [Show full text]
  • 1 Introduction to C – Part I
    1 Introduction to C – part I In this class, we will be employing the modern “C” language which is com- 1 monly used for scientific programming . “C” is closely related to C++ which is an Object Oriented language. It turns out that, while occasionally useful, the Object Oriented properties of C++ are not required for most types of scientific programming. In addition, acquiring a working knowledge of C++ can involve quite a steep learning curve. The object of this class is to get you up to speed as rapidly as possible in a powerful and versatile programming language (we have about three weeks to do that!) and then to introduce you to a number of numerical techniques useful and essential for work in physics and engineering. As it turns out, many software programming pack- ages, such as MathCad and IDL, have syntaxes that are very similar to “C”, and so learning “C” is an excellent entry point for a host of other program- ming environments. Some of you will already have a working knowledge of C or C++. If you don’t, the following three chapters will get you started. Otherwise, consider them a quick refresher. Read: The C Programming Language: Chapter 1. 1.1 Computer Memory and Variables Basically speaking, a computer program is a series of statements that manip- ulate data stored in the computer’s memory and yields a (hopefully useful) result. One can think of the memory of a computer as a series of boxes, each of which can contain one piece of data (a number, a character, etc.).
    [Show full text]